
1

EE 457 Unit 9b

Tomasulo Part 2:

In-Order Completion

Speculation

2

Credits

• Some of the material in this presentation is taken from:
– Computer Architecture: A Quantitative Approach

• John Hennessy & David Patterson

• Some of the material in this presentation is derived from
course notes and slides from
– Prof. Michel Dubois (USC)

– Prof. Murali Annavaram (USC)

– Prof. David Patterson (UC Berkeley)

3

Tomasulo w/ Speculative Execution

Tomasulo 1

• In-order Issue

• Out-of-Order Execution

• Out-of-order Completion

– Completion = Commit = Update
state = Write to Reg./Mem.

• No speculative execution beyond
branches (stall dispatch until branch
is resolved)

• No precise exceptions

Tomasulo 2

• In-order Issue

• Out-of-Order Execution

• In-order Completion
– Plus, we now allow "Speculative"

Execution

• Execute out of order but don't write
reg/memory immediately but "buffer"
(temporarily store) results and commit in-
order.

• Can speculate branch outcomes and
dispatch down a pathway before they
execute, flushing instruction results if we
are wrong

• Support precise exceptions!

4

Changes to Tomasulo Part 1

• Removed structures:

– No more TAG FIFO: Use ROB
location (write pointer) as TAG of
the instruction

– No more RST (Register Status
Table): Instead do an associative
search of the ROB

• D-Cache shown in one place
(used by LW and SW in same
place)

• New Structures:

– ROB (Re-order Buffer): Enables
in-order completion and flushing
after misspeculated branch

– BPB (Branch Prediction Buffer):
Enables speculating (issuing
instructions) past branches

– SAB (Store Address Buffer):
Helps with memory
disambiguation

• D-Cache shown in two places (LW
and SW use at different
places/times)

5

OoO Execution w/ ROB
• ROB allows for OoO execution but in-order completion

I-Cache

Br. Pred.

Buffer

Integer /

Branch

Exec. Unit

Div Mul

ROB

(Reorder

Buffer)

Instruc.

Queue

R
e
g

.
F

il
e

In
t.

 Q
u

e
u

e

L
/S

 Q
u

e
u

e

D
iv

 Q
u

e
u

e

M
u

lt
.

Q
u

e
u

e

CDB

Issue

Unit

D-Cache

Dispatch

D-Cache

L/S Buffer

S.Addr.

Buffer Simplification for EE457:
Cache miss can occur for
LW only but SW always

hits (without this
simplification we need to
cover store buffer design

and related issues)

Assume:

SW always

hits in

cache

Consider this sequence:

(Assume mult takes

several cycles)

mult $5,$6,$7
add $2,$3,$4
lw $8,0($5)
sub $9,$0,$2

1 mult
2 add
3 lw
4 sub

6

OoO Execution w/ ROB
• ROB allows for OoO execution but in-order completion

I-Cache

Br. Pred.

Buffer

lw mult

Integer /

Branch

Exec. Unit

Div Mul

ROB

Instruc.

Queue

R
e
g

.
F

il
e

In
t.

 Q
u

e
u

e

L
/S

 Q
u

e
u

e

D
iv

 Q
u

e
u

e

M
u

lt
.

Q
u

e
u

e

CDB

Issue

Unit

D-Cache

Dispatch

1 mult
2 Completed
3 lw
4 Completed

D-Cache

L/S Buffer

S.Addr.

Buffer

ROB entry is allocated on
dispatch.

When an instruction
executes, its result is
stored in ROB then
committed to register
file when it reaches the
head of the ROB (in-
order completion)

Current Head

Current Tail
mult $5,$6,$7
add $2,$3,$4
lw $8,0($5)
sub $9,$0,$2

7

REORDER BUFFER (ROB)

Handling Data Dependencies and Enforcing In-Order Completion

8

Take a Number vs. Take a Token

• ROB (Re-order Buffer) forms a virtual FIFO/queue to maintain
order (so we can complete in order)

• Take a number (WP) on dispatch, and commit when you reach
the top/head (RP) and are ready

• ROB Tag = Paper token taken by the customer
– Recall that we wrap back to 0 after the maximum tag number

Helps to

create a

virtual queue.
In State Bank of India, the cashier issues

brass token to customers trying to draw

money as an ID (and not at all to put them

in any virtual queue / ordering). Token

numbers are in random order.

The cashier verifies the signature in the

record rooms, returns with money, calls the

token number and issues the money.

Tokens are reclaimed & reused.

The WP

The RP

1. WP – RP = number of items
in the FIFO (depth)

2. It is a circular FIFO/buffer

9

Re-Order Buffer (ROB) Structure

• ROB is a FIFO + Random Access

– In a modern system: 128-256 locations

• WP = Write pointer

– Used by Dispatch Unit

– Each instruction issues in order and
“takes a number” (its "tag")

• Instructions can write results to its ROB
entry (out of order) whenever they
execute and put their result on the CDB

• RP = Read pointer =

– Used for committing (allow write-
back for) the most senior / oldest
instruction when it has completed
without generating an exception

Valid Comp Rd RegWr Result Others

0 0 0 0 1

1 0 0 $2 1

2 0 0 0 0

3 1 1 $1 1

4 1 0 $2 1

5 1 0 $15 1

6 1 1 $2 1

7 1 1 $6 1

8 1 0 $2 0

9 1 0 $7 0

10 0 0 $13 1

11 0 0 0 1

12 0 0 $4 0

13 0 0 $2 1

14 0 0 0 1

15 0 0 0 0

Top

(rp)

Bottom

(wp)

Note: Valid is not needed (uses items

from RP to WP)

Others: MemWrite (SW), MemAddr

10

Re-Order Buffer (ROB) Structure
• We will not use the RST (Register Status Table)

– Though this may vary depending on implementation

• On instruction dispatch: the ROB is searched
for its source register (Rs and/or Rt) producers
and can find its source operands from one of
three sources:

• Unproduced (e.g. add $8, $2, $2)

– Situation: producer still waiting to execute

– Action: Take ROB tag of producer (ROB8)

• Produced (e.g. add $8, $6, $6)

– Situation: Producer executed and is waiting to
commit

– Action: Take result from ROB (data from ROB7)

• Unfound (e.g. add $8, $3, $3)

– Situation: Latest value is in RegFile

– Action: Take value from RegFile

• Since multiple entries in the ROB may match
Rs/Rt a priority resolver is necessary (e.g. $2)

Valid Comp Rd RegWr Result Others

0 0 0 0 1

1 0 0 $2 1

2 0 0 0 0

3 1 1 $1 1

4 1 0 $2 1

5 1 0 $15 1

6 1 1 $2 1

7 1 1 $6 1

8 1 0 $2 0

9 1 0 $7 0

10 0 0 $13 1

11 0 0 0 1

12 0 0 $4 0

13 0 0 $2 1

14 0 0 0 1

15 0 0 0 0

Top

(rp)

Bottom

(wp)

Note: Valid is not needed (uses items

from RP to WP)

Others: MemWrite (SW), MemAddr

11

Dispatch and the ROB
• No more token FIFO (for tagging instructions) as in OoO execution

and completion
– ROB entry is your TAG and is allocated for an instruction on issue/dispatch

– When instruction finishes executing its result is buffered in the ROB entry
until it can be committed safely

• It does not use the RST (Register Status Table) as before (because
of difficult with implementing speculative execution)
– When an instruction is dispatched, the ROB is searched for its source

register (Rs and/or Rt) producers
• Unproduced: If an entry in the ROB is producing Rs/Rt but has NOT YET EXECUTED the

ROB tag/slot of the producer is taken with the dependent instruction

• Produced: If an entry in the ROB is producing Rs/Rt and the result is PRODUCED BUT
WAITING TO BE COMMITTED, that value is taken with the dependent instruction

• Unfound: If no entry in the ROB is producing Rs/Rt, DATA IN THE REGISTER FILE IS THE
LATEST value and is taken with the dependent instruction

– Since multiple entries in the ROB may match Rs/Rt a priority resolver is
necessary

12

Not Just a FIFO: ROB Interfaces

• ROB has many
interfaces

– RP, WP work like a FIFO
(sequential access)

– RS,RT source register/tag
lookup (associative
search)

– CDB write execution
results (index / random
access)

ROB

WP

WEN

WD

FULL

RS

RT

CDB TAG/INDEX

CDB DATA

RP

REN

RD

EMPTY

RSDAT

RTTAG

RSTAG

RTDAT

RTFOUND

RSFOUND

CDB FLUSH

CDB VALID

13

ROB DEPTH AND PRIORITY
RESOLUTION

14

Motivation for finding ROB Depth

• How do we determine the correct
ROB entry to help when trying to
obtain our source registers
– e.g. add $8, $2, $2

• We need to understand ROB depth
calculation and priority resolution

• In the diagram how many
instructions are waiting in the
ROB?
– Answer: 7 (loc. 3-9)

• Can we just use the LARGEST valid
index that matches the desired
register? No!

Valid Comp Rd RegWr Result Others

0 0 0 0 1

1 0 0 $2 1

2 0 0 0 0

3 1 1 $1 1

4 1 0 $2 1

5 1 0 $15 1

6 1 1 $2 1

7 1 1 $6 1

8 1 0 $2 0

9 1 0 $7 0

10 0 0 $13 1

11 0 0 $0 1

12 0 0 $4 0

13 0 0 $5 1

14 0 0 $9 1

15 0 0 $0 0

Top

(rp)

Bottom

(wp)

15

ROB Matches

• Can we just use the LARGEST
valid index that matches the
desired register?
– In the example to the right

should we say to use entry 30's
information?

• Not necessarily
– Need to know where the RP and

WP are

– What if RP=30 and WP = 2?

– Let's explore more

ROB

=

=

=

=

=

1,1,rs

0

1

30

2

31

Rd, RdTag, Instruction

Valid, Instruction

completed, RdData

V,RegW,Rd

V,RegW,Rd

V,RegW,Rd

V,RegW,Rd

V,RegW,Rd

Match

Match

16

ROB Depth/Distance

• Case 1

– Your number is 55 and mine is 65

– I am 10 numbers
(after / before) you.

• Case 2

– Your number is 55 and mine is 45

– I am 90 numbers
(after / before) you.

52

Now serving:

17

Computing Distance

• To find how many people are waiting subtract
the Now Serving number from the last
number pulled

• Example
– Last number pulled = 92

– Now Serving = 52

– # Waiting = 40

• But suppose the last number pulled is 32
– Last number pulled = 32

– Now Serving = 52

– # Waiting = (-20) mod 100 = 80

DEPTH = (WP-RP) mod SIZE

52

Now serving:

18

Computing Distance

• Depth = (WP – RP) mod 8

FIFO Initially Empty

D = WP-RP = 0-0 = 0

7

6 5

4

3

21

0

RP

WP

7

6 5

4

3

21

0

RP

WP

7

6 5

4

3

21

0

RP

7

6 5

4

3

21

0

WP

WP

RP

FIFO Depth = 4

D = WP-RP = 4-0 = 0

FIFO Depth = 1

D = WP-RP = 4-3 = 1

FIFO Depth = 7

D = WP-RP

= (2-3)mod 8 = 7

19

ROB Dispatch for Rs
• $2 is needed by dispatch, which ROB entry should be selected as the producer?

• We want the latest producer

– Prof. Puvvada would say "the most junior (youngest) of our seniors (those before us)

Scenario 0 Scenario 1
Valid Rd RegWrite

0 0 0 1

1 0 $2 1

2 0 0 0

3 1 $1 1

4 1 $2 1

5 1 $15 1

6 1 $2 1

7 1 $12 1

8 1 $2 0

9 1 $7 0

10 0 $13 1

11 0 0 1

12 0 $4 0

13 0 $2 1

14 0 0 1

Top (rp)

Bottom (wp)

Valid Rd RegWrite

0 1 0 1

1 1 $2 1

2 1 $10 1

3 0 $1 0

4 0 $21 1

5 0 $12 1

6 0 $2 0

7 0 $15 1

8 0 $22 1

9 1 $7 1

10 1 $13 0

11 1 $2 1

12 1 $1 1

13 1 $2 0

14 1 $3 1

Bottom (wp)

Top (rp)

20

Dealing with Wrapping

• Consider ranges: RP to MAX and MIN to WP

0

1

2

3

4

30

31

Top Pointer (rp)

Bottom Pointer (wp)

0

1

2

3

4

30

31

Top Pointer (rp)

Bottom Pointer (wp)

Scenario 0 Scenario 1

R
a
n

g
e
 0

R
a
n

g
e
 1

In each scenario, which set should be given higher priority of
selection to forward the value of a particular register?

R
a
n

g
e
 0 R

a
n

g
e
 1

MIN

MAX

MIN

MAX

Pri1

Pri2

Pri1

21

ROB Dispatch for Rs

Priority

Resolver
(Pass

Highest

Priority

Active Input)

Priority

Resolver
(Pass

Highest

Priority

Active Input)

Priority

Resolver
(Pass

Highest

Priority

Active Input)

Rd, RdTag, Instruction

Valid, Instruction

completed, RdData

Need similar logic for Rt
Resolve highest priority match of Rd to

Rs for all valid instructions between
Read Pointer and MAX ROB entry (i.e.

entry 31)

Resolve highest priority match of Rd to
Rs for all valid instructions between

MIN ROB entry (i.e. entry 0) and Write
Pointer

Bottom set has priority

Rs Data Valid

Rs Data

Rs Tag Valid

Rs Tag

ROB

=

=

=

=

=

1,1,rs

0

1

30

2

31

V,RegW,Rd

V,RegW,Rd

V,RegW,Rd

V,RegW,Rd

V,RegW,Rd

22

BRANCH PREDICTION AND
SPECULATIVE EXECUTION

Avoiding stalls for control hazards

23

Branch Prediction + Speculation

• To keep the backend fed with enough work we need
to predict a branch's outcome and perform
"speculative" execution beyond the predicted
(unresolved) branch

– Roll back mechanism (flush) in case of misprediction

Conditional branches

Basic Block

Head of ROB

Speculative

Execution

Path

NT-path T-path

NT T NT T

24

Speculation Example

• Predict branches and execute
most likely path

– Flush ROB entries and issue
queues after the mispredicted
branch

– Need good prediction
capabilities to make this useful

T NT

NTT

ROB Head

(Assume stall)

Spec. Path

C
o

m
m

it
 U

n
it

Time 2b:

Flush ROB/Pipeline of

instructions behind it

C
o

m
m

it
 U

n
it

Time 1: ROB

Red Entries = Predicted

Branches

C
o

m
m

it
 U

n
it

Time 3: ROB

Pipeline begins to fill w/

correct path

C
o

m
m

it
 U

n
it

Time 2a: ROB

Black Entry = Mispredicted

branch

B
a

s
ic

 B
lo

c
k

B
a

s
ic

 B
lo

c
k

B
a

s
ic

 B
lo

c
k

B
a

s
ic

 B
lo

c
k

B
a

s
ic

 B
lo

c
k

Correct

Path

W
ro

n
g

-P
a

th

E
x

e
c

u
ti

o
n

Head Head Head

Tail

Predicted

Branch

25

Case 1: Correct Prediction

In-Order
Issue Logic

(> 1 instruc.

per clock)

INT

MUL/DIV

INT

ALU

FP

ADD

FP

MUL/DIV

Load/

Store

jeq $9, $10, L1
add $11, $7, $11

lw $9,0($8)
lw $12,0($11)
sw $12,0($13)

C
o

m
m

it
 U

n
it

Out-of-Order

In-Order

Results forwarded to

dependent (RAW) instructions

Writeback
(to D$ or

registers)

If the BEQ is correctly

predicted, normal

execution proceeds and

instructions after the JEQ

can commit when they

are ready

Queues for

functional

units

Correctly predicted branch

Tail of Queue = newest instruction

Front End

Back End

lw $9,0($8)
beq $9,$10,L1
add $11,$7,$11

(miss)lw $12,0($11)
or $14,$14,$8
sub $12,$14,12
sw $12,0($13)

Or $14, $14, $8
sub $14, $14, $12

OR (r14 result)

LW (r9)

BEQ (L1)

ADD (r11 sum)

LW (r12)

SW addr / data
SUB (r12)

26

Case 2a: Incorrect Prediction

In-Order
Issue Logic

(> 1 instruc.

per clock)

INT

MUL/DIV

INT

ALU

FP

ADD

FP

MUL/DIV

Load/

Store

jeq $9, $10, L1
add $11, $7, $11

lw $9,0($8)
lw $12,0($11)
sw $12,0($13)

C
o

m
m

it
 U

n
it

Out-of-Order

In-Order

Results forwarded to

dependent (RAW) instructions

Writeback
(to D$ or

registers)

If the BEQ is

mispredicted, all later

(younger) instructions in

the ROB and functional

unit queues are flushed.

Queues for

functional

units

Mispredicted branch

Tail of Queue = newest instruction

Front End

Back End

lw $9,0($8)
beq $9,$10,L1
add $11,$7,$11

(miss)lw $12,0($11)
or $14,$14,$8
sub $12,$14,12
sw $12,0($13)

Or $14, $14, $8
sub $14, $14, $12

OR (r14 result)

LW (r9)

BEQ (L1)

ADD (r11 sum)

LW (r12)

SW addr / data
SUB (r12)

27

Case 2b: Incorrect Prediction

In-Order
Issue Logic

(> 1 instruc.

per clock)

INT

MUL/DIV

INT

ALU

FP

ADD

FP

MUL/DIV

Load/

Store

beq $9,$10,L1
add $10,$15,$10

lw %r14,0(%r13)

C
o

m
m

it
 U

n
it

Out-of-Order

In-Order

Results forwarded to

dependent (RAW) instructions

Writeback
(to D$ or

registers)

Fetch and execution

resume at the correct

target.

Queues for

functional

units

Long-latency instruction

will delay dependent instrucs.

Tail of Queue = newest instruction

Front End

Back End

beq $9,$10,L1
...

L1: div $10, $18
add $10,$15,$10
lw $14,0($13)

div $10,$18

BEQ (L1)

DIV ($10)

ADD ($10)

LW ($14 res)

28

Making Predictions

• Many branches have highly
predictable behaviors (think loops)

• Static Predictors: Generated by the
compiler for an ISA that supports
prediction hints in the machine code
of a branch

• Dynamic Predictors: HW can keep
statistics on some number of recent
branches to help predict their
outcomes

Loop Body

Loop

Check

“After” Code

T

NT

Loop Body

Loop

Check

“After” Code

T
NT

int i=50;
do {
// body

} while (--i != 0)

29

Dynamic Branch Outcome Prediction

• Keep some "history" of branch outcomes and use that to
predict the future

• Keep a table indexed by LSB’s of PC with the current
prediction

• Questions:

– What history should we use to predict a branch?

– How much history should we use/keep to predict a branch?

P
C I-TLB Access

0: NT,NT Predictors

History/State
LSB’s

PC[3:2]

0x418 bne $5,$6,L1
add $2,$3,$4
lw $8,0($5)

0x424 beq $9,$0,L2

1: T,NT
2: NT,NT
3: T, T

30

Dynamic Local Predictors

• How much history do we need to keep?

• 1-bit predictor per branch = Last outcome of the
branch used to predict next outcome

– Problem: When wrong once will often be wrong twice

– Highlighted BNE will be T,T,…T,NT,T,T,…T,NT,T,T,…
• NT only every 50 iterations

– 1-bit predictor will say T when bne is NT, then update to NT
and be wrong again the next time when bne is T again

addi $a0,$0,10
LOOP1: addi $a1,$0,50
LOOP2: ...

addi $a1,$a1,-1
bne $a1,$0,LOOP2
addi $a0,$a0,-1
bne $a0,$0,LOOP1

31

2-bit Predictor

• Solves the problem of 2 mispredictions at the end of a loop

• Keep current prediction (e.g. T) until mispredicted twice in a
row (e.g. NT, NT)
– Require 2 bits for 4 cases of last 2 outcomes

• More than 2-bits does not yield much better accuracy

Predict

Taken

(11)

Predict

Taken

(10)

Predict

Not Taken

(00)

Predict

Not Taken

(01)

NT

T

T

NT

T

NT

T NT

Assume we start in Predict T state,

how many mispredictions will each

sequence cause?

1.) T T NT T 1

2.) NT T NT NT 3

3.) NT NT T T 4

4.) NT NT NT NT 2

5.) NT T NT T 2

Mispredicts

32

Local vs. Global History

• What history should we look at?
– Should we look at just the previous

executions of only the particular
branch we’re currently predicting or
at surrounding branches as well

• Local History: The previous
outcomes of that branch only
– Usually good for loop conditions

• Global History: The previous
outcomes of the last m branches
in time (other branches
included)

do {
if(x == 2) { … }
if(y == 2) { … }
if(x != y) { … } // Better:

// Local or Global
}
while (i > 0); // Better:

// Local or Global

33

Tournament Predictor

• Dynamically selects when to
use the global vs. local
predictor

– Accuracy of global vs. local
predictor for a branch may vary
for different branches

– Tournament predictor keeps the
history of both predictors
(global or local) for a branch and
then selects the one that is
currently the most accurate

Tournament

Selector

Local

Prediction

Global

Prediction

Predictor

exhibiting

greatest

accuracy

34

SELECTIVE FLUSHING

Supporting Speculative Execution

35

Flushing Mechanism
• When we mispredict, we need to flush executed instructions in the ROB

and not-yet-executed instructions in the issue queues

• To do so, we provide the following to the backend (ROB, Issue queues):

– A 'flush' command signal

– Current Top of ROB

– Depth of the Branch Instruction

• All instructions in the backend (as well as the ROB) with depth greater
than the successful branch need to leave (be flushed)

0

1

2

3

4

5

30

31

Top Pointer

(rp)

Taken

Branch

Flush Depth = 2 = (4-2)

0

1

2

3

4

5

30

31

Flush Depth = 29 = (2-5) mod 32

WP

WP

F
lu

s
h

F
lu

s
h

Top Pointer

(rp)

Taken

Branch

0

1

2

3

4

5

30

31

Flush Depth = 25 = (30-5) mod 32

WP

F
lu

s
h

Top Pointer

(rp)

Taken

Branch

36

Selective Flushing for Branch Misprediction

• Paper token analogy

– Say the store is going to close in 20 min. and they noticed
too many people are waiting

– They may announce that they will serve up to token #72 and
people having tokens after that may leave now

• If the last token pulled is 92, then people with tokens #73
to #92 will leave

• If the last token pulled is #32, then people with tokens
#73 to #99 and #00 to #32 will leave

• Because of the circular nature of the tokens/ROB FIFO
mechanism, one cannot simply compare his token with
#72 to decide whether to stay or leave

• Leave if you are more than 20 people away from current
person being served (i.e. #52)

37

Selective Flushing for Branch Misprediction

• Anyone with greater depth
(distance from top pointer) than
the branch should leave

• Suppose the bottom (WP) is at 1
– Is it (ROB) full? Yes / No

– Total Populated Area = 1 / 31 / 32

• Who should leave (be flushed)?
– Those with distance greater than 2 (i.e. 5

to 31 and 0 should leave)

– Note: #1 is empty

0

1

2

3

4

5

30

31

Top Pointer (rp)

Taken Branch

Depth = 2 = (4-2)

Bottom

Pointer (wp)

38

Selective Flushing for Branch Misprediction

• Who should leave in this
scenario?

– #3 and #4 since (3-5 = 30 mod 32)
and (4-5 = 31 mod 32)

0

1

2

3

4

5

30

31

Top Pointer (rp)

Taken Branch

Bottom

Pointer (wp)

Flush Depth = 29 = (2-5) mod 32

39

Precise Exceptions

• Only handle exceptions from an
instruction that is at the head of the
ROB
– It may have detected the exception case

while executing but stored necessary
info in the ROB and waited until it
reached the HEAD to actually generate
the exception

– Flush all instructions in the ROB and
restart fetching from the exception
handler

• Supports PRECISE exception model!

I-Cache

Instruc.

Queue

Dispatch

1 div
2 add
3 lw
4 sub

I-Cache

Instruc.

Queue

Dispatch

1 div
2 add
3 lw
4 sub

LW detects exception but waits to

become head of ROB

Meanwhile if DIV then generates

exception, take it and flush ROB

40

MEMORY DISAMBIGUATION

41

Register Hazard Summary

• Recall, RAW hazard for registers was handled by

– Dependent instructions are given the ROB tag of their specific
producer to wait on in the backend

– When the specific producer comes on the CDB an announces
the value, then the dependent instruction grabs the value

– Once the dependent instruction has all its sources, it raises his
hand to say, "I am ready to go the execution unit" and waits
for the issue unit to grant permission

• We must still take care with WAR and WAW hazards for
registers, but we do so by taking ROB tags (solves WAR)
and In-Order Completion/Writeback (solves WAW)

42

Tomasulo 2: Memory Assumptions

I-Cache

Br. Pred.

Buffer

Integer /

Branch

Exec. Unit

Div Mul

ROB

(Reorder

Buffer)

Instruc.

Queue

R
e
g

.
F

il
e

In
t.

 Q
u

e
u

e

L
/S

 Q
u

e
u

e

D
iv

 Q
u

e
u

e

M
u

lt
.

Q
u

e
u

e

CDB

Issue

Unit

D-Cache

Dispatch

D-Cache

L/S Buffer

S.Addr.

Buffer

Simplification for EE457:
Cache miss can occur for
LW only but SW always

hits
Why? (without this

simplification we need to
cover store buffer design

and related issues)

Assume: SW always

hits in cache

1 mult
2 add
3 lw
4 sub

LW use/read D-Cache
when it issues. Misses
may occur for LW but not
SW

SW must wait to write to
D-Cache until it becomes
the head of the ROB.

What is all of this for?

43

RAW, WAR, WAW for Memory

• We said hazards may occur in memory

• WAR and WAW hazards are handled
through In-Order Completion

– R = Read = LW (load word)

– W = Write = SW (store word)

• An 'LW' reads cache in the execution
unit before going to ROB

• An 'SW' writes into cache (i.e.
commits) when it reaches the "top" of
ROB (meaning it became the oldest
instruction)

// Dependency?

SW $2,0($5)
LW $8,0($5)

// Dependency?

SW $2, 1000($4)
LW $3, 0($6)

ROB

Reorder Buffer and

In-order

Completion solve

WAW (and helps

with WAR)

D-Cache

1 add
2 sw
3 lw
4 sw

44

Meet the Components

C
D

BL
W

S
W

L
W

LSQ

(Waiting)

D-Cache
Load/Store

BufferLW read

data

SW write data

SW write address & ROB location

ROB Store

Buffer

Not

Used in

EE 457

SAB

Flush + Remove

control signals

SW write occurs here

LW

Store Address Buffer (SAB) – Holds pending
stores addresses and ROB tags to help solve
memory hazards (disambiguation) and allow
LWs in the LSQ to issue as early as possible

Load Store Queue (LSQ) – Holds Loads
and Stores until they have their requisite
source operands and issues them.

Load/Store Buffer (LSB) – Since latency
of a LW is unknown (due to cache
miss), this aides scheduling for writing
to the ROB over the CDB. Stores also
use it to give a common I/F to the ROB

Store Buffer (SB) – Not Used
in EE 457 – Helps if SW
misses in cache to allow ROB
to keep committing junior
instructions

Cache – Assume misses
are allowed for LW but we
assume all SWs hit (to
avoid the need for the
Store Buffer)

45

A Few More Notes

• LW accesses cache and result is written into Load/Store Buffer

• SW does not access memory while getting issued from LSQ and goes to SAB
(see next bullet)and the Load/Store buffer directly, then on to the ROB

• Whenever SW issues, its write address and ROB location are stored in the
Store Address Buffer (for fast detection of latest SW before a LW)

• Once an SW is committed from the top of the ROB its entry in the Store
Address Buffer is cleared

C
D

BL
W

S
W

L
W

LSQ

(Waiting)

D-Cache
Load/Store

BufferLW read

data

SW write data

SW write address & ROB location

ROB Store

Buffer

Not

Used in

EE 457

SAB

Flush + Remove

control signals

SW write occurs here

LW

46

LW Issue (1)

• Can LW (ROB2) issue/execute?
– No. Must know its address.

• Can LW (ROB3) skip ahead of LW (ROB2) and issue/execute?
– Yes, LW can skip other LWs even with unknown addresses

ROB:3 LW A:3000

ROB:2 LW A:ROB1

LSQ

D-Cache

Load/Store

Buffer

LW/SW

…

ROB

Store

BufferNot

Used in

EE 457

SAB

LW

SW

CDB

Store

Commit

0: MUL

1: SUB

2: LW $5

3: LW $6

4: SUB

47

LW Issue (2)

• Can LW (ROB4) skip ahead of SW (ROB2) and issue/execute?
– Yes, as long as the addresses are different, LW can issue ahead of a SW

ROB:4 LW A:4000

ROB:2 SW A:2000 D:ROB0

LSQ

D-Cache

Load/Store

Buffer

LW/SW

…

ROB

Store

BufferNot

Used in

EE 457

SAB

LW

SW

CDB

Store

Commit

0: MUL

1: SUB

2: SW

3: ADD

4: LW $5

?

48

LW Issue (3)

• Can LW (ROB4) skip ahead of SW (ROB2) and issue/execute?
– No, SW address matches LW's address creating a RAW hazard we must

respect

ROB:4 LW A:4000

ROB:2 SW A:4000 D:ROB0

LSQ

D-Cache

Load/Store

Buffer

LW/SW

…

ROB

Store

BufferNot

Used in

EE 457

SAB

LW

SW

CDB

Store

Commit

0: MUL

1: SUB

2: SW

3: ADD

4: LW $5

?

49

LW Issue (4)

• Can LW (ROB4) skip ahead of SW (ROB2) and issue/execute?
– No. What if SW address ends up being 4000 which is a RAW hazard.

ROB:4 LW A:4000

ROB:2 SW A:ROB1 D:20

LSQ

D-Cache

Load/Store

Buffer

LW/SW

…

ROB

Store

BufferNot

Used in

EE 457

SAB

LW

SW

CDB

Store

Commit

0: MUL

1: SUB

2: SW

3: ADD

4: LW $5

?

50

LW Issue (5)

• Can LW (ROB4) skip issue/execute?
– No, a SW with the same address is ahead of us in the ROB (and SAB

also records the address to help us search quickly) and has NOT
written yet. We must wait for it to write when it reaches head of ROB.

– Could potentially grab data from ROB but this makes the design more
complex, though can and is done in most OoO processors.

ROB:4 LW A:1000

ROB:2 SW A:2000 D: ROB0

LSQ

D-Cache

Load/Store

Buffer

LW/SW

…

ROB

Store

BufferNot

Used in

EE 457

ROB1 A:1000

SAB

LW

SW

CDB

Store

Commit

0: MUL

1: SW A:1000 D:10

2: SW

3: ADD

4: LW $5

?

51

LW Issuing
• To handle RAW properly an LW must wait in LSQ until:

– It knows its read address

– All senior SWs know their write address (SW may be waiting
on some earlier instruction for its write address)

• Then either
– Wait and read data from cache once no earlier (older) SW's

are in the LSQ or Store buffer …OR…

– [Not in EE 457] Get data directly from prior SW (latest of
those SW's with matching addresses) out of the Store buffer
after the SW had reached the head of the ROB

• We use the "Store Address Buffer" to maintain a
record of SW addresses and perform fast comparisons
to help waiting LWs determine if there are older SWs
in the ROB, Store buffer, etc. and to aide prioritization
to find matches and the "youngest" of the "oldest"

// RAW Mem Hazard

SW $2, 1000($4)
LW $3, 0($6)

52

SW Issue (1)

• Can SW (ROB3) issue/execute ahead of SW (ROB2)?
– Yes, even though SW (ROB2) may end up with the same address as SW

(ROB3), they only go to the ROB and don't write to memory until they
reach the head of ROB. This means they will write IN-ORDER
regardless of when the "issue"/"execute".

ROB:3 SW A:3000 D:30

ROB:2 SW A:ROB1

LSQ

D-Cache

Load/Store

Buffer

LW/SW

…

ROB

Store

BufferNot

Used in

EE 457

SAB

LW

SW

CDB

Store

Commit

0: MUL

1: ADD

2: SW

3: SW

4: SUB

53

SW Issue (2a)

• Assume cache is busy with a miss, can SW (ROB4)
issue/execute ahead of LW (ROB3)?

– Yes, since their addresses are different

ROB:4 SW A:3000 D:30

ROB:3 LW A:2000

LSQ

D-Cache

Load/Store

Buffer

LW/SW

…

ROB

Store

BufferNot

Used in

EE 457

ROB:1, A:1000

ROB:2, A:3000

ROB:4 A:3000

SAB

LW

SW

CDB

Store

Commit

0: MUL

1: SW A:1000 D:10

2: SW A:3000 D:20

3: LW $5

4: SW

Busy with a miss

ROB:4 A:3000

54

SW Issue (2b)

• Can SW (ROB4) issue/execute ahead of LW (ROB3) with the same address?

• No, this would then hold off the LW from issuing/executing when it sees the match in
the SAB (i.e. it will think there is a RAW hazard when its actually a WAR hazard)

• Furthermore, if multiple address matches in SAB how would LW know whom to get
data from? [At the very least it complicates determining it.]

• Could lead to deadlock if it's waiting on a SW after it but that means that SW will never
reach the head of the ROB because LW doesn't execute (and thus does not commit)

ROB:4 SW A:3000 D:30

ROB:3 LW A:3000

LSQ

D-Cache

Load/Store

Buffer

LW/SW

…

ROB

Store

BufferNot

Used in

EE 457

ROB:1, A:1000

ROB:2, A:3000

ROB:4 A:3000

SAB

LW

SW

CDB

Store

Commit

0: MUL

1: SW A:1000 D:10

2: SW A:3000 D:20

3: LW $5

4: SW

Busy with a miss

ROB:4 A:3000

55

SW Issuing and Bypassing

• But with a little thinking, we can, in fact, allow
later SWs to bypass a waiting earlier LW by
making the LW keep a count (aka bypass
count) of how many bypassing SWs matched
its address

• When LW can issue when the number of
matches in the SAB equal the number of SWs
that bypassed it

56

SW Issue (3a)

• Now we add a bypass counter (BC) to the LSQ entries for LWs

• When a later (junior) SW bypasses (skips ahead of) a LW that maches its
address, the LW increments its bypass counter (BC)

• Notice currently, LW has two SWs with matching address in front of it and
thus must wait for them to write.

ROB:5 SW A:3000 D:30

ROB:4 LW A:3000 BC:1

LSQ

D-Cache

Load/Store

Buffer

LW/SW

…

ROB

Store

BufferNot

Used in

EE 457

ROB:1, A:3000

ROB:2, A:3000

ROB:4 A:3000

SAB

LW

SW

CDB

Store

Commit

0: MUL

1: SW A:3000 D:10

2: SW A:3000 D:20

3: ADD $8

4: LW $5

5: SW A:3000 D:30

Busy with a miss

ROB:5 A:3000

3 matching
address.

57

SW Issue (3b)

• Once the SWs that were ahead of the LW in the ROB commit
(and their SAB entries invalidated), the LW can see there is 1
matching address in the SAB which is equivalent to its bypass
counter.

• Thus, the LW can and should execute

ROB:4 LW A:3000 BC:1

LSQ

D-Cache

Load/Store

Buffer

LW/SW

…

ROB

Store

BufferNot

Used in

EE 457

ROB:4 A:3000

SAB

LW

SW

CDB

Store

Commit

3: ADD $8

4: LW $5

5: SW A:3000 D:30

ROB:5 A:3000

Only 1 matching
address.

58

SW Issue (4)

• Can SW (ROB5) bypass the LW in this example?

– No. Since the LW's address is unknown. If the SW jumps
ahead, the LW does not know if it should or should NOT
increment its bypass counter, leading to incorrect behavior

– SW can only issue over a LW that knows its address

ROB:5 SW A:3000 D:30

ROB:4 LW A:ROB3 BC:0

LSQ

D-Cache

Load/Store

Buffer

LW/SW

…

ROB

Store

BufferNot

Used in

EE 457

ROB:1, A:3000

ROB:2, A:3000

ROB:4 A:3000

SAB

LW

SW

CDB

Store

Commit

0: MUL

1: SW A:3000 D:10

2: SW A:3000 D:30

3: ADD $8

4: LW $5

5: SW A:3000 D:30

Busy with a miss

ROB:5 A:3000

59

Store Word Issuing

• An SW can issue when its

– Write address is known

– Write data is known

– No LW in front of it has an unknown address

• Because LW won't be able to keep track of the count of
how many matching SW's bypassed it

60

SOME OLD REVIEW PROBLEMS

61

Spring 2011 Final Exam Question

• In the illustrations below, the ROB is (more / less) than half-
full in the left case and is (more / less) than half-full in the
right case. The left has ____ locations occupied and the right
has ___ locations occupied. WP is (always / sometimes /
never) ahead of RP.

7
6

5

4

3

2
1

0

8
9

10

11

12

13
14

15

RPWP

7
6

5

4

3

2
1

0

8
9

10

11

12

13
14

15

RP
WP

Left Right

62

Spring 2011 Final Exam Solution

• In the illustrations below, the ROB is (more / less) than half-
full in the left case and is (more / less) than half-full in the
right case. The left has 7 locations occupied and the right has
9 locations occupied. WP is (always / sometimes / never)
ahead of RP.
– Except on reset when WP=RP

7
6

5

4

3

2
1

0

8
9

10

11

12

13
14

15

RPWP

Left

Note: WP points to the

location yet to be

written

7
6

5

4

3

2
1

0

8
9

10

11

12

13
14

15

RP
WP

Right

63

Spring 2011 Final Exam Question

• If the instruction with ROB Tag 11 is found to be a
mispredicted branch, which instructions with what ROB tags
would you flush?

• And would you adjust RP or WP or both? And to what
value(s)?

7
6

5

4

3

2
1

0

8
9

10

11

12

13
14

15

RP
Mispredicted

branch

7
6

5

4

3

2
1

0

8
9

10

11

12

13
14

15

RP
WP

Left Right

WP

64

Spring 2011 Final Exam Solution

• If the instruction with ROB Tag 11 is found to be a mispredicted branch,
which instructions with what ROB tags would you flush?

– Instructions with ROB tags 12, 13, 14, 15, and 0 should be flushed as they are
younger than the branch

• And would you adjust RP or WP or both? And to what value(s)?

– We will adjust WP to 11

7
6

5

4

3

2
1

0

8
9

10

11

12

13
14

15

RP
Mispredicted

branch

7
6

5

4

3

2
1

0

8
9

10

11

12

13
14

15

RP
WP

Left Right

WP

5 instrucs after

the branch +

Branch itself can

be flushed

65

OTHER IMPLEMENTATION DETAILS

66

Issue Queues

Reg.

Reg.

Reg.

To Issue Unit

From Controller

From Dispatch

Controller

Dispatch Unit always
places instruction in top

register

Instruction(s) move
forward if there is room

below you

Any instruction is a candidate for
execution provided it is "ready"

Choose the senior-most

	Slide 1: EE 457 Unit 9b
	Slide 2: Credits
	Slide 3: Tomasulo w/ Speculative Execution
	Slide 4: Changes to Tomasulo Part 1
	Slide 5: OoO Execution w/ ROB
	Slide 6: OoO Execution w/ ROB
	Slide 7: Reorder Buffer (ROB)
	Slide 8: Take a Number vs. Take a Token
	Slide 9: Re-Order Buffer (ROB) Structure
	Slide 10: Re-Order Buffer (ROB) Structure
	Slide 11: Dispatch and the ROB
	Slide 12: Not Just a FIFO: ROB Interfaces
	Slide 13: ROB Depth and Priority Resolution
	Slide 14: Motivation for finding ROB Depth
	Slide 15: ROB Matches
	Slide 16: ROB Depth/Distance
	Slide 17: Computing Distance
	Slide 18: Computing Distance
	Slide 19: ROB Dispatch for Rs
	Slide 20: Dealing with Wrapping
	Slide 21: ROB Dispatch for Rs
	Slide 22: Branch Prediction and Speculative Execution
	Slide 23: Branch Prediction + Speculation
	Slide 24: Speculation Example
	Slide 25: Case 1: Correct Prediction
	Slide 26: Case 2a: Incorrect Prediction
	Slide 27: Case 2b: Incorrect Prediction
	Slide 28: Making Predictions
	Slide 29: Dynamic Branch Outcome Prediction
	Slide 30: Dynamic Local Predictors
	Slide 31: 2-bit Predictor
	Slide 32: Local vs. Global History
	Slide 33: Tournament Predictor
	Slide 34: Selective Flushing
	Slide 35: Flushing Mechanism
	Slide 36: Selective Flushing for Branch Misprediction
	Slide 37: Selective Flushing for Branch Misprediction
	Slide 38: Selective Flushing for Branch Misprediction
	Slide 39: Precise Exceptions
	Slide 40: Memory Disambiguation
	Slide 41: Register Hazard Summary
	Slide 42: Tomasulo 2: Memory Assumptions
	Slide 43: RAW, WAR, WAW for Memory
	Slide 44: Meet the Components
	Slide 45: A Few More Notes
	Slide 46: LW Issue (1)
	Slide 47: LW Issue (2)
	Slide 48: LW Issue (3)
	Slide 49: LW Issue (4)
	Slide 50: LW Issue (5)
	Slide 51: LW Issuing
	Slide 52: SW Issue (1)
	Slide 53: SW Issue (2a)
	Slide 54: SW Issue (2b)
	Slide 55: SW Issuing and Bypassing
	Slide 56: SW Issue (3a)
	Slide 57: SW Issue (3b)
	Slide 58: SW Issue (4)
	Slide 59: Store Word Issuing
	Slide 60: Some Old Review Problems
	Slide 61: Spring 2011 Final Exam Question
	Slide 62: Spring 2011 Final Exam Solution
	Slide 63: Spring 2011 Final Exam Question
	Slide 64: Spring 2011 Final Exam Solution
	Slide 65: Other Implementation Details
	Slide 66: Issue Queues

