Synchronizers And Data Flip-Flops are Different

Jerome Cox
Blendics Inc.
St. Louis, Missouri, USA
jcox@blendics.com

David Zar
Blendics Inc.
St. Louis, Missouri, USA
dzar@blendics.com

George Engel
Southern Illinois University
Edwardsville, Illinois, USA
gengel@siue.edu

Ian W. Jones
Oracle Labs
Redwood Shores, California, USA
ian.w.jones@oracle.com
Outline

- Data vs. Synchronizer Flip-Flop
- Flip-Flop Hazards and Mitigations
- Benchmark Synchronizer FF Design
- Performance of Benchmark Synchronizer FF
- Using MetaACE_LTD for Analysis
- Summary
Data Flip-Flops Vs. Synchronizer Flip-Flops

Different performance characteristics to optimize based on FF use:

<table>
<thead>
<tr>
<th></th>
<th>t_{pd}</th>
<th>t_{su}</th>
<th>t_h</th>
<th>τ</th>
<th>T_w</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data FF</td>
<td>minimize</td>
<td>minimize</td>
<td>0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Synchronizer FF</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>minimize</td>
<td>minimize</td>
</tr>
</tbody>
</table>
Flip-Flop Hazards

- **Types**
 - Uncertainty in transition timing
 - Clock/data skew
 - Uncertainty in logic level

- **Hazards Mitigated In**
 - Data FF
 - $t_{\text{clk}} > t_{\text{su}} + t_{\text{pd}} + t_{\text{cl-d}} + t_{\text{k}}$
 - Synchronizer
 - Mean Time Between Failure (MTBF)

$$MTBF = \frac{e^{ts/\tau}}{Twfffd}$$
Use of Data and Synchronizer Flip-Flops

- **Data Flip-Flop**
 - Temporary storage of data
 - Prevent data values from corruption during a clock cycle
 - Hold data values for multiple clock cycles
 - Deterministic cycle-to-cycle operation
 - Implies large setup/hold times

- **Synchronizer Flip-Flop**
 - Minimize \(Pr(failure) \)
 - Data/clock may arrive at any time which may cause a setup/hold violation at a following data flip-flop
 - Preserve data transition sequence
 - No guarantee of deterministic cycle-to-cycle timing
Benchmark Synchronizer FF

- Synchronizer FFs are not the same as data FFs
 - Show how to design a good FF for use as a synchronizer.
- Metastability/synchronizer design is not well-understood by many engineers and their managers
 - An example circuit will make it easier for engineers to understand good synchronizer design and the pitfalls they are likely to encounter when trying to estimate metastability-related MTBF rates.
- Metastability related failures are likely to increase as process variability increases.
 - Time to get better and understanding the risks and design options.
Synchronizer Cell Candidate: A Data Flip-Flop with Scan Chain
Optimize For Data Use
Optimize for Synchronizer Use
Gain-Bandwidth Product and τ

- Converting a data FF into a synchronizer FF requires maximizing the gain-bandwidth product (GBW) of the regenerative loops in the master and slave latches.

- Gain-Bandwidth Product and τ are inversely proportional:

$$\tau = \left[r \sqrt{A_{DC}} \right] \frac{1}{2\pi GBW}, \quad r = \frac{C_L}{C_L + C_L}$$

- This relation is used to size the devices in the regenerative loops.

- Through use of a small signal analysis, a near-optimum size for loop devices can be determined. This method gives engineers a good method to design a high-quality synchronizer.
AC Analysis to Maximize GBW

MASTER

SLAVE
GBW as a Function of Device Width

GBW Vs. Device Width: Master

![Graph showing GBW vs. device width for Master.]

GBW Vs. Device Width: Slave

![Graph showing GBW vs. device width for Slave.]

Table: GBW for Different NFET Widths

<table>
<thead>
<tr>
<th>NFET Device Width</th>
<th>Master</th>
<th>Slave</th>
</tr>
</thead>
<tbody>
<tr>
<td>90 nm</td>
<td>85 GHz</td>
<td>37 GHz</td>
</tr>
<tr>
<td>180 nm</td>
<td>110 GHz</td>
<td>57 GHz</td>
</tr>
<tr>
<td>270 nm</td>
<td>117 GHz</td>
<td>66 GHz</td>
</tr>
<tr>
<td>360 nm</td>
<td>117 GHz</td>
<td>69 GHz</td>
</tr>
<tr>
<td>450 nm</td>
<td>115 GHz</td>
<td>68 GHz</td>
</tr>
</tbody>
</table>

Additional Capacitance Impact

<table>
<thead>
<tr>
<th>Capacitance (fF)</th>
<th>Master</th>
<th>Slave</th>
</tr>
</thead>
<tbody>
<tr>
<td>No capacitance</td>
<td>117.1 GHz</td>
<td>66 GHz</td>
</tr>
<tr>
<td>1 fF</td>
<td>93.75 GHz</td>
<td>56.4 GHz</td>
</tr>
<tr>
<td>2 fF</td>
<td>77.8 GHz</td>
<td>49.2 GHz</td>
</tr>
<tr>
<td>4 fF</td>
<td>57.8 GHz</td>
<td>39.2 GHz</td>
</tr>
<tr>
<td>10 fF</td>
<td>32.4 GHz</td>
<td>24.2 GHz</td>
</tr>
</tbody>
</table>

At NFET Width = 270 um
Physical Layout and Performance

- Area: 1.73 μm x 9.6 μm, 15.65 μm²
- Performance:

\[
\tau_{\text{eff}} = \left(\frac{\alpha}{\tau_m} + \frac{1 - \alpha}{\tau_s}\right)^{-1}
\]

\(\alpha\) is the duty cycle for the master
Summary

- Data and Synchronizer FFs are not the same things.
- A typical data FF circuit can be converted to a good synchronizer circuit.
 - The method uses an AC analysis to optimize the GBW of the cascaded inverters in the critical regenerative loops.
 - Using low Vt devices will also improve GBW.
- The benchmark synchronizer FF design is available to the public as well as *MetaACE_LTD* for analyzing metastability performance.
Questions

Where do I get the benchmark synchronizer?
http://blendics.com/a-public-synchronizer/

Where do I get MetaACE_LTD?
http://blendics.com/forums/
PVT Tolerant Synchronizer Design

- From equations developed through formal sensitivity analysis the following recommendations can be made for a PVT variation tolerant design:
 - Use the highest supply voltage possible,
 - Use the lowest, available threshold transistors in regenerative loops,
 - Use minimum length FETs in the loops since high-field effects reduce sensitivity,
 - Use transistor widths no wider than necessary since wider devices can force the FETs out of strong inversion, and
 - If available, choose a synchronizer topology with metastable voltages that are insensitive to supply voltage changes.
FreePDK45

- Purposely non-manufacturable 45 nm “process”
- Predictive HSPICE models from ASU
- PDK (Process Design Kit) from NCSU for Cadence IC6 toolset
- Used by researchers to explore device performance and design flows in deep sub-micron processes
- Three threshold voltages available
 - VTL → Low threshold → High-speed
 - VTG → Normal threshold → General-purpose
 - VTH → High threshold → Low-power
MetaACE_LTD

- MetaACE_LTD is a free version of MetaACE which is a tool that allows easy determination of parameters needed for analysis of MTBF.
- Automates hundreds of simulations, tabulates results and computes τ and Tw.
- Sweeps voltage and temperature for corner analysis.
- Supports any circuit where SPICE circuit and transistor-level models are available.
- Can be run from the command line with configuration files for inclusion into a verification/extraction flow.
- Has been verified against silicon across a range of voltage and temperature.