
1

EE 457 Unit 9c

Thread Level Parallelism

2

Credits

• Some of the material in this presentation is taken from:
– Computer Architecture: A Quantitative Approach

• John Hennessy & David Patterson

• Some of the material in this presentation is derived from
course notes and slides from
– Prof. Michel Dubois (USC)

– Prof. Murali Annavaram (USC)

– Prof. David Patterson (UC Berkeley)

3

BACKGROUND KNOWLEDGE

4

Power

• Power and energy consumption is a MAJOR concern for processors

• Power consumption can be decomposed into:

– Static (PSTAT): Power constantly being dissipated (grows with # of transistors)

– Dynamic (PDYN): Power consumed for switching a bit (1 to 0)

• PDYN = IDYN*VDD ≈ ½CTOTVDD
2f

– Recall, I = C dV/dt

– VDD is the logic ‘1’ voltage, f = clock frequency

• Dynamic power favors parallel processing vs. higher clock rates

– VDD value is tied to f, so a reduction/increase in f leads to similar change in Vdd

– Implies power is proportional to f3 (a cubic savings in power if we can reduce f)

– Take a core and replicate it 4x => 4x performance and 4x power

– Take a core and increase clock rate 4x => 4x performance and 64x power

• Static power
– Leakage occurs no matter what the frequency is

5

Temperature

• Temperature is related to power consumption
– Locations on the chip that burn more power will usually run hotter

• Locations where bits toggle (register file, etc.) often will become quite hot especially if
toggling continues for a long period of time

– Too much heat can destroy a chip

– Can use sensors to dynamically sense temperature

• Techniques for controlling temperature
– External measures: Remove and spread the heat

• Heat sinks, fans, even liquid cooled machines

– Architectural measures
• Throttle performance (run at slower frequencies / lower voltages)

• Global clock gating (pause..turn off the clock)

• None…results can be catastrophic

6

Modeling Interconnect Delay

• In modern circuits wire delay (transmitting the signal) begins
to dominate logic delay (time for gate to switch)

• As wires get longer
– Resistance goes up and Capacitance goes up causing longer time

delays (time is proportional to R*C)

Lumped Model

(overestimates delay)

Ideal wire Distributed Model

(better estimate)

A real wire

can be

modeled as…

7

Dealing With Interconnect

• Interconnect delay rivals switching delay

• Important design considerations

– Long wire traces slow a signal down, thus global signals on a
chip require special attention

– Clock, reset, and other signals must be routed carefully and a
whole tree of buffers inserted to decrease the delay

8

CHIP MULTITHREADING AND
MULTIPROCESSORS

A Case for Thread-Level Parallelism

9

Consideration

• Consider our out-of-order, pipelined processor
from Tomasulo part 2.

10

Question 1

• Do we have high frequencies?

11

Answer 1

• Do we have high frequencies?
– Yes, deep pipelines create shorter clock

cycles and higher frequencies

–Power ↑ ↑ ↑

–Temp. ↑

12

Question 2

• What effect does our OoO processor
have on wires length?

13

Answer 2

• What effect does our OoO processor
have on wires length?

– Wire length ↑ ↑
with CDB, ROB,
Issue logic, etc.

– Time ↑

14

Question 2

• What is the impact of short clock cycles
(high freq.) on cache miss penalties?

15

Answer 3

• What is the impact of short clock cycles
(high freq.) on cache miss penalties?

– Cache miss
penalties ↑ ↑
relative to
processor cycles

16

Memory Wall Problem
• Processor performance is increasing much faster than memory

performance

Processor-Memory

Performance Gap

7%/year

55%/year

Hennessy and Patterson,

Computer Architecture –

A Quantitative Approach (2003)

There is a limit to ILP!
If a cache miss requires several hundred clock cyles even OoO pipelines with

10's or 100's of in-flight instructions may stall.

17

Cache Hierarchy

• A hierarchy of cache can help mitigate
the cache miss penalty

• L1 Cache
– 64 KB

– 2 cycle access time

– Common Miss Rate ~ 5%

• L2 Cache
– 1 MB

– 10-20 cycle access time

– Common Miss Rate ~ 1%

• Main Memory
– ~300 cycle access time

P

L1 Cache

L2 Cache

L3 Cache

Memory

18

The Growing Memory Problem

• In an In-Order pipeline, a cache miss causes computation to
stall (i.e. a memory induced stall)
– Suppose we could improve our processor to achieve a

2x speedup in compute time

– This would only yield a minimal overall speedup due to memory
latency dominating compute

• Out-of-order may do better, but the problem remains

C M C M C M

C M C M C M

Time

Single-Thread

Execution

Single-Thread

Execution

(w/ 2x speedup

in compute)

Actual

program

speedup is

minimal due to

memory

latency

C Compute

Time

M Memory

Latency

Adapted from: OpenSparc T1 Micro-architecture Specification

19

Cache Penalty Example

• Assume 50% of instructions are LW/SW, an L1-D hit
rate of 90%, and miss penalty of 20 clock cycles
(assuming these misses hit in L2). What is the CPI for
our typical 5 stage pipeline?

– 50% * 10% misses = 5 instructions that cause stalls

– Other 95 instructions take 95 cycles to execute

– 5 instructions take 105=5*(1+20) cycles to execute

– Total 200 cycles for 100 instructions =
CPI of 2

Effective CPI = Ideal CPI + Miss Rate*Miss Penalty Cycles

20

Question 4

• But in OoO processors, can't we just
deepen our ROB, Issue queues, Store
Address Buffer, etc to hide cache misses?

21

Answer 4

• But in OoO processors, can't we just
deepen our ROB, Issue queues, Store
Address Buffer, etc to hide cache misses?

– Associative lookup
structures are expensive
and slow down
dramatically as they
deepen

– DOES NOT SCALE WELL

22

Motivating HW Multithread/Multicore

• Issues that prevent us from exploiting ILP in more
advanced single-core processors with deeper
pipelines and OoO Execution

– Slow memory hierarchy

– Increased power with higher clock rates

– Increased wire delay & size with more advanced structures
(ROBs, Issue queues, etc.) for potentially diminishing
returns

• All of these issues point us to find "easier" sources of
parallelism such as: TLP (Thread-Level Parallelism)

23

OVERVIEW OF TLP

24

What is a Thread?
• Thread (def.): Single execution sequence (instruction

stream) representing a separately schedulable task

– Schedulable task: Can be transparently paused and resumed
by the OS scheduler

• Consider the processor:

– For what resources would each thread need
their own copy to execute in parallel?

CPU

0xbff70c44$31

0x0004a804pc

0x00000005$3

0x04001c

lw $5,20($8)
add $2,$8,$4
or $8,$5,$3
sw $9,0($6)
...

sw $9,0($3)
sub $8,$2,$5
lw $2,4($1)
sub $7,$2,$6
...

T1 Stack T2 Stack

0xbf01e800$1

Memory

0x04a800
Thread 1Thread 2

0x0 0xffffffff

25

Separate or Shared?

• Consider the processor, for what resources
would each thread need their own copy?

1 Per Thread Shared among all

Program Counter

ALUs

Register File

Page Table Base Register

Cache Memory

26

Shared vs. Private

27

Software Multithreading

• Used since 1960's on uniprocessors to hide I/O
latency

– Multiple processes with different virtual address
spaces and process control blocks

– On an I/O operation, state is saved and another
process is given to the CPU

– When I/O operation completes the process is
rescheduled

• On a context switch…

– Trap processor and flush pipeline

– Save state in process control block (PC, register file,
Interrupt vector, page table base register)

– Restore state of another process

– Start execution and fill pipeline

• Context switch is also triggered by timer for fairness

• Very high overhead! (1-10 us)

CPU

Saved
State

T1 = Ready

Saved
State

T2 = Blocked

Saved
State

T3 = Ready

OS
Scheduler

Regs

PC

Regs

PC

Regs

PC

Regs

PC

Meta
Data

Meta
Data

Meta
Data

28

Multicore vs. Multithreaded

• Multicore/Multiprocessor: Single chip containing
multiple processor cores that possess all the logic
resources necessary to execute one or more threads at
a time

– Require software/OS to context switch from one thread to
another and do not share hardware resources between
threads.

• Hardware Multithreading: A processor core that has
hardware support for executing multiple threads and
context switching between them without software
intervention

29

Typical Multicore (CMP) Organization

• Can simply replicate entire processor core to create a
chip multi-processor (CMP)

L1

Main Memory

P

L3

Bank/

L3

Bank

L3

Bank/

L3

Bank

Interconnect (On-Chip Network)

L1

P

L1

P

L1

P

Private L1 and L2's require
maintaining coherency via

snooping.

Sharing L1 is not a good idea.

L3 is shared (1 copy of data) and
thus does not require a
coherency mechanism.

Chip Multi-

Processor

Shared bus would be a
bottleneck. Use switched

network (multiple
simultaneous connections)

L2 L2 L2 L2

30

Case for Multithreading

• Consider long latency events:
– Cache Miss, Exceptions, Lock (Synchronization), Long instructions such as

MUL/DIV

– Such events cause In-order and even OoO pipelines to be underutilized

• Goal/Idea: Swap to the next thread immediately (on next cycle)
when the current thread hits a long-latency event (i.e. cache miss)
– By executing multiple threads, processors can be kept busy with useful work

C M C M

Time

Thread 1

C Compute

Time

M Memory

Latency

Adapted from: OpenSparc T1 Micro-architecture Specification

C M C MThread 2

C M C MThread 3

C M C MThread 4

31

IMPLEMENTING HARDWARE
MULTITHREADING

32

MT Needs Non-Blocking Caches

• Non-blocking cache: Does not block/pause on a miss but is able
to service hits while fetching one or more miss requests
– Needed to support multithreading

– Example: Pentium Pro has a non-blocking cache capable of handling 4
outstanding misses

C M C M

C M C M

Service

Cache Miss

Service

Cache Miss

C M C M

Service

Cache Miss

Service

Cache Hits
Service

Cache Hits
Service

Cache Miss

Service

Cache Miss

Service

Cache Miss

Service

Cache Hits
Service

Cache Hits

Service

Cache Hits
Service

Cache Hits

C M C M

+

33

Hardware Multithreading

• Run multiple threads on the same core with
hardware support for fast context switch

– Multiple register files

– Multiple state registers (PCs, page table base
registers, interrupt vectors, etc.)

– Avoids saving context manually (via software)

34

Sun T1 "Niagara" Case Study

http://ogun.stanford.edu/~kunle/publications/niagra_micro.pdf

Ex. of Fine-grained
Multithreading

35

Sparc T1 Niagara

• 8 cores each executing 4 threads called a thread group
– Zero cycle thread switching penalty (round-robin)

– 6 stage pipeline

• Each core has its own L1 cache

• Each thread has its own
– Register file, instruction and store buffers

• Threads share…
– L1 cache, TLB, and execution units

• 3 MB shared L2 Cache, 4-banks, 12-way set-associative
– Is it a problem that it's not a power of 2? No!

Fetch

(Thread)

Select Decode Exec. Mem. WB

36

Sun T1 "Niagara" Pipeline

http://ogun.stanford.edu/~kunle/publications/niagra_micro.pdf

1

2a

2b
3 4

37

T1 Pipeline

• Thread select stage [Stage 2]

– Choose instructions to issue from ready threads

– Issues based on
• Instruction type

• Misses

• Resource conflicts

• Traps and interrupts

• Fetch stage [Stage 1]

– Thread select mux chooses which thread's instruction to
issue and uses that thread's PC to fetch more instructions

– Access I-TLB and I-Cache

– 2 instructions fetched per cycle

38

T1 Pipeline

• Decode stage [Stage 3]

– Accesses register file

• Execute Stage [Stage 4]

– Includes ALU, shifter, MUL and DIV units

– Forwarding Unit

• Memory stage [Stage 5]

– DTLB, Data Cache, and 4 store buffers (1 per thread)

• WB [Stage 6]

– Write to register file

39

Pipeline Scheduling

• No pipeline flush on context switch (except
potentially of instructions from faulting thread)

• Full forwarding/bypassing to consuming, junior
instructions of same thread

• In case of load, wait 2 cycles before an instruction
from the same thread is issued

– Solved forwarding latency issue

• Scheduler guarantees fairness between threads by
prioritizing the least recently scheduled thread

40

A View Without HW Multithreading

Single Threaded

Superscalar

w/ Software MT
Issue Slots

Time

Only instructions

from a single

thread

Software

Multithreading

Expensive Cache

Miss Penalty

Expensive

Context Switch

…

…

41

Types/Levels of Multithreading

• How should we overlap and share the HW between
instructions from different threads

– Coarse-grained Multithreading: Execute one thread with
all HW resource until a cache-miss or misprediction will
incur a stall or pipeline flush, then switch to another
thread

– Fine-grained Multithreading: Alternate fetching
instructions from a different thread each clock

– Simultaneous Multithreading: Fetch and execute
instructions from different threads at the same time

42

Levels of TLP

Miss

Miss

Superscalar Coarse-grained MT Fine-Grained MT

Simultaneous

Multithreading (SMT)

Issue Slots

Time

Only instructions

from a single

thread

Switch threads

when one hits a

long-latency event

like a stall due to

cache-miss,

pipeline flush, etc.

Alternate threads

every cycle

(Sun UltraSparc

T2)

Mix instructions from

threads during same

issue cycle

(Intel HyperThreading,

IBM Power 5)

Expensive Cache

Miss Penalty

43

Fine Grained Multithreading

• Like Sun Niagara

• Alternates issuing instructions from different threads
each cycle provided a thread has instructions ready
to execute (i.e. not stalled)

• With enough threads, long latency events may be
completely hidden

– Some processors like Cray may have 128 or more threads

• Degrades single thread performance since it only
gets 1 out of every N cycles if all N threads are ready

44

Coarse Grained Multithreading

• Swaps threads on long-latency event

• Hardware does not have to swap threads in a single
cycle (as in fine-grained multithreading) but can take
a few cycles since the current thread has hit a long
latency event

• Requires flushing pipeline of current thread's
instructions and filling pipeline with new thread's

• Better single-thread performance

45

ILP and TLP

• TLP can also help ILP by providing another
source of independent instructions

• In a 3- or 4-way issue processor, better
utilization can be achieved when instructions
from 2 or more threads are executed
simultaneously

46

Simultaneous Multithreading

• Uses multiple-issue, dynamic scheduling mechanisms
to execute instructions from multiple threads at the
same time by filling issue slots with as many available
instructions from either thread

– Overcome poor utilization due to cache misses or lack of
independent instructions

– Requires HW to tag instructions based on their thread

• Requires greater level of hardware resources
(separate register renamer, branch prediction, store
buffers, and multiple register files, etc.)

47

2-Way SMT Updated Block Diagram

I-Cache

Reg.

Rename 1

Integer /

Branch

Exec. Unit

Div Mul

Instruc.

Queue 1

R
e
g

.
F

il
e

 2

In
t.

 Q
u

e
u

e

L
/S

 Q
u

e
u

e

D
iv

Q
u

e
u

e

M
u

lt
.

Q
u

e
u

e

CDB

Is
s
u
e

U
n
it

D-Cache

Dispatch

D-Cache

L/S Buffer

SAB2

ROB1 ROB2

R
e
g

.
F

il
e

 1 Instruc.

Queue 2

SAB1

Reg.

Rename 2

BPB1

BPB2
Dispatch can
tag instructions
with thread ID
to separate
instructions in
the backend

Updated OoO processor block diagram for 2-way hardware, SMT

SB1 SB2

48

Example

• Intel HyperThreading Technology (HTT) is
essentially SMT

• Recent processors including Core i7 are multi-
core, multi-threaded, multi-issue, OoO
(dynamically scheduled) superscalar
processors

49

Future of Multicore/Multithreaded

• Multiple cores in shared memory configuration

• Per-core L1 or even L2

• Large on-chip shared cache

• Multiple threads on each core to fight memory wall

• Ever increasing on-chip threads

– To continue to meet Moore's Law

– CMP's with 1000's of threads envisioned

– Only sane option from technology perspective (i.e. out of
necessity)

– The big road block is parallel programming

50

Parallel Programming

• Implicit parallelism via…

– Parallelizing compilers

– Programming frameworks (e.g. MapReduce)

• Explicit parallelism

– OpenMP

– Task Libraries
• Intel Thread Building Blocks, Java Task Library

– Native threading (Windows threads, POSIX threads)

– MPI

51

BACKUP

52

Organization for OoO Execution

I-Cache Block Diagram

Adapted from Prof.

Michel Dubois

(Simplified for EE 457)

Register

Status

Table

Integer /

Branch
D-Cache Div Mul

TAG FIFO

Instruc.

Queue

R
e
g

.
F

il
e

In
t.

 Q
u

e
u

e

L
/S

 Q
u

e
u

e

D
iv

 Q
u

e
u

e

M
u

lt
.

Q
u

e
u

e

CDB

Issue

Unit

Dispatch

53

2-Way SMT Updated Block Diagram

I-Cache

Reg.

Rename 1

Integer /

Branch

Exec. Unit

Div Mul

Instruc.

Queue 1

R
e
g

.
F

il
e

 2

In
t.

 Q
u

e
u

e

L
/S

 Q
u

e
u

e

D
iv

Q
u

e
u

e

M
u

lt
.

Q
u

e
u

e

CDB

Is
s
u
e

U
n
it

D-Cache

Dispatch

D-Cache

L/S Buffer

SAB2

ROB1 ROB2

R
e
g

.
F

il
e

 1 Instruc.

Queue 2

SAB1

Reg.

Rename 2

BPB1

BPB2
Dispatch can
tag instructions
with thread ID
to separate
instructions in
the backend

Updated OoO processor block diagram for 2-way hardware, SMT

SB1 SB2

54

Multiple Functional Units

• We now provide multiple functional units

• After decode, issue to a queue, stalling if the unit is busy or
waiting for data dependency to resolve

IM Reg

ALU

DM Reg

MUL

DIV

DM

(Cache)

Queues +

Functional

Units

55

Functional Unit Latencies

Functional Unit Latency
(Required stalls cycles

between dependent [RAW] instrucs.)

Initiation Interval
(Distance between 2 independent instructions

requiring the same FU)

Integer ALU 0 1

FP Add 3 1

FP Mul. 6 1

FP Div. 24 25

EX

Int. ALU, Addr. Calc.

FP Add

Int. & FP MUL

Int. & FP DIV

A1 A2 A3 A4

M1 M2 M3 M4 M5 M6 M7

Look Ahead: Tomasulo
Algorithm will help absorb

latency of different functional
units and cache miss latency by
allowing other ready instruction

proceed out-of-order

An added complication of

out-of-order execution &

completion: WAW & WAR

hazards

56

OoO Execution w/ ROB
• ROB allows for OoO execution but in-order completion

I-Cache

Br. Pred.

Buffer

Integer /

Branch

Exec. Unit

Div Mul

ROB

(Reorder

Buffer)

Instruc.

Queue

R
e
g

.
F

il
e

In
t.

 Q
u

e
u

e

L
/S

 Q
u

e
u

e

D
iv

 Q
u

e
u

e

M
u

lt
.

Q
u

e
u

e

CDB

Issue

Unit

D-Cache

Dispatch

D-Cache

L/S Buffer

Addr.

Buffer

Exceptions?
No problem

57

58

59

Updated Pipeline

Functional Unit Latency
(Required stalls cycles

between dependent [RAW] instrucs.)

Initiation Interval
(Distance between 2 independent instructions

requiring the same FU)

Integer ALU 0 1

FP Add 3 1

FP Mul. 6 1

FP Div. 24 25

EX

Int. ALU, Addr. Calc.

FP Add

Int. & FP MUL

Int. & FP DIV

A1 A2 A3 A4

M1 M2 M3 M4 M5 M6 M7

60

Updated Pipeline

Functional Unit Latency
(Required stalls cycles

between dependent [RAW] instrucs.)

Initiation Interval
(Distance between 2 independent instructions

requiring the same FU)

Integer ALU 0 1

FP Add 3 1

FP Mul. 6 1

FP Div. 24 25

I-Cache
MEM

stage

Reg.

File

PC EX

Int. ALU, Addr. Calc.

FP Add

Int. & FP MUL

Int. & FP DIV

A1 A2 A3 A4

M1 M2 M3 M4 M5 M6 M7

	Slide 1: EE 457 Unit 9c
	Slide 2: Credits
	Slide 3: Background Knowledge
	Slide 4: Power
	Slide 5: Temperature
	Slide 6: Modeling Interconnect Delay
	Slide 7: Dealing With Interconnect
	Slide 8: Chip Multithreading and multiprocessors
	Slide 9: Consideration
	Slide 10: Question 1
	Slide 11: Answer 1
	Slide 12: Question 2
	Slide 13: Answer 2
	Slide 14: Question 2
	Slide 15: Answer 3
	Slide 16: Memory Wall Problem
	Slide 17: Cache Hierarchy
	Slide 18: The Growing Memory Problem
	Slide 19: Cache Penalty Example
	Slide 20: Question 4
	Slide 21: Answer 4
	Slide 22: Motivating HW Multithread/Multicore
	Slide 23: Overview of TLP
	Slide 24: What is a Thread?
	Slide 25: Separate or Shared?
	Slide 26: Shared vs. Private
	Slide 27: Software Multithreading
	Slide 28: Multicore vs. Multithreaded
	Slide 29: Typical Multicore (CMP) Organization
	Slide 30: Case for Multithreading
	Slide 31: Implementing Hardware Multithreading
	Slide 32: MT Needs Non-Blocking Caches
	Slide 33: Hardware Multithreading
	Slide 34: Sun T1 "Niagara" Case Study
	Slide 35: Sparc T1 Niagara
	Slide 36: Sun T1 "Niagara" Pipeline
	Slide 37: T1 Pipeline
	Slide 38: T1 Pipeline
	Slide 39: Pipeline Scheduling
	Slide 40: A View Without HW Multithreading
	Slide 41: Types/Levels of Multithreading
	Slide 42: Levels of TLP
	Slide 43: Fine Grained Multithreading
	Slide 44: Coarse Grained Multithreading
	Slide 45: ILP and TLP
	Slide 46: Simultaneous Multithreading
	Slide 47: 2-Way SMT Updated Block Diagram
	Slide 48: Example
	Slide 49: Future of Multicore/Multithreaded
	Slide 50: Parallel Programming
	Slide 51: BACKUP
	Slide 52: Organization for OoO Execution
	Slide 53: 2-Way SMT Updated Block Diagram
	Slide 54: Multiple Functional Units
	Slide 55: Functional Unit Latencies
	Slide 56: OoO Execution w/ ROB
	Slide 57
	Slide 58
	Slide 59: Updated Pipeline
	Slide 60: Updated Pipeline

