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BACKGROUND KNOWLEDGE
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Power

* Power and energy consumption is a MAJOR concern for processors
*  Power consumption can be decomposed into:
- (Ps7ar): Power constantly being dissipated (grows with # of transistors)
— (Ppyn): Power consumed for switching a bit (1 to 0)
* Poyn = low*Vop = %CrorVpp’f
— Recall, | = CdVv/dt
— Vpp is the logic ‘1" voltage, f = clock frequency
* Dynamic power favors parallel processing vs. higher clock rates
— Vppvalueis tied to f, so a reduction/increase in f leads to similar change in Vdd

Implies power is proportional to f3 (a cubic savings in power if we can reduce f)
— Take a core and replicate it 4x => 4x performance and ____ power
— Take a core and increase clock rate 4x => 4x performance and ___ power
» Static power

— Leakage occurs no matter what the frequency is
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» Temperature is related to power consumption

— Locations on the chip that burn more power will usually run hotter

* Locations where bits toggle (register file, etc.) often will become quite hot especially if
toggling continues for a long period of time

— Too much heat can destroy a chip

— Can use sensors to dynamically sense temperature

* Techniques for controlling temperature
— External measures: Remove and spread the heat
* Heat sinks, fans, even liquid cooled machines
— Architectural measures

» Throttle performance (run at slower frequencies / lower voltages)
* Global clock gating (pause..turn off the clock)
* None...results can be catastrophic
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Modeling Interconnect Delay

In modern circuits wire delay (transmitting the signal) begins
to logic delay (time for gate to switch)

* As wires get longer

— Resistance goes up and Capacitance goes up causing longer time
delays (time is proportional to )

ASIC

Areal wire
can be
modeled as...
% —MA—T WA AMW—MWA—
T 1111
Ideal wire Lumped Model Distributed Model

(overestimates delay) (better estimate)
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Dealing With Interconnect

* Interconnect delay rivals switching delay
* Important design considerations

— Long wire traces slow a signal down, thus global signals on a
chip require special attention

— Clock, reset, and other signals must be routed carefully and a
whole tree of buffers inserted to decrease the delay

Lower W/L

High WiL

Global (or
high fanout
signal)
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A Case for Thread-Level Parallelism

CHIP MULTITHREADING AND
MULTIPROCESSORS
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Consideration

* Consider our out-of-order, pipelined processor
from Tomasulo part 2.
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Question 1

* Do we have high frequencies?
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Answer 1

e Do we have high frequencies?

—Yes, pipelines create shorter
clock cycles and higher frequencies
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Question 2

» What effect does our OoO processor
have on wires length?
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Answer 2

* What effect does our OoO processor
have on wires length?
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Question 2

* What is the impact of short clock cycles
(high freqg.) on cache miss penalties?
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Answer 3

* What is the impact of short clock cycles
(high freqg.) on cache miss penalties?

—Cache miss
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Memory Wall Problem

e Processor performance is increasing much faster than memory

performance
100,000
Roeny /\ ) Processor-Memory
1000 : sz A Performance Gap
Performance
100 -
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Year

Hennessy and Patterson,
Computer Architecture —
A Quantitative Approach (2003)

There is a limit to ILP!
If a cache miss requires several hundred clock cyles even 000 pipelines with
10's or 100's of in-flight instructions may stall.
© 2003 Elsevier Science (USA). All rights reserved.
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Cache Hierarchy The Growing Memory Problem
* A hierarchy of cache can help mitigate * Inan In-Order pipeline, a cache miss causes computation to
the cache miss penalty stall (i.e. a memory induced stall)
e L1 Cache L1 Cache — Suppose we could improve our processor to achieve a
_ 64KB I 2x speedup in compute time
. — This would only yield a overall speedup due to memory
— 2 cycle access time lat dominating :
atenc inating compute
— Common Miss Rate ~ 5% L2 Cache ¥ P _
* Qut-of-order may do better, but the problem remains
e L2 Cache I Time
- 1m8 Compute
— 10-20 cycle access time L3 Cache Single-Thread ‘ 5 ‘ Y ‘ 5 ‘ Y | 5 ‘ v ‘ v ‘ Memory
— Common Miss Rate ~ 1% Execution Latency
+ Main Memory Dronram
- ram.
-~ cycle access time Memory “ﬂ;ﬂﬁﬁ\c\ M |C‘ M |C‘ M minimal due to
(w/ 2x speedup memory
in compute) ) . o latency
Adapted from: OpenSparc T1 Micro-architecture Specification
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Cache Penalty Example

e Assume 50% of instructions are LW/SW, an L1-D hit
rate of 90%, and miss penalty of 20 clock cycles
(assuming these misses hit in L2). What is the CPI for
our typical 5 stage pipeline?

— 50% * 10% misses = ____instructions that cause stalls
— Other 95 instructions take ~ cycles to execute
— 5instructions take

— Total 200 cycles for 100 instructions =
CPlof 2

cycles to execute

Effective CPI = Ideal CPI + Miss Rate*Miss Penalty Cycles

School of Engineering

Question 4

e But in O00 processors, can't we just
deepen our ROB, Issue queues, Store

Address Buffer, etc to hide cache misses?
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Answer 4

e But in 000 processors, can't we just
deepen our ROB, Issue queues, Store
Address Buffer, etc to hide cache misses?

—Associative B o vReowre |— =
structures are expensive 1| vrewaa -

p & _’I’f\ Match
and slow down 2] vneowrs |1
dramatically as they ROB
deepen 30 vRegWRd B ..

—DOES NOT WELL  31) vReawrd — =
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Motivating HW Multithread/Multicore L

* |ssues that prevent us from exploiting ILP in more
advanced single-core processors with deeper
pipelines and 000 Execution
— Slow memory hierarchy
— Increased power with higher clock rates

— Increased wire delay & size with more advanced structures
(ROBs, Issue queues, etc.) for potentially

» All of these issues point us to find "easier" sources of
parallelism such as: TLP (Thread-Level Parallelism)

OVERVIEW OF TLP
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What is a Thread?

* Thread (def.): Single execution sequence (instruction
) representing a separately schedulable task

— Schedulable task: Can be transparently paused and resumed
by the OS scheduler

* Consider the processor:

$1 | oxbfoles8eo

— For what resources would each thread need $3 | oxeco00ces
. . ? $31 | oxbff70c44
their own copy to execute in parallel:
pc | 0x0004a804
Thread 1 PU
0x04001c 0x04a800
lw  $5,20($8) sw  $9,0($3)
add $2,$8,%4 sub $8,%$2,%5
or  $8,$5,$3 w  $2,4($1) T1 Stack

sw S$9,9($6) sub s$7,$2_,$(5

0x0

Memory OxFFFFFFFF




- USCereErbl@
Separate or Shared?

* For what resources would each thread need
their own copy to execute in parallel?
1 Per Thread Shared among all
Program Counter
ALUs
Register File

Page Table Base Register
Cache Memory
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Shared vs. Private

Shared Per-Thread Per-Thread
State State State
Thread édﬁtrol ThrreadVCdntroI »
Heap Block (TCB) Block (TCB)
Stack T sk
Information Information
Saved Saved
Global Registers Registers
Variables Thread Thread
S - Metadata Metadata
Stack Stack
Code ................................................
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Software Multithreading

* Used since 1960's on uniprocessors to hide I/0 Rggg
latency
— Multiple processes with different virtual address PG

spaces and process control blocks

On an 1/0 operation, state is saved and another
process is given to the CPU oS
When 1/0O operation completes the process is Scheduler
rescheduled

T1=Ready T2=Blocked T3 = Ready

¢ On a context switch...

— Trap processor and flush pipeline Saved Saved saved
. State State State
— Save state in process control block ( , , Regs Regs Regs
Interrupt vector, page table base register)
— Restore state of another process 5C BC PC
— Start execution and fill pipeline eta Mets Veta
* Context switch is also triggered by for fairness

* Very high overhead! ( )

Multicore vs. Multithreaded

¢ Multicore/Multiprocessor: Single chip containing
multiple processor cores that possess all the logic
resources necessary to execute one or more threads at
a time
— Require software/OS to context switch from one thread to

another and do not share hardware resources between
threads.

* Hardware Multithreading: A processor core that has
hardware support for executing multiple threads and
context switching between them software
intervention
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Typical Multicore (CMP) Organization

* Can simply replicate entire processor core to create a
chip multi-processor (CMP)

PriYate.L:!. and L2's requil:e
Chip Multi- sno;ping. yve
Processor ( ; ) ( ; ) ( ; ) ( jr )
Sharing L1 is not a good idea.
/ L3 is shared (1 copy of data) and
L1 L1 L1 L1 coherency mechanim.
L2 L2 L2 L2 :
I I I I
] Interconnect (On-Chip Network) X \
77777777777777 S SOOI S——
L3 L3 L3 L3
Bank Bank/ Bank Bank/

Shared bus would be a
bottleneck. Use switched
network (multiple
simultaneous connections)

Main Memory

N (JSC Viterbi %
Case for Multithreading

e Consider events:

— Cache Miss, Exceptions, Lock (Synchronization), Long instructions such as
MUL/DIV

— Such events cause In-order and even 000 pipelines to be underutilized
* Goal/ldea: to the next thread immediately (on cycle)
when the current thread hits a long-latency event (i.e. cache miss)

— By executing multiple threads, processors can be kept busy with useful work

Time
::::; ‘ C ‘ M | C ‘ M ‘ '?i?anPUte
c] ™ Je| m | .
o] » o] v ] MlEw
Thread 4 ‘ C ‘ M | C ‘ M ‘

Adapted from: OpenSparc T1 Micro-architecture Specification
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IMPLEMENTING HARDWARE
MULTITHREADING
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MT Needs Non-Blocking Caches

* Non-blocking cache: Does not block/pause on a miss but is able
to service while fetching one or more requests
— Needed to support multithreading

— Example: Pentium Pro has a non-blocking cache capable of handling 4
outstanding misses

Service Service Service Service
Cache Hits Cache Miss Cache Hits Cache Miss

Service  Service Service
Cache Hits  Cache Miss Cache Hits  Cache Miss

T e I v

Service

Service  Service Service Service
Cache Hits Cache Miss Cache Hits Cache Miss
. [c ——] c |—n—]
¢ m[ ¢ |m
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Hardware Multithreading

e Run multiple threads on the same core with
hardware support for fast context switch
— Multiple register files

— Multiple state registers (PCs, page table base
registers, interrupt vectors, etc.)

— Avoids saving context manually (via software)

N (JSC Viterbi
Sun T1 "Niagara" Case Study

i‘ﬁracyph:ﬂp? Dram control _-EER
Channel 0
L2 BO
Sparc pipe -
4-way MT
i?igcypl:ﬂp? Dram control - D-DR
Channel 1
L2 B1
Sparc pipe -
4-way MT 5
:
Sparc pipe Doi
4?waprpT 5] Dram control | o
Channel 2
L2 B2
Sparc pipe .—
4-way MT
Sparc pipe Di itrol o
oy MT | ez [T
L2B3
Sparc pipe
4-way MT
Ex. of Fine-grained

Multithreading

/O interface

I http://ogun.stanford.edu/~kunle/publications/niagra_micro.pdf I

1/0 and shared functions
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Sparc T1 Niagara

* 8 cores each executing 4 threads called a thread group
— Zero cycle thread switching penalty (round-robin)
— 6 stage pipeline
* Each core has its own L1 cache
* Each thread has its own
— Register file, instruction and store buffers
* Threads share...
— L1 cache, TLB, and execution units
3 MB shared L2 Cache, 4-banks, 12-way set-associative
— Isit a problem that it's not a power of 2? No!

(Thread)

Fetch Select Decode Exec. Mem. WB

USCVirerbi
Sun T1 "Niagara" Pipeline

| Fetch |Thread select |Decnde | Execute I Memory | Writeback
Register
file
x4
\\.
~.
~
ICache Instruction
= DCache
e buifer < 4 Thread ol DTLB | Crossbar
% select Decode Shifter store interface
Mux buffers x 4
DIV -
Ul a1

e

Thread selects

Instruction type
Thread | pgicses
select
\ogn: ~+—— Traps and interrupts
o Resource conflicis

PC

Thread logic

select x4
Mux

I http://ogun.stanford.edu/~kunle/publications/niagra_micro.pdf I
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* Thread select stage [Stage 2]
— Choose instructions to issue from ready threads

— Issues based on
* Instruction type
* Misses
* Resource conflicts
* Traps and interrupts

* Fetch stage [Stage 1]

— Thread select mux chooses which thread's instruction to
issue and uses that thread's PC to fetch more instructions

— Access I-TLB and I-Cache
— 2 instructions fetched per cycle

I USC Viterbi

T1 Pipeline
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Decode stage [Stage 3]

— Accesses register file

Execute Stage [Stage 4]
— Includes ALU, shifter, MUL and DIV units
— Forwarding Unit

Memory stage [Stage 5]

— DTLB, Data Cache, and 4 store buffers (1 per thread)
WB [Stage 6]

— Write to register file

. USC Viterbi

Pipeline Scheduling

* No pipeline flush on context switch (except
potentially of instructions from faulting thread)

* Full forwarding/bypassing to consuming, junior
instructions of same thread

* |In case of load, wait cycles before an instruction
from the same thread is issued

— Solved issue

* Scheduler guarantees fairness between threads by
prioritizing the least recently scheduled thread

. USC Viterbi

School of Engineering

A View Without HW Multithreading

Single Threaded
Superscalar

Issue Slots ———mMM@ >
Time

w/ Software MT

Expensive
Context Switch

Expensive Cache
Miss Penalty

Only instructions
from a single
thread

Software
Multithreading
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Types/Levels of Multithreading

* How should we overlap and share the HW between
instructions from different threads
— -grained Multithreading: Execute one thread
with all HW resource until a cache-miss or misprediction

will incur a stall or pipeline flush, then switch to another
thread

- -grained Multithreading: Alternate fetching
instructions from a different thread each clock

- Multithreading: Fetch and execute
instructions from different threads at the same time

I USC Viterbi

Levels of TLP

Issue Slots

Simultaneous

Time Multithreading (SMT)

Superscalar

Coarse-grained MT Fine-Grained MT

Expensive [Cache|
alty

Switch threads

Only instructions Mix instructions from

Alternate threads

from a single when one hits a every cycle threads during same
thread long-latency event (Sun UltraSparc issue cycle
like a stall due to T2) (Intel HyperThreading,
cache-miss, IBM Power 5)

pipeline flush, etc.
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Fine Grained Multithreading

* Like Sun Niagara

e Alternates issuing instructions from different threads
each cycle provided a thread has instructions ready
to execute (i.e. not stalled)

* With enough threads, long latency events may be
completely hidden
— Some processors like Cray may have __ or more threads
* Degrades performance since it

only gets 1 out of every N cycles if all N threads are
ready
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Coarse Grained Multithreading

» Swaps threads on long-latency event

* Hardware does not have to swap threads in a single
cycle (as in fine-grained multithreading) but can take
a few cycles since the current thread has hit a long
latency event

* Requires flushing pipeline of current thread's
instructions and filling pipeline with new thread's

» Better single-thread performance
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ILP and TLP

e TLP can also help ILP by providing another
source of independent instructions

* In a 3- or 4-way issue processor, better
utilization can be achieved when instructions
from 2 or more threads are executed
simultaneously
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Simultaneous Multithreading

* Uses multiple-issue, dynamic scheduling mechanisms
to execute instructions from multiple threads at the
same time by filling issue slots with as many available
instructions from either thread

— Overcome poor utilization due to cache misses or lack of
independent instructions

— Requires HW to instructions based on their thread

* Requires greater level of hardware resources
(separate register renamer, branch prediction, store
buffers, and multiple register files, etc.)
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2-Way SMT Updated Block Dlagram

[-Cache | %3’1
|
v L4
2 ‘; [ Instruc._| [ Tnstruc.
i E Queue 1 || Queue 2 ROB1 D-Cache ROB2
3 2 I I
& & Reg.
Rename 1 @ BPB1
Dispatch can Rename 2
tag instructions
with thread ID ° l © l l © l
to separate 2 3 % 3
instructions in 3 = 3 =1 O .
the backend 0 o (¢} O a =
£ g 2 5 (7 )
= . 5 2 2
1 1 1 1
2 ¥ v v
Exec. Unit
Integer / .
= Div Mul
Branch D-Cache u
Dl L/S Buffer |--- l Dl CDB

Updated 000 processor block diagram for 2-way hardware, SMT
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Example

* Intel HyperThreading Technology (HTT) is
essentially SMT

* Recent processors including Core i7 are multi-
core, multi-threaded, multi-issue, 00O
(dynamically scheduled) superscalar
processors
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Future of Multicore/Multithreaded

* Multiple cores in shared memory configuration

* Per-core L1 oreven L2

* Large on-chip shared cache

* Multiple threads on each core to fight memory wall

* Ever increasing on-chip threads
— To continue to meet Moore's Law
— CMP's with 1000's of threads envisioned

— Only sane option from technology perspective (i.e. out of
necessity)

— The big road block is parallel programming
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Parallel Programming

* Implicit parallelism via...
— Parallelizing compilers

— Programming frameworks (e.g. MapReduce)

* Explicit parallelism

— Task Libraries
* Intel Thread Building Blocks, Java Task Library

— Native threading (Windows threads,

hool of Engineering

threads)




