A Low-Latency, Energy-Efficient L1 Cache Based on a Self-Timed Pipeline

Louis-Charles Trudeau¹ Ghyslain Gagnon¹ François Gagnon¹ Claude Thibeault¹ Thomas Awad² Doug Morrissey²

¹École de technologie supérieure, Montréal, Canada ²Octasic Inc., Montréal, Canada

21st IEEE International Symposium on Asynchronous Circuits and Systems, 2015

Plan

Introduction

Problematic Motivations Scope of Work

Cache Implementation

Architecture and Organization Operation

Self-Timed Pipeline Design

Design Guidelines Pipeline Control Pipeline Operation

Performance Results

Summary

Problematic Motivations Scope of Work

Research Program

Objective: Adapting Octasic's power-efficient asynchronous architecture in a general purpose processor (ARM v7-A).

Collaborators

Problematic Motivations Scope of Work

Problematic Current architecture separates the asynchronous CPU from the synchronous L1 memory.

Problematic Motivations Scope of Work

Problematic

Current architecture separates the asynchronous CPU from the synchronous L1 memory.

 2-cycle synchronization penalty.

Problematic Motivations Scope of Work

Problematic

Current architecture separates the asynchronous CPU from the synchronous L1 memory.

- 2-cycle synchronization penalty.
- Energy efficiency is suboptimal.

Problematic Motivations Scope of Work

Motivations

This work focuses on improving the L1 memory access.

Why Go Asynchronous ?

- No balanced clock trees.
 Clocks are point-to-point and skew insensitive.
- No major critical path due to frequency constraints. Less large/leaky gates.
- Less complex pipeline structure.
 Only neighboring stages are connected together.

Problematic Motivations Scope of Work

Scope of Work

Design an asynchronous cache based on a self-timed pipeline.

Objectives

- 1. Mitigate CPU \leftrightarrow L1 memory access latency.
- 2. Reduce the average memory access time.
- 3. Improve the cache energy efficiency.
- 4. Push the synchronization barrier at the L2 memory.

Architecture and Organization Operation

Plan

ntroduction

Problematic Motivations Scope of Work

Cache Implementation Architecture and Organization Operation

Self-Timed Pipeline Design

Design Guidelines Pipeline Control Pipeline Operation

Performance Results

Summary

Architecture and Organization Operation

L1 Instruction Cache Design

Dual-fetch, 32kB, 4-way set-associative phased-cache.

Synchronous Cache

- 5-stage pipeline (hit).
- Pipeline stall on miss.
- 2-cycle pipeline reinjection following cache fill.

Asynchronous Cache

- 4-stage pipeline (hit)
- Single stage stall on miss.
- Resource arbitration for concurrent cache fill.

Integration in ARM-like processor

 \Rightarrow Dhrystone & Coremark (armcc compiled).

Architecture and Organization Operation

Cache Pipeline

Shared Resources

- Tag Memory
- Data Memory
- (L2 Memory)

Tasks Partitioning

- 6 pipeline stages.
- Two-phase handshake protocol.

Architecture and Organization Operation

Cache Pipeline

Shared Resources

- Tag Memory
- Data Memory
- ► (L2 Memory)

Tasks Partitioning

- 6 pipeline stages.
- Two-phase handshake protocol.

Architecture and Organization Operation

Cache Operation

- Tag Read
- Forward Address
- Tag & Data Write
- Data Read
- Data Output

Architecture and Organization Operation

Cache Operation

- Tag Read
- Forward Address
- Tag & Data Write
- Data Read
- Data Output

Architecture and Organization Operation

Cache Operation

- Tag Read
- Forward Address
- Tag & Data Write
- Data Read
- Data Output

Architecture and Organization Operation

Cache Operation

- Tag Read
- Forward Address
- Tag & Data Write
- Data Read
- Data Output

Architecture and Organization Operation

Cache Operation

- Tag Read
- Forward Address
- Tag & Data Write
- Data Read
- Data Output

Architecture and Organization Operation

Cache Operation

- Tag Read
- Forward Address
- Tag & Data Write
- Data Read
- Data Output

Design Guidelines Pipeline Control Pipeline Operation

Plan

Introduction

Problematic Motivations Scope of Work

Cache Implementation Architecture and Organization Operation

Self-Timed Pipeline Design

Design Guidelines Pipeline Control Pipeline Operation

Performance Results

Summary

Design Guidelines Pipeline Control Pipeline Operation

Design Guidelines

Self-timed pipeline design had to follow these guidelines:

- Standard cell libraries.
- Standard edge-triggered flip-flops.
- Prioritize High-Voltage Threshold (HVT) cells to limit leakage.

Design Guidelines Pipeline Control Pipeline Operation

Overview Of A Single Pipeline Stage

- 1. Click controllers
 - Two-phase handshake protocol.
- 2. Token modules
 - Synchronization;
 - Pulse generation.
- 3. Adjustable delays

Design Guidelines Pipeline Control Pipeline Operation

Click Controllers

- Based on a two-phase handshake protocol.
- Stores the stage phase, toggles it upon usage.

Control Signals

- Request: N 1.phase_{del} $\oplus N$.phase
- Available: $\overline{N.\text{phase} \oplus N + 1.\text{phase}}$

Design Guidelines Pipeline Control Pipeline Operation

Token Modules

General Idea

To enable a transaction with a specific resource, "users" must possess the resource's token.

Design Guidelines Pipeline Control Pipeline Operation

Token Modules

General Idea

To enable a transaction with a specific resource, "users" must possess the resource's token.

Operation

1. Hold the token

Design Guidelines Pipeline Control Pipeline Operation

Token Modules

General Idea

To enable a transaction with a specific resource, "users" must possess the resource's token.

- 1. Hold the token
- 2. Consume the token and access resource

Design Guidelines Pipeline Control Pipeline Operation

Token Modules

General Idea

To enable a transaction with a specific resource, "users" must possess the resource's token.

- 1. Hold the token
- 2. Consume the token and access resource
- 3. Pass the token

Design Guidelines Pipeline Control Pipeline Operation

Token Modules

Internal Structure

- Token control function
- Pulse generation
- Token ring delay

Design Guidelines Pipeline Control Pipeline Operation

Token Modules

Operation

1. Token conditions are met.

Design Guidelines Pipeline Control Pipeline Operation

Token Modules

- 1. Token conditions are met.
- 2. Token passes through F() thus causing a transition.

Design Guidelines Pipeline Control Pipeline Operation

Token Modules

- 1. Token conditions are met.
- 2. Token passes through F() thus causing a transition.
- 3. Transition (edge) generates a pulse signal.

Design Guidelines Pipeline Control Pipeline Operation

Token Modules

- 1. Token conditions are met.
- 2. Token passes through F() thus causing a transition.
- 3. Transition (edge) generates a pulse signal.
- 4. Token is delayed, then passed to next user.

Design Guidelines Pipeline Control Pipeline Operation

Self-Timed Pipeline Operation

17

Design Guidelines Pipeline Control Pipeline Operation

Self-Timed Pipeline Operation

1. Initialization: all stages are available.

17

Design Guidelines Pipeline Control Pipeline Operation

Self-Timed Pipeline Operation

2. Request in: stage N conditions are met.

17

Design Guidelines Pipeline Control Pipeline Operation

Self-Timed Pipeline Operation

3. Pulse generation: N flops input data & toggles phase.

Design Guidelines Pipeline Control Pipeline Operation

Self-Timed Pipeline Operation

4. Processing: stage N is used, therefore unavailable.

Trudeau, Gagnon, Gagnon, Thibeault, Awad, Morrissey L1 Cache Based on a Self-Timed Pipeline

Design Guidelines Pipeline Control Pipeline Operation

Self-Timed Pipeline Operation

5. Request in: delayed N phase triggers stage N+1 request.

Trudeau, Gagnon, Gagnon, Thibeault, Awad, Morrissey L1 Cache Based on a Self-Timed Pipeline

Design Guidelines Pipeline Control Pipeline Operation

Self-Timed Pipeline Operation

6. Pulse generation: N+1 flops input data & toggles phase.

Design Guidelines Pipeline Control Pipeline Operation

Self-Timed Pipeline Operation

7. Stage N is now available, N+1 processes data.

Trudeau, Gagnon, Gagnon, Thibeault, Awad, Morrissey L1 Cache Based on a Self-Timed Pipeline

Plan

Introduction

Problematic Motivations Scope of Work

Cache Implementation

Architecture and Organization Operation

Self-Timed Pipeline Design

Design Guidelines Pipeline Control Pipeline Operation

Performance Results

Summary

Extracting Results

Objective

Use synchronous instruction cache for baseline results.

 \Rightarrow Keep very similar silicon layout for proper comparison.

Performance Metrics

- Average memory access time
- Energy consumption
- Area

Results: Area

Synchronous

Asynchronous

Results: Area

	Synchronous		Asynchronous	
Pipeline	Area (μm^2)	(%)	Area (μm^2)	(%)
Total	11185	100	9900	100
(w/o L2 FIFO)	8455	75,6	7170	72,4
(control)	375	3,35	915	9,24

Table: Pipeline Size Comparison

- \Rightarrow Pipeline size reduced by : 10-15%.
- \Rightarrow Pipeline control is $\sim 2.5\times$ larger.

Results : Energy

Power Analysis

- Power estimations based on capacitive switching.
- Routing estimated from Manhattan distance.
- L1-L2 interface clock frequency matched.
- L1 Cache behavior tests (32kB program)
 - 1. Miss : 20k random instructions fetch;
 - 2. Hit : 200k, 2M, 20M random instructions fetch.

Results : Energy

	Synchronous	ynchronous Asynchronous	
Sequence	Energy (nJ)	Energy (nJ)	Δ E (%)
20k inst.	150.6	118.0	21.6
200k inst.	1373.5	1048.3	23.7
2M inst.	13609.1	10357.9	23.9
20M inst.	135917.3	103424.7	24.0

Table: Energy Consumption

 \Rightarrow Energy efficiency improved by : > 22%.

Results : Performance

	Synchronous Asynchronous		
Sequence	Exec. Time (ms)	Exec. Time (ms)	Δ T (%)
20k inst.	43.1	29.5	31.6
200k inst.	358.1	265.8	25.8
2M inst.	3508.1	2628.3	25.1
20M inst.	34360.0	25769.9	25.0

Table: Average Memory Access Time

- \Rightarrow Access time reduced by : > 25%.
- \Rightarrow Throughput at L1-L2 interface : > 40%.

Results : What needs to be addressed

Future Work

- Further pipeline cache to reach > 1 GHz equivalent.
- Design L1 data cache based on self-timed pipeline.
- Integrate asynchronous L1 caches in Octasic's next-generation processors.

Plan

Introduction

Problematic Motivations Scope of Work

Cache Implementation

Architecture and Organization Operation

Self-Timed Pipeline Design

Design Guidelines Pipeline Control Pipeline Operation

Performance Results

Summary

Summary

Problematic

 \Rightarrow Asynchronous CPU accesses synchronous L1 memory.

Goals & Results

Design and implement an asynchronous L1 cache:

- 1. Mitigate CPU \leftrightarrow L1 memory access latency:
- 2. Improve the cache energy efficiency: > 22%
- 3. Reduce the average memory access time: > 25%
- 4. Push the synchronization barrier at the L2 memory: