

Jerome Cox Blendics Inc. St. Louis, Missouri, USA jcox@blendics.com

David Zar Blendics Inc. St. Louis, Missouri, USA dzar@blendics.com George Engel Southern Illinois University Edwardsville, Illinois, USA gengel@siue.edu

BLENDICS

Ian W. Jones Oracle Labs Redwood Shores, California, USA ian.w.jones@oracle.com

Outline

- Data vs. Synchronizer Flip-Flop
- Flip-Flop Hazards and Mitigations
- Benchmark Synchronizer FF Design
- Performance of Benchmark Synchronizer FF
- Using MetaACE_LTD for Analysis
- Summary

Data Flip-Flops Vs. Synchronizer Flip-Flops

Different performance characteristics to optimize based on FF use:

	t _{pd}	t _{su}	t _h	τ	T _w
Data FF	minimize	minimize	0	-	-
Synchronizer FF	-	-	0	minimize	minimize

Flip-Flop Hazards

Types

- Uncertainty in transition timing
- Clock/data skew
- Uncertainty in logic level
- Hazards Mitigated In
 - Data FF
 - $t_{clk} > t_{su} + t_{pd} + t_{cl-d} + t_k$
 - Synchronizer
 - Mean Time Between Failure (MTBF)

$$MTBF = 1/\Pr(failure) = \frac{e^{t_s/\tau}}{T_w f_c f_d}$$

Use of Data and Synchronizer Flip-Flops

- Data Flip-Flop
 - Temporary storage of data
 - Prevent data values from corruption during a clock cycle
 - Hold data values for multiple clock cycles
 - Deterministic cycle-to-cycle operation
 - Implies large setup/hold times
- Synchronizer Flip-Flop
 - Minimize Pr(failure)
 - Data/clock may arrive at any time which may cause a setup/hold violation at a following data flip-flop
 - Preserve data transition sequence
 - No guarantee of deterministic cycle-to-cycle timing

Benchmark Synchronizer FF

- Synchronizer FFs are not the same as data FFs
 - Show how to design a good FF for use as a synchronizer.
- Metastability/synchronizer design is not well-understood by many engineers and their managers
 - An example circuit will make it easier for engineers to understand good synchronizer design and the pitfalls they are likely to encounter when trying to estimate metastability-related MTBF rates.
- Metastability related failures are likely to increase as process variability increases.
 - Time to get better and understanding the risks and design options.

Synchronizer Cell Candidate: A Data Flip-Flop with Scan Chain

Optimize For Data Use

8

SO_CLK-

-SO_CLK

Gain-Bandwidth Product and τ

- Converting a data FF into a synchronizer FF requires maximizing the gain-bandwidth product (GBW) of the regenerative loops in the master and slave latches.
- Gain-Bandwidth Product and τ are inversely proportional $\tau = \left[r\sqrt{A_{DC}}\right] \frac{1}{2\pi GBW}$, $r = \frac{C_{L2}}{C_{L1} + C_{L2}}$
- This relation is used to size the devices in the regenerative loops
- Through use of a small signal analysis, a near-optimum size for loop devices can be determined. This method gives engineers a good method to design a high-quality synchronizer.

AC Analysis to Maximize GBW

MASTER

SLAVE

GBW as a Function of Device Width

GBW Vs. Device Width: Master

NFET Device Width	Master	Slave
90 nm	$85~\mathrm{GHz}$	37 GHz
180 nm	$110 \mathrm{~GHz}$	57 GHz
270 nm	$117 \mathrm{~GHz}$	66 GHz
360 nm	117 GHz	69 GHz
450 nm	$115 \mathrm{~GHz}$	68 GHz

	Master	Slave
No capacitance	117.1 GHz	66 GHz
1 fF	93.75 GHz	56.4 GHz
2 fF	77.8 GHz	49.2 GHz
4 fF	57.8 GHz	39.2 GHz
10 fF	32.4 GHz	24.2 GHz

At NFET Width =270 um

GBW Vs. Device Width: Slave

Physical Layout and Performance

• Area: 1.73 μm x 9.6 μm, 15.65 μm²

• Performance:

	Dff, VTG (ps)	VTG (ps)	VTL (ps)
τ_{M}	19	14	10
τ_{S}	55	31	19
$ au_{eff}$	28	19	13

$$\tau_{eff} = \left(\frac{\alpha}{\tau_m} + \frac{1-\alpha}{\tau_s}\right)^{-1}$$

 α is the duty cycle for the master

Summary

- Data and Synchronizer FFs are not the same things.
- A typical data FF circuit can be converted to a good synchronizer circuit.
 - The method uses an AC analysis to optimize the GBW of the cascaded inverters in the critical regenerative loops.
 - Using low Vt devices will also improve GBW.
- The benchmark synchronizer FF design is available to the public as well as *MetaACE_LTD* for analyzing metastability performance.

Questions

Where do I get the benchmark synchronizer? http://blendics.com/a-public-synchronizer/

Where do I get *MetaACE_LTD*? http://blendics.com/forums/

PVT Tolerant Synchronizer Design

- From equations developed through formal sensitivity analysis the following recommendations can be made for a PVT variation tolerant design:
 - Use the highest supply voltage possible,
 - Use the lowest, available threshold transistors in regenerative loops,
 - Use minimum length FETs in the loops since high-field effects reduce sensitivity,
 - Use transistor widths no wider than necessary since wider devices can force the FETs out of strong inversion, and
 - If available, choose a synchronizer topology with metastable voltages that are insensitive to supply voltage changes.

FreePDK45

- Purposely non-manufacturable 45 nm "process"
- Predictive HSPICE models from ASU
- PDK (Process Design Kit) from NCSU for Cadence IC6 toolset
- Used by researchers to explore device performance and design flows in deep sub-micron processes
- Three threshold voltages available
 - VTL \rightarrow Low threshold \rightarrow High-speed
 - VTG \rightarrow Normal threshold \rightarrow General-purpose
 - VTH \rightarrow High threshold \rightarrow Low-power

MetaACE_LTD

 MetaACE_LTD is a free version of *MetaACE* which is a tool that allows easy determination of parameters needed for analysis of MTBF.

- Automates hundreds of simulations, tabulates results and computes τ and Tw.
- Sweeps voltage and temperature for corner analysis.
- Supports any circuit where SPICE circuit and transistor-level models are available.
- Can be run from the command line with configuration files for inclusion into a verification/extraction flow.
- Has been verified against silicon across a range of voltage and temperature.