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Credits

• Some of the material in this presentation is taken from:
– Computer Architecture: A Quantitative Approach

• John Hennessy & David Patterson

• Some of the material in this presentation is derived from 
course notes and slides from
– Prof. Michel Dubois (USC)

– Prof. Murali Annavaram (USC)

– Prof. David Patterson (UC Berkeley)
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BACKGROUND KNOWLEDGE
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Power

• Power and energy consumption is a MAJOR concern for processors

• Power consumption can be decomposed into:

– Static (PSTAT):  Power constantly being dissipated (grows with # of transistors)

– Dynamic (PDYN): Power consumed for switching a bit (1 to 0)

• PDYN = IDYN*VDD ≈ ½CTOTVDD
2f

– Recall, I = C dV/dt 

– VDD is the logic ‘1’ voltage, f = clock frequency

• Dynamic power favors parallel processing vs. higher clock rates

– VDD value is tied to f, so a reduction/increase in f leads to similar change in Vdd

– Implies power is proportional to f3 (a cubic savings in power if we can reduce f)

– Take a core and replicate it 4x => 4x performance and 4x power

– Take a core and increase clock rate 4x => 4x performance and 64x power

• Static power
– Leakage occurs no matter what the frequency is
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Temperature

• Temperature is related to power consumption
– Locations on the chip that burn more power will usually run hotter

• Locations where bits toggle (register file, etc.) often will become quite hot especially if 
toggling continues for a long period of time

– Too much heat can destroy a chip

– Can use sensors to dynamically sense temperature

• Techniques for controlling temperature
– External measures: Remove and spread the heat

• Heat sinks, fans, even liquid cooled machines

– Architectural measures
• Throttle performance (run at slower frequencies / lower voltages)

• Global clock gating (pause..turn off the clock)

• None…results can be catastrophic
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Modeling Interconnect Delay

• In modern circuits wire delay (transmitting the signal) begins 
to dominate logic delay (time for gate to switch)

• As wires get longer
– Resistance goes up and Capacitance goes up causing longer time 

delays (time is proportional to R*C)

Lumped Model 

(overestimates delay)

Ideal wire Distributed Model 

(better estimate)

A real wire 

can be 

modeled as…
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Dealing With Interconnect

• Interconnect delay rivals switching delay 

• Important design considerations

– Long wire traces slow a signal down, thus global signals on a 
chip require special attention

– Clock, reset, and other signals must be routed carefully and a 
whole tree of buffers inserted to decrease the delay
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CHIP MULTITHREADING AND 
MULTIPROCESSORS

A Case for Thread-Level Parallelism
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Consideration

• Consider our out-of-order, pipelined processor 
from Tomasulo part 2.
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Question 1

• Do we have high frequencies?
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Answer 1

• Do we have high frequencies?
– Yes, deep pipelines create shorter clock 

cycles and higher frequencies

–Power ↑ ↑ ↑

–Temp.  ↑ 
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Question 2

• What effect does our OoO processor 
have on wires length?
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Answer 2

• What effect does our OoO processor 
have on wires length?

– Wire length ↑ ↑
with CDB, ROB,
Issue logic, etc.

– Time ↑ 
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Question 2

• What is the impact of short clock cycles 
(high freq.) on cache miss penalties?
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Answer 3

• What is the impact of short clock cycles 
(high freq.) on cache miss penalties?

– Cache miss 
penalties ↑ ↑
relative to 
processor cycles



16

Memory Wall Problem
• Processor performance is increasing much faster than memory 

performance

Processor-Memory 

Performance Gap

7%/year

55%/year

Hennessy and Patterson, 

Computer Architecture –

A Quantitative Approach (2003)

There is a limit to ILP!
If a cache miss requires several hundred clock cyles even OoO pipelines with 

10's or 100's of in-flight instructions may  stall.
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Cache Hierarchy

• A hierarchy of cache can help mitigate 
the cache miss penalty

• L1 Cache
– 64 KB

– 2 cycle access time

– Common Miss Rate ~ 5%

• L2 Cache
– 1 MB

– 10-20 cycle access time

– Common Miss Rate ~ 1%

• Main Memory
– ~300 cycle access time

P

L1 Cache

L2 Cache

L3 Cache

Memory



18

The Growing Memory Problem

• In an In-Order pipeline, a cache miss causes computation to 
stall (i.e. a memory induced stall) 
– Suppose we could improve our processor to achieve a 

2x speedup in compute time

– This would only yield a minimal overall speedup due to memory 
latency dominating compute

• Out-of-order may do better, but the problem remains

C M C M C M

C M C M C M

Time

Single-Thread 

Execution

Single-Thread 

Execution 

(w/ 2x speedup 

in compute)

Actual 

program 

speedup is 

minimal due to 

memory 

latency

C Compute 

Time

M Memory 

Latency

Adapted from: OpenSparc T1 Micro-architecture Specification
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Cache Penalty Example

• Assume 50% of instructions are LW/SW, an L1-D hit 
rate of 90%, and miss penalty of 20 clock cycles 
(assuming these misses hit in L2).  What is the CPI for 
our typical 5 stage pipeline?

– 50% * 10% misses = 5 instructions that cause stalls

– Other 95 instructions take 95 cycles to execute

– 5 instructions take 105=5*(1+20) cycles to execute

– Total 200 cycles for 100 instructions =
CPI of 2

Effective CPI = Ideal CPI + Miss Rate*Miss Penalty Cycles
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Question 4

• But in OoO processors, can't we just 
deepen our ROB, Issue queues, Store 
Address Buffer, etc to hide cache misses?
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Answer 4

• But in OoO processors, can't we just 
deepen our ROB, Issue queues, Store 
Address Buffer, etc to hide cache misses?

– Associative lookup 
structures are expensive 
and slow down 
dramatically as they 
deepen

– DOES NOT SCALE WELL
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Motivating HW Multithread/Multicore

• Issues that prevent us from exploiting ILP in more 
advanced single-core processors with deeper 
pipelines and OoO Execution

– Slow memory hierarchy

– Increased power with higher clock rates

– Increased wire delay & size with more advanced structures 
(ROBs, Issue queues, etc.) for potentially diminishing 
returns

• All of these issues point us to find "easier" sources of 
parallelism such as: TLP (Thread-Level Parallelism)
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OVERVIEW OF TLP
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What is a Thread?
• Thread (def.): Single execution sequence (instruction 

stream) representing a separately schedulable task

– Schedulable task: Can be transparently paused and resumed 
by the OS scheduler

• Consider the processor:

– For what resources would each thread need
their own copy to execute in parallel?

CPU

0xbff70c44$31

0x0004a804pc

0x00000005$3

0x04001c

lw $5,20($8)
add  $2,$8,$4
or   $8,$5,$3
sw $9,0($6)
...

sw $9,0($3)
sub  $8,$2,$5
lw $2,4($1)
sub  $7,$2,$6
...

T1 Stack T2 Stack

0xbf01e800$1

Memory

0x04a800
Thread 1Thread 2

0x0 0xffffffff
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Separate or Shared?

• Consider the processor, for what resources 
would each thread need their own copy?

1 Per Thread Shared among all

Program Counter

ALUs

Register File

Page Table Base Register

Cache Memory



26

Shared vs. Private
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Software Multithreading

• Used since 1960's on uniprocessors to hide I/O 
latency

– Multiple processes with different virtual address 
spaces and process control blocks

– On an I/O operation, state is saved and another 
process is given to the CPU

– When I/O operation completes the process is 
rescheduled

• On a context switch…

– Trap processor and flush pipeline

– Save state in process control block (PC, register file, 
Interrupt vector, page table base register)

– Restore state of another process

– Start execution and fill pipeline

• Context switch is also triggered by timer for fairness

• Very high overhead! (1-10 us)

CPU

Saved 
State

T1 = Ready

Saved 
State

T2 = Blocked

Saved 
State

T3 = Ready

OS 
Scheduler

Regs

PC

Regs

PC

Regs

PC

Regs

PC

Meta
Data

Meta
Data

Meta
Data
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Multicore vs. Multithreaded

• Multicore/Multiprocessor:  Single chip containing 
multiple processor cores that possess all the logic 
resources necessary to execute one or more threads at 
a time

– Require software/OS to context switch from one thread to 
another and do not share hardware resources between 
threads.

• Hardware Multithreading: A processor core that has 
hardware support for executing multiple threads and 
context switching between them without software 
intervention



29

Typical Multicore (CMP) Organization

• Can simply replicate entire processor core to create a 
chip multi-processor (CMP)

L1

Main Memory

P

L3

Bank/

L3

Bank

L3

Bank/

L3

Bank

Interconnect (On-Chip Network)

L1

P

L1

P

L1

P

Private L1 and L2's require 
maintaining coherency via 

snooping.  

Sharing L1 is not a good idea.

L3 is shared (1 copy of data) and 
thus does not require a 
coherency mechanism.

Chip Multi-

Processor

Shared bus would be a 
bottleneck.  Use switched 

network (multiple 
simultaneous connections)

L2 L2 L2 L2
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Case for Multithreading

• Consider long latency events:
– Cache Miss, Exceptions, Lock (Synchronization), Long instructions such as 

MUL/DIV

– Such events cause In-order and even OoO pipelines to be underutilized

• Goal/Idea: Swap to the next thread immediately (on next cycle) 
when the current thread hits a long-latency event (i.e. cache miss)
– By executing multiple threads, processors can be kept busy with useful work

C M C M

Time

Thread 1

C Compute 

Time

M Memory 

Latency

Adapted from: OpenSparc T1 Micro-architecture Specification

C M C MThread 2

C M C MThread 3

C M C MThread 4
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IMPLEMENTING HARDWARE 
MULTITHREADING
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MT Needs Non-Blocking Caches

• Non-blocking cache: Does not block/pause on a miss but is able 
to service hits while fetching one or more miss requests
– Needed to support multithreading

– Example: Pentium Pro has a non-blocking cache capable of handling 4 
outstanding misses

C M C M

C M C M

Service 

Cache Miss

Service 

Cache Miss

C M C M

Service 

Cache Miss

Service 

Cache Hits
Service 

Cache Hits
Service 

Cache Miss

Service 

Cache Miss

Service 

Cache Miss

Service 

Cache Hits
Service 

Cache Hits

Service 

Cache Hits
Service 

Cache Hits

C M C M

+
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Hardware Multithreading

• Run multiple threads on the same core with 
hardware support for fast context switch

– Multiple register files

– Multiple state registers (PCs, page table base 
registers, interrupt vectors, etc.)

– Avoids saving context manually (via software) 
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Sun T1 "Niagara" Case Study

http://ogun.stanford.edu/~kunle/publications/niagra_micro.pdf

Ex. of Fine-grained 
Multithreading
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Sparc T1 Niagara

• 8 cores each executing 4 threads called a thread group
– Zero cycle thread switching penalty (round-robin)

– 6 stage pipeline

• Each core has its own L1 cache

• Each thread has its own
– Register file, instruction and store buffers

• Threads share…
– L1 cache, TLB, and execution units

• 3 MB shared L2 Cache, 4-banks, 12-way set-associative
– Is it a problem that it's not a power of 2?  No!

Fetch

(Thread)

Select Decode Exec. Mem. WB
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Sun T1 "Niagara" Pipeline

http://ogun.stanford.edu/~kunle/publications/niagra_micro.pdf

1

2a

2b
3 4
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T1 Pipeline

• Thread select stage [Stage 2]

– Choose instructions to issue from ready threads

– Issues based on
• Instruction type

• Misses

• Resource conflicts

• Traps and interrupts

• Fetch stage [Stage 1]

– Thread select mux chooses which thread's instruction to 
issue and uses that thread's PC to fetch more instructions

– Access I-TLB and I-Cache

– 2 instructions fetched per cycle
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T1 Pipeline

• Decode stage [Stage 3]

– Accesses register file 

• Execute Stage [Stage 4]

– Includes ALU, shifter, MUL and DIV units

– Forwarding Unit

• Memory stage [Stage 5]

– DTLB, Data Cache, and 4 store buffers (1 per thread)

• WB [Stage 6]

– Write to register file
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Pipeline Scheduling

• No pipeline flush on context switch (except 
potentially of instructions from faulting thread)

• Full forwarding/bypassing to consuming, junior 
instructions of same thread

• In case of load, wait 2 cycles before an instruction 
from the same thread is issued

– Solved forwarding latency issue

• Scheduler guarantees fairness between threads by 
prioritizing the least recently scheduled thread
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A View Without HW Multithreading

Single Threaded 

Superscalar

w/ Software MT
Issue Slots

Time

Only instructions 

from a single 

thread

Software 

Multithreading

Expensive Cache 

Miss Penalty

Expensive 

Context Switch

…

…
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Types/Levels of Multithreading

• How should we overlap and share the HW between 
instructions from different threads

– Coarse-grained Multithreading:  Execute one thread with 
all HW resource until a cache-miss or misprediction will 
incur a stall or pipeline flush, then switch to another 
thread

– Fine-grained Multithreading:  Alternate fetching 
instructions from a different thread each clock

– Simultaneous Multithreading:  Fetch and execute 
instructions from different threads at the same time
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Levels of TLP

Miss

Miss

Superscalar Coarse-grained MT Fine-Grained MT

Simultaneous 

Multithreading (SMT)

Issue Slots

Time

Only instructions 

from a single 

thread

Switch threads 

when one hits a 

long-latency event 

like a stall due to 

cache-miss, 

pipeline flush, etc.

Alternate threads 

every cycle

(Sun UltraSparc 

T2) 

Mix instructions from 

threads during same 

issue cycle

(Intel HyperThreading, 

IBM Power 5)

Expensive Cache 

Miss Penalty
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Fine Grained Multithreading

• Like Sun Niagara

• Alternates issuing instructions from different threads 
each cycle provided a thread has instructions ready 
to execute (i.e. not stalled)

• With enough threads, long latency events may be 
completely hidden

– Some processors like Cray may have 128 or more threads

• Degrades single thread performance since it only 
gets 1 out of every N cycles if all N threads are ready
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Coarse Grained Multithreading

• Swaps threads on long-latency event

• Hardware does not have to swap threads in a single 
cycle (as in fine-grained multithreading) but can take 
a few cycles since the current thread has hit a long 
latency event

• Requires flushing pipeline of current thread's 
instructions and filling pipeline with new thread's

• Better single-thread performance 
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ILP and TLP

• TLP can also help ILP by providing another 
source of independent instructions

• In a 3- or 4-way issue processor, better 
utilization can be achieved when instructions 
from 2 or more threads are executed 
simultaneously
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Simultaneous Multithreading

• Uses multiple-issue, dynamic scheduling mechanisms 
to execute instructions from multiple threads at the 
same time by filling issue slots with as many available 
instructions from either thread

– Overcome poor utilization due to cache misses or lack of 
independent instructions

– Requires HW to tag instructions based on their thread

• Requires greater level of hardware resources 
(separate register renamer, branch prediction, store 
buffers, and multiple register files, etc.)
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2-Way SMT Updated Block Diagram
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Reg. 

Rename 1

Integer / 

Branch

Exec. Unit

Div Mul

Instruc. 

Queue 1

R
e
g

. 
F

il
e

 2

In
t.

 Q
u

e
u

e

L
/S

 Q
u

e
u

e

D
iv

Q
u

e
u

e

M
u

lt
. 

Q
u

e
u

e

CDB

Is
s
u
e
 

U
n
it

D-Cache

Dispatch

D-Cache

L/S Buffer

SAB2

ROB1 ROB2

R
e
g

. 
F

il
e

 1 Instruc. 
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SAB1

Reg. 
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BPB1

BPB2
Dispatch can 
tag instructions 
with thread ID 
to separate 
instructions in 
the backend 

Updated OoO processor block diagram for 2-way hardware, SMT

SB1 SB2



48

Example

• Intel HyperThreading Technology (HTT) is 
essentially SMT

• Recent processors including Core i7 are multi-
core, multi-threaded, multi-issue, OoO 
(dynamically scheduled) superscalar 
processors
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Future of Multicore/Multithreaded

• Multiple cores in shared memory configuration 

• Per-core L1 or even L2

• Large on-chip shared cache

• Multiple threads on each core to fight memory wall

• Ever increasing on-chip threads

– To continue to meet Moore's Law

– CMP's with 1000's of threads envisioned

– Only sane option from technology perspective (i.e. out of 
necessity)

– The big road block is parallel programming
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Parallel Programming

• Implicit parallelism via…

– Parallelizing compilers

– Programming frameworks (e.g. MapReduce)

• Explicit parallelism

– OpenMP

– Task Libraries
• Intel Thread Building Blocks, Java Task Library

– Native threading (Windows threads, POSIX threads)

– MPI
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BACKUP
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Organization for OoO Execution

I-Cache Block Diagram 

Adapted from Prof. 

Michel Dubois

(Simplified for EE 457)
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2-Way SMT Updated Block Diagram
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Multiple Functional Units

• We now provide multiple functional units

• After decode, issue to a queue, stalling if the unit is busy or 
waiting for data dependency to resolve

IM Reg

ALU

DM Reg

MUL

DIV

DM

(Cache)

Queues + 

Functional 

Units
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Functional Unit Latencies

Functional Unit Latency 
(Required stalls cycles 

between dependent [RAW] instrucs.)

Initiation Interval 
(Distance between 2 independent instructions 

requiring the same FU)

Integer ALU 0 1

FP Add 3 1

FP Mul. 6 1

FP Div. 24 25

EX

Int. ALU, Addr. Calc.

FP Add

Int. & FP MUL

Int. & FP DIV

A1 A2 A3 A4

M1 M2 M3 M4 M5 M6 M7

Look Ahead: Tomasulo
Algorithm will help absorb 

latency of different functional 
units and cache miss latency by 
allowing other ready instruction 

proceed out-of-order

An added complication of 

out-of-order execution & 

completion: WAW & WAR

hazards 
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OoO Execution w/ ROB
• ROB allows for OoO execution but in-order completion
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Buffer
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Exceptions?  
No problem
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Updated Pipeline

Functional Unit Latency 
(Required stalls cycles 

between dependent [RAW] instrucs.)

Initiation Interval 
(Distance between 2 independent instructions 

requiring the same FU)

Integer ALU 0 1

FP Add 3 1

FP Mul. 6 1

FP Div. 24 25

EX

Int. ALU, Addr. Calc.

FP Add

Int. & FP MUL

Int. & FP DIV

A1 A2 A3 A4

M1 M2 M3 M4 M5 M6 M7
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Updated Pipeline

Functional Unit Latency 
(Required stalls cycles 

between dependent [RAW] instrucs.)

Initiation Interval 
(Distance between 2 independent instructions 

requiring the same FU)

Integer ALU 0 1

FP Add 3 1

FP Mul. 6 1

FP Div. 24 25

I-Cache
MEM

stage

Reg.

File

PC EX

Int. ALU, Addr. Calc.

FP Add

Int. & FP MUL

Int. & FP DIV

A1 A2 A3 A4

M1 M2 M3 M4 M5 M6 M7


	Slide 1: EE 457 Unit 9c
	Slide 2: Credits
	Slide 3: Background Knowledge
	Slide 4: Power
	Slide 5: Temperature
	Slide 6: Modeling Interconnect Delay
	Slide 7: Dealing With Interconnect
	Slide 8: Chip Multithreading and multiprocessors
	Slide 9: Consideration
	Slide 10: Question 1
	Slide 11: Answer 1
	Slide 12: Question 2
	Slide 13: Answer 2
	Slide 14: Question 2
	Slide 15: Answer 3
	Slide 16: Memory Wall Problem
	Slide 17: Cache Hierarchy
	Slide 18: The Growing Memory Problem
	Slide 19: Cache Penalty Example
	Slide 20: Question 4
	Slide 21: Answer 4
	Slide 22: Motivating HW Multithread/Multicore
	Slide 23: Overview of TLP
	Slide 24: What is a Thread?
	Slide 25: Separate or Shared?
	Slide 26: Shared vs. Private
	Slide 27: Software Multithreading
	Slide 28: Multicore vs. Multithreaded
	Slide 29: Typical Multicore (CMP) Organization
	Slide 30: Case for Multithreading
	Slide 31: Implementing Hardware Multithreading
	Slide 32: MT Needs Non-Blocking Caches
	Slide 33: Hardware Multithreading
	Slide 34: Sun T1 "Niagara" Case Study
	Slide 35: Sparc T1 Niagara
	Slide 36: Sun T1 "Niagara" Pipeline
	Slide 37: T1 Pipeline
	Slide 38: T1 Pipeline
	Slide 39: Pipeline Scheduling
	Slide 40: A View Without HW Multithreading
	Slide 41: Types/Levels of Multithreading
	Slide 42: Levels of TLP
	Slide 43: Fine Grained Multithreading
	Slide 44: Coarse Grained Multithreading
	Slide 45: ILP and TLP
	Slide 46: Simultaneous Multithreading
	Slide 47: 2-Way SMT Updated Block Diagram
	Slide 48: Example
	Slide 49: Future of Multicore/Multithreaded
	Slide 50: Parallel Programming
	Slide 51: BACKUP
	Slide 52: Organization for OoO Execution
	Slide 53: 2-Way SMT Updated Block Diagram
	Slide 54: Multiple Functional Units
	Slide 55: Functional Unit Latencies
	Slide 56: OoO Execution w/ ROB
	Slide 57
	Slide 58
	Slide 59: Updated Pipeline
	Slide 60: Updated Pipeline

