
1

EE 457 Unit 9a

Exploiting ILP

Out-of-Order Execution

2

Credits

• Some of the material in this presentation is taken from:

– Computer Architecture: A Quantitative Approach

• John Hennessy & David Patterson

• Some of the material in this presentation is derived from

course notes and slides from

– Prof. Michel Dubois (USC)

– Prof. Murali Annavaram (USC)

– Prof. David Patterson (UC Berkeley)

3

Exploiting Parallelism
• With increasing transistor budgets of modern processors (i.e.,

can do more things at the same time) the question becomes

how do we find enough useful tasks to increase performance,

or, put another way, what is the most effective way of

exploiting parallelism!

• Many types of parallelism available

– __________ Level Parallelism (ILP): Overlapping instructions within a

single process/thread of execution

– __________ Level Parallelism (TLP): Overlap execution of multiple

processes/threads

– __________ Level Parallelism (DLP): Overlap an operation

(instruction) that is to be applied independently to multiple data

values (usually, an array)

for (int i=0; i < MAX; i++) { A[i] = A[i] + 5; }

• We'll focus on ILP in this unit

4

Outline

• Instruction Level Parallelism

– _______________ (IO) pipeline

• From academic 5-stage pipeline

• To 8-stage MIPS R4000 pipeline

• Superscalar, superpipelined

– _________________ (OoO) Execution

• This unit: OoO Execution (Compute the result) AND

OoO Completion (write result to memory or a register).

(Problem: Exceptions)

• Next Unit: OoO Execution BUT In-order completion

5

Instruction Level Parallelism (ILP)

• Although a program defines a sequential ordering of instructions, in reality

many instructions can be executed in parallel (i.e. out of (________) _____).

• ILP refers to the process of finding instructions from a single program/thread

of execution that can be executed in parallel

• Data flow (________________________) limits out-of-order execution

• _____________ instructions (no data dependencies) can be executed at the

same time)

• _____________________ also provide some ordering constraints

lw $s3,0($s4)

and $t3,$t2,$t3

add $t0,$t0,$s4

or $t5,$t3,$t2

sub $t1,$t1,$t2

beq $t0,$t8,L1

xor $s0,$t1,$s2

/ / /

/ / /

/ / /

Cycle 1:

Cycle 2:

Cycle 3:

Dependency
Graph

Program
Order

(In-order)

We may perform
execution out-of-order

6

Basic Blocks

• Basic Block (def.) = Sequence of instructions that will

always be ________________

– No __________________ out

– No branch targets coming ____

– Also called “straight-line” code

– Average size: _____ instrucs.

• Instructions in a basic block can be overlapped if

there are no data dependencies

• ________ dependences really ________________ of

possible instructions to overlap

– W/o extra hardware, we can only overlap execution of

instructions within a basic block

lw $s3,0($s4)

and $t3,$t2,$t3

L1: add $t0,$t0,$s4

or $t5,$t3,$t2

sub $t1,$t1,$t2

beq $t0,$t8,L1

xor $s0,$t1,$s2

This is a
basic block
(starts w/
target, ends
with branch)

7

SUPERSCALAR & SUPERPIPELINING

Other In-Order techniques

8

Overview

• Superscalar = More than 1 instruction completing ___________________

– 2-way superscalar = Proc. that can issue 2 instructions per clock cycle

– Success is sensitive to ability to find independent instructions to issue in the same cycle

• Superpipelining = Many small stages to boost _____________________

– Success depends of finding instructions to schedule in the shadow of data and control hazards

Instruc.
Fetch

Instruc.
Decode

Execute
Data

Memory
Write back

Instruc.
Fetch

Instruc.
Decode

Execute
Data

Memory
Write back

Instruction
1

Instruction
2

IF1 IF2 ID EX DM1 DM2 DM3 WB

IF1 IF2 ID EX DM1 DM2 DM3 WB

Instruction
1

Instruction
2

Superscalar: Executing more than 1 instruction per clock cycle (CPI < 1 or IPC > 1)

Superpipelining: Divide logic into many short stages (Higher Clock Frequency)

S
u

p
e
rs

c
a
la

r
S

u
p

e
rp

ip
e
li

n
in

g

9

2-way Superscalar
• Ex: One ALU & Data transfer (LW/SW) instruction can be issued at the same time

• Relies on compiler to find and reorder appropriate instructions (using nops if no

appropriate instruction can be found

I-Cache

D-Cache

ALU
Reg.
File

(4 Read,
2 Write)

PC

Addr.
Calc.

2 instructions

In
te

g
e
r

S
lo

t
L
D

/S
T

 S
lo

t

Pipeline StagesInstruction

WBMEMEXIDIFALU or branch

WBMEMEXIDIFLW/SW

WBMEMEXIDIFALU or branch

WBMEMEXIDIFLW/SW

WBMEMEXIDIFALU or branch

WBMEMEXIDIFLW/SW

10

Sample Scheduling

• Compiler can reorder instructions to find integer and memory

instructions to fuse together that can be run down the

pipeline at the same time

$6 = A

$7 = n = # of iterations

L1: ld $9, 0(%6)

add $9, $9, 5

st %r9,0(%rdi)

add $6, $6, 4

add $7, $7, -1

jne $0,%esi,L1

void f1(int *A, int n) {

do {

*A += 5;

A++;

n--;

} while (n != 0);

}

w/ modifications and code movement
IPC = 6 instrucs. / 4 cycle = 1.5

time

LD/ST SlotInt./Branch Slot

lw $9,0($6)addi $7, $7, -1

addi $6, $6, 4

addi $9, $9, 5

st $9,-4($6)bne $0,$7,L1

11

Scheduling Strategies

• ____________ Scheduling

– _________ re-orders instructions in such a way that no

dependencies will be violated and allows for OoOE

• ____________ Scheduling

– ______ implementing the Tomasulo algorithm or other similar

approach will re-order instructions to allow for OoOE

• More Advanced Concepts

– Branch prediction and speculative execution (execution beyond

a branch flushing if incorrect) will be covered later

12

Static Scheduling

• Strengths

– Hardware simplicity [Better clock rate]

• Power/energy advantage

• Compiler has a global view of the program anyway, so it should be able to

do a “good” job

– Very predictable: static performance predictions are reliable

• Weaknesses

– Requires _______________ to take advantage of new/modified

architecture

– Cannot foresee dynamic (data-dependent) events

• Cache miss, conditional branches (can only recedule instructions in a basic

block)

– Cannot precompute memory addresses

– No good solution for precise exceptions with out-of-order completion

13

OUT-OF-ORDER EXECUTION

14

IM Reg

ALU

Reg

MUL

DIV

DMEM
(Cache)

Queues +
Functional

Units

Out-of-Order Motivation

• We will focus on dynamically scheduled, OoO processors

• Hide the impact of dynamic events such as a __________________

– Let ______________ instructions behind a stalled instruction execute

• Separate functional units (ALU, MUL, DMEM, etc.)

• "Queues" where instructions wait

until they are ready at which point

they can execute "out-of-order"

LW $4,0($5)

// cache miss

ADD $6,$7,$4

SUB $1,$2,$3

MUL $9,$7,$2
LW

S
U

B
A

D
D

M
U

L

15

Dispatch, Execution, and Completion

• "Execution" here means ___________ the results not

necessarily writing them to a register or memory

• Completion means committing/__________ the results to

register file or memory

• While we say out-of-order execution we really mean/want:

– In-order (Program order) Issue/Dispatch (IoD)

– Out-of-Order Execution (OoOE)

– In-order Completion (IoC) [hard]

• So we'll start with the easier

Out-of-Order Completion (OoOC)

Issue/Dispatch

Execution

Completion

In-order In-order

Out-of-Order

LW $4,0($5)

// cache miss

ADD $6,$7,$4

SUB $1,$2,$3

MUL $9,$7,$2

16

Branch Handling

• We will present the concept of OoOC (out-of-order

completion) which is a bit easier and then come back to the

desired approach of In-Order Completion (IOC)

• OoOC Issues

– Branches…we should not commit an instruction that came after (in

program order) a branch

– Solution: _______ dispatching instructions

after a branch until we resolve the

outcome

LW $4,0($5) // cache miss
BEQ $4,$0,L1
ADD $6,$7,$8

// What if we execute this
ADD out of order

Issue/Dispatch

Execution

Completion

In-order In-order
Out-of-Order

Stall branches
here

17

Data Hazard Stalling

• In our 5-stage pipeline (in-order execution) RAW dependency

was solved by

– Forwarding (preferably) or

– Stalling (LW followed by dependent instruction)

• Dependent instructions stalled in the ID stage if necessary

• Do we want to stall in the decode stage in our OoO processor?

– ____! Doing so would necessarily stall ______________________ us

IM Reg ALU DM Reg

LW $4
ADD $1,$3,$4

(Stall here) bubble

Stalling here would ______ up

the pipeline

18

EX Stage Stalling

• In our 5-stage pipeline, could we have stalled in the EX stage

• ____! If ADD depended on an instruction in ____ then it has no place to

___________ that forwarded data while it stalls

In
s
tr

u
c
ti
o

n
 R

e
g
is

te
r

Register File

Read
Reg. 1 #

Read
Reg. 2 #

Write
Reg. #

Write
Data

Read
data 1

Read
data 2

Sign
Extend

P
ip

e
lin

e
 S

ta
g

e
 R

e
g
is

te
r

A
L

U Res.

Zero

0

1

Sh.
Left

2

+

P
ip

e
lin

e
 S

ta
g
e

 R
e

g
is

te
r

D
-C

a
c

h
e

P
ip

e
lin

e
 S

ta
g
e

 R
e

g
is

te
r

0

1

16 32

5

5

0

1

rs

rt

rs

rt

rd

0

1

2

0

1

2

Forwarding
Unit

ALUSrc
ALUSelB

ALUSelA

Regwrite &
WriteReg# Regwrite,

WriteReg#

D
a

ta
 M

e
m

.
o

r
A

L
U

 r
e

s
u

lt

P
ri

o
r

A
L

U

R
e
s
u

lt

I-
C

a
c

h
e

P
C

.

PCWrite
IRWrite HDU

Control E
x

M
e

m
W

B

Stall

M
e

m
W

B

W
B

0

10

0

10

0

1

+4

IF.Flush

M
e
m

T
o

R
e

g

Branch

M
e
m

R
e

a
d

 &

M
e
m

W
rite

FLUSH

Reset

Why? What if ADD was also

dependent on the instruction in

WB… ADD has no place to

buffer that forwarded value

Thus we stall in ID so we can

use the Register File to grab

dependent values. Further

stalling in ID incurs only 1 cycle

penalty as would stalling in EX.

19

Where to Stall?

• But to implement OoO execution, we cannot stall in the decode stage

since that would prevent any further issuing of instructions

• Thus, now we will issue to queues for each of the multiple functional units

and have the instruction stall in the queue until it is ready

Stalling here would plug up the

pipeline

IM Reg

ALU

Reg

MUL

DIV

DMEM
(Cache)

Queues +
Functional

Units

20

Forwarding in OoO Execution
• In 5-stage pipeline later instructions carried their source register IDs into the

EX stage to be compared with destination register ID’s of their earlier

instructions

• But in OoO execution, we may have many (earlier) instructions in front of us

and would require more complex hardware to determine who is producing

the data we need (especially when multiple producers exist and we want the

latest version)

• Instead, the dispatch unit will ______________ tell the dependent

instruction who to get data from using part of Tomasulo's algorithm

Register File

Read
data 1

Read
data 2

P
ip

e
lin

e
 S

ta
g

e
 R

e
g
is

te
r

A
L

U Res.

Zero

0

1

2

P
ip

e
lin

e
 S

ta
g
e

 R
e

g
is

te
r

D
-C

a
c

h
e

P
ip

e
lin

e
 S

ta
g
e

 R
e

g
is

te
r

0

1

32
0

1
rs

rt

rd

0

1

2

0

1

2

Forwarding
Unit

ALUSrc
ALUSelB

ALUSelA

Regwrite &
WriteReg# Regwrite,

WriteReg#

D
a

ta
 M

e
m

.
o

r
A

L
U

 r
e

s
u

lt

P
ri

o
r

A
L

U

R
e
s
u

lt

M
e
m

R
e

a
d

 &

M
e
m

W
rite

21

Tomasulo’s Plan

• OoO Execution

• Multiple functional units

– Integer ALU, Data memory, Multiplier, Divider

• Queues between ID and EX stages (in place of ID/EX

register)

– Allows later instructions to keep issuing even if earlier ones

are stalled

• Method for dealing with RAW data hazards by

specifying who dependent instructions should get

data from

– But with OoO execution, _______________ arise!

22

NEW DATA HAZARDS

WAR and WAW

23

RAW, WAR, and WAW

• RAW = Read After Write

– lw $8, 40($2)

– add $9, $8, $7

• WAR = Write After Read

– add $9, $8, $6  say $6 is not available yet, can LW execute?

– lw $8, 40($2)

• WAW = Write After Write

– add $9, $8, $6  say $6 is not available yet, can LW execute?

– lw $9, 40($2)

Why would anyone produce one result in $9 without utilizing

that result? Why would he overwrite it with another result?

How is this possible?

24

WAW can easily occur

• How is WAW possible?

• Example 1

– Say a company gives standard bonus to

most of the employees and a higher bonus

to managers

– The software may set a default value to the

standard bonus and then overwrite for the

special case

• Example 2

– Consider multiple iterations of a loop body

L1: lw $2, 40($1)

mult $4, $2, $3

sw $4, 40($1)

addi $1, $1,-4

bne $1, $0,L1

for(i=MAX; i != 0; i--)

A[i] = A[i] * 3;

Original Code

L1: lw $2, 40($1)

mult $4, $2, $3

sw $4, 40($1)

addi $1, $1,-4

bne $1, $0,L1

L1: lw $2, 40($1)

mult $4, $2, $3

sw $4, 40($1)

addi $1, $1,-4

bne $1, $0,L1

int x = standard_bonus;

if (manager)

x = special_bonus;

set_bonus(x);

25

RAW, WAR, and WAW

• Some terminology to remember

• RAW = Read After Write

– lw $8, 40($2)

– add $9, $8, $7

• WAR = Write After Read

– add $9, $8, $6

– lw $8, 40($2)

• WAW = Write After Write

– add $9, $8, $6

– lw $9, 40($2)

RAW

A ______ dependency

WAR

An _____-dependency

WAW

An _____-dependency

_
_

_
_

_
_
_
 D

e
p

d
e

n
c
ie

s

Note: No information is communicated in WAR/WAW hazards.

If no info is communicated can we somehow solve these hazards?

26

RAW, WAR, and WAW

• In-order execution:
– We need to deal with RAW only

• Out-of-order execution

– Now we need to deal with WAR and WAW hazards besides RAW

– Any of these hazards seem to ___________ re-ordering instructions

and executing them out-of-order

27

Register Renaming

• WAR and WAW hazards can

always be solved by simply

choosing a _____________

register since no data is being

_______________ but we were

simply "reusing" a register

• If we had 64 registers instead

of 32 registers, then perhaps

the compiler might have used

$48 instead of $8 and we could

have executed the second part

of the code before the first part

lw $8, 40($2)

add $8, $8, $8

sw $8, 40($2)

lw $48, 60($3)

add $48, $48, $48

sw $48, 60($3)

This is an example of a name-dependency

First iteration

Second
iteration
(using
alternate
register, $48)

WAR = Write After Read

add $9, $8, $6

lw $8____, 40($2)

WAW = Write After Write

add $9, $8, $6

lw $9____, 40($2)

28

Register Renaming

• Renaming requires more registers

• We have limited _____________ registers

– Registers the instruction set is _________

• We could have more __________ registers

– Actual registers part of the register file

lw $8, 40($2)

add $8, $8, $8

sw $8, 40($2)

lw $8, 60($3)

add $8, $8, $8

sw $8, 60($3)

It is clear the compiler is using $8 as a
temporary register

If there is a delay in obtaining $2 the first
part of the code cannot proceed

Unfortunately, the second part of the code
cannot proceed because of the name
dependency for $8

Assume Delayed

29

Increasing Number of Registers

• Can a later implementation provide 64

registers (instead of 32) while maintaining

binary compatibility with previously compiled

code?

• Answer: Yes / No

• Why?

Machine code has ____________________

opcode=6 rs=5 rt=5 rd=5 shamt=5 func=6R-Type

30

Register Renaming

• Rather than creating new architectural registers, let

us internally provide multiple "versions" of the ____

_______________ register

– $8v1 = $8 version 1

– $8v2 = $8 version 2

lw $8v1, 40($2)

add $8v2, $8v1, $8v1

sw $8v2, 40($2)

lw $8v3, 60($3)

add $8v4, $8v3, $8v3

sw $8v4, 60($3)

$8

$8v1

$8v2

$8v3

$8v4"Arch. Reg"

Phys Reg

31

Tomasulo's Approach to Renaming

• Cannot change the number of architectural registers

• Instead we will perform

Register Renaming through Tagging Registers

– This solves name dependency problems (WAR and WAW)

while attending to true dependency (RAW) through waiting

in queues

– Please be sure you understand this!

32

OoO Execution & Tomasulo's Algorithm

I-Cache

Block Diagram Adapted
from Prof. Michel Dubois

(Simplified for EE457)

Register
Status
Table

Integer /
Branch

D-Cache Div Mul

Instruc.
Queue

R
e
g

.
F

il
e

In
t.

 Q
u

e
u

e

L
/S

 Q
u

e
u

e

D
iv

 Q
u

e
u

e

M
u

lt
.

Q
u

e
u

e

Common Data Bus

Issue
Unit

Dispatch

Fetch multiple instructions per
clock cycle in PROGRAM ORDER
(i.e. normal order generated by
the compiler)

Decode & dispatch multiple
instructions per cycle tracking
dependencies on earlier
instructions

Instructions wait in queues
until their respective
functional unit (the
hardware that will compute
their value) is free AND
they have their data
available (from the
instructions they depend
upon). These act as
additional "physical
registers"

Results and TAGs of
multiple instructions can
be written back per cycle.
Results are broadcast to
any instruction waiting for
that result.

Uses "tags" to track
which instruction is
the latest producer
(version) of a register.
(Helps solve RAW,
WAR, WAW
dependencies)

33

Tomasulo’s Algorithm

• Dispatch/Issue unit decodes and dispatches instructions

• Assign a binary code (aka ______) to each instruction ______________ a

register value using the TAG FIFO

• Adds a Register Status Table (RST) that holds the TAG of the instruction that

is producing the ________________ version of each architectural register

or NULL if the LATEST version is in the _________________

• The destination operand is represented by the TAG but not the actual

register name

• For source operands, an instruction carries either the values (if TAG is null in

RST) or TAGs of the operands (but not the actual register name)

• When an instruction executes and produces a result it broadcasts the result

and its destination TAG

– Any instruction waiting can compare its __________ tags with the __________

tag and grab the value if they match

– If entry in RST matches the TAG then this instruction is the ___________

producer of the register and the value will be written to the register file

34

Tagging process

Issue Logic

INT MUL/DIV/SQRTINT
ALU

Load/
Store

sqrt $2, $10

lw $8, 40($2)

add $8, $8, $8

sw $8, 40($2)

lw $8, 60($3)

add $8, $8, $8

sw $8, 60($3)

$1
$2
$3
$4
$5
$6
$7
$8

…

$31

RF

$1
$2
$3
$4
$5
$6
$7
$8

…

$31

T1: SQRT $2 Val / $10 Val

RST = Register
Status Table

RF = Register File

RST
(Identify latest

version of a reg.)

35

Tagging process: CC1

Issue Logic

INT MUL/DIV/SQRTINT
ALU

Load/
Store

sqrt $2, $10

lw $8, 40($2)

add $8, $8, $8

sw $8, 40($2)

lw $8, 60($3)

add $8, $8, $8

sw $8, 60($3)

T1
$1
$2
$3
$4
$5
$6
$7
$8

…

$31

RF

$1
$2
$3
$4
$5
$6
$7
$8

…

$31

T1: SQRT $2 Val / $10 Val
RST = Register
Status Table

RF = Register File

RST
(Identify latest

version of a reg.)

Instruction that will write to a destination register,
take a TAG and enter that TAG into the RST to

track the latest version/producer

36

Tagging process: CC3

Issue Logic

INT MUL/DIV/SQRTINT
ALU

Load/
Store

sqrt $2, $10

lw $8, 40($2)

add $8, $8, $8

sw $8, 40($2)

lw $8, 60($3)

add $8, $8, $8

sw $8, 60($3)

RST

T1

T2 T3

$1
$2
$3
$4
$5
$6
$7
$8

…

$31

RF

$1
$2
$3
$4
$5
$6
$7
$8

…

$31

T3: ADD T2 / T2 T1: SQRT $2 Val / $10 Val T2: LW T1 / 40
RST = Register
Status Table

RF = Register File

Notice the RST only stores the TAG of the
LATEST producer/version. Solves WAR/WAW

hazards by not accepting a writeback unless it is
from the latest/producer

37

Tagging process: CC5

Issue Logic

INT MUL/DIV/SQRTINT
ALU

Load/
Store

sqrt $2, $10

lw $8, 40($2)

add $8, $8, $8

sw $8, 40($2)

lw $8, 60($3)

add $8, $8, $8

sw $8, 60($3)

RST

T1

T3 T4

$1
$2
$3
$4
$5
$6
$7
$8

…

$31

RF

$1
$2
$3
$4
$5
$6
$7
$8

…

$31

T3: ADD T2 / T2 T1: SQRT $2 Val / $10 Val

T4: LW $3 val / 60

SW T3 / T1 / 40

T2: LW T1 / 40

RST = Register
Status Table

RF = Register File

38

Tagging process: CC8

Issue Logic

INT MUL/DIV/SQRTINT
ALU

Load/
Store

sqrt $2, $10

lw $8, 40($2)

add $8, $8, $8

sw $8, 40($2)

lw $8, 60($3)

add $8, $8, $8

sw $8, 60($3)

RST

T1

T5 => null

$1
$2
$3
$4
$5
$6
$7
$8

…

$31

RF

0x2222

$1
$2
$3
$4
$5
$6
$7
$8

…

$31

T5: ADD 0x1111 / 0x1111

T3: ADD T2 / T2 T1: SQRT $2 Val / $10 Val

SW T3 / T1 / 40

T2: LW T1 / 40

RST = Register
Status Table

RF = Register File

T5: Sum 0x2222

T5: Sum 0x2222
When latest producer writes to register, we reset
RST entry to NULL (indicates that the RF has the
latest value and issuing instructions can just take

that value from the RF)

39

Tagging process: CC10

Issue Logic

INT MUL/DIV/SQRTINT
ALU

Load/
Store

sqrt $2, $10

lw $8, 40($2)

add $8, $8, $8

sw $8, 40($2)

lw $8, 60($3)

add $8, $8, $8

sw $8, 60($3)

RST

T1 => null
$1
$2
$3
$4
$5
$6
$7
$8

…

$31

RF

0x2222

$1
$2
$3
$4
$5
$6
$7
$8

…

$31

T3: ADD T2 / T2 T1: SQRT $2 Val / $10 Val

SW T3 / T1 / 40

T2: LW T1 / 40

RST = Register
Status Table

RF = Register File

T1: SQRT 0xacd0

T1: SQRT 0xacd0

40

Tagging process: CC13

Issue Logic

INT MUL/DIV/SQRTINT
ALU

Load/
Store

sqrt $2, $10

lw $8, 40($2)

add $8, $8, $8

sw $8, 40($2)

lw $8, 60($3)

add $8, $8, $8

sw $8, 60($3)

RST

$1
$2
$3
$4
$5
$6
$7
$8

…

$31

RF

0xacd0

0x2222

$1
$2
$3
$4
$5
$6
$7
$8

…

$31

SW 0xacf0 / 0xacd0 / 40

RST = Register
Status Table

RF = Register File

41

Register Renaming

Issue Logic

INT MUL/DIV/SQRTINT
ALU

Load/
Store

sqrt $2, $10

add $2, $2, $2

add $2, $2, $2

add $2, $2, $2

add $2, $2, $2

RST

$1
$2
$3
$4
$5
$6
$7
$8

…

$31

RF

$1
$2
$3
$4
$5
$6
$7
$8

…

$31

T1: SQRT $2 Val / $10 Val

RST = Register
Status Table

RF = Register File

42

Unique TAGs

• Like SSN, we need a unique TAG

• SSN’s are reused.

• Similarly TAGS can be reused

• TAGs are similar to number TOKEN

Helps to create a
virtual queue.

We do not need
that here

In State Bank of India, the cashier issues
brass token to customers trying to draw
money as an ID (and not at all to put them
in any virtual queue / ordering). Token
numbers are in random order.

The cashier verifies the signature in the
record rooms, returns with money, calls the
token number and issues the money.

Tokens are reclaimed & reused.

43

Tags (= Tokens)

• How many tokens should the bank casheir

have to start with?

• What happens if the tokens run out?

• Does the cashier need to have any order in

holding tokens and issuing tokens?

• Do they have to collect the tokens back?

44

TAG FIFO

• To issue and collect tokens (TAGS) use a circular FIFO (First-

In/First-Out) unit

– While the FIFO order is not important here, a FIFO is the easiest to

implement in hardware compared to a random order in a pile

• Filled (with say) 64 tokens (___________) initially on reset

• Tokens return ________________

• Put tokens back in the FIFO and ___________

FIFO’s are taught in EE 560

0

1

2

…

TAG FIFO

63

wp rp

FULL

2

…

TAG FIFO

63

2 Tokens issued

1

2

…

TAG FIFO

63

1 Tokens returned

45

Organization for OoO Execution

I-Cache Block Diagram
Adapted from Prof.

Michel Dubois

(Simplified for EE 457)

Register
Status
Table

Integer /
Branch

D-Cache Div Mul

TAG FIFO

Instruc.
Queue

R
e
g

.
F

il
e

In
t.

 Q
u

e
u

e

L
/S

 Q
u

e
u

e

D
iv

 Q
u

e
u

e

M
u

lt
.

Q
u

e
u

e

CDB

Issue
Unit

Dispatch

46

Front-End & Back-End

• IFQ (Instruction Fetch Queue)

– A FIFO structure

• Dispatch (Issue) Unit

– Includes RST, RF, Tag FIFO

• Load/Store and other Issue Queues

• Issue Units

• Functional units

• CDB (Common Data Bus)

– Like a public address system that everyone can see/hear

when data is produced

47

More Tomasulo Algorithm

• Front End

– Instructions are fetched

– They are stored in a FIFO (IFQ)

– When instruction reached the head of the IFQ it is

• Decoded

• Dispatched to an issue queue/functional unit

• Even if some of the inputs are not ready (takes TAGs)

• Back End

– Instructions in issue queues wait for their input operands

– Once register operands are ready instructions can be scheduled for execution provided

they will not conflict for the CDB or their functional unit

– Instructions execute in their functional unit and their result is put on the CDB

– All instructions in queues and the register file “watch” the CDB and grab the value they

are waiting for when it is produced

• Bottleneck in Tomasulo's algorithm?

– The _________!

– Do all instructions use the __________? ________________________________

48

MEMORY DISAMBIGUATION

Data hazards and memory

49

Load/Store Queue (LSQ)

• For our course, the LSQ performs

– Address calculation

– Memory disambiguation

• ________________________ hazards due to memory

reads and writes

// Is there a dependency here?

SW $2,0($5)

LW $8,0($5)

// What about here?

SW $2, 1000($4)

LW $3, 0($6)

50

Memory Disambiguation

• Data hazards (RAW, WAR, WAW) can occur in memory just as

with registers, and hazards in memory are much harder to deal

with since many ___________ could produce the same address

RAW

sw $2, 2000($0)

lw $8, 2000($0)

WAW

sw $2, 2000($0)

sw $8, 2000($0)

WAR

lw $2, 2000($0)

sw $8, 2000($0)

This later lw can proceed only if there is
no store ahead of it with the same address

This later sw can proceed only if there is
no store ahead of it with the same address

This later sw can proceed only if there is
no load ahead of it with the same address

51

Address Calculation for LW/SW

• EE 557 approach for address calculation

– Loads & store in 2 sub-instructions

• 1 instruction computes address and is dispatched to

integer ALU

• 1 instruction access data cache and is issued to LSQ

• Address is communicated from integer ALU to LSQ via

CDB forwarding using a tag

• EE 560/457 approach

– Use a dedicated adder in the LSQ to compute

address (so just 1 dispatched instruction)

52

Memory Disambiguation

• When can LSQ can issue a LW or SW to cache?

– Loads can issue to a cache when their address is ready

– Stores can issue to cache when both address & data is ready

– Memory hazards (RAW, WAR, WAW) are resolved in the LSQ

• Load can issue to cache if no _________ with same address is before it

• Store can issue to cache if no _________ or _________ with same address

before it

• Otherwise, access waits in LSQ

– If an address is unknown it is assumed to be the ___________

• Worst case to enforce correctness

– The process of figuring out and comparing memory address is called

“disambiguation”

53

LAST CONSIDERATIONS FOR

OUT-OF-ORDER

EXECUTION/COMPLETION

Issue Queue priority, Branches, etc.

54

Issue Unit

• How do we determine when to issue an instruction to the

functional unit?

– Is the instruction ready

– Is the functional unit free to start the operation?

– CDB availability constraint

• Will there ___________________ when operation finished?

– Priority/conflict resolution

• If many instructions are available, which should be chosen? (Is round-

robin priority adequate)?

How do we prioritize
instructions that are ready?

55

Issue Queue Priority

• Priority (based on the order of arrival among

ready instructions)

– Is it necessary or just desirable?

– Local priority within queues?

– Global priority across the queues?

How do we prioritize
instructions that are ready?

56

LSQ Ordering/Priority

• Maintaining instructions in the order of arrival

– Issue order/program order in a queue

• Is this necessary and/or desirable?

– In the case of LSQ?

• __

– In the case of Integer, MUL, DIV queues?

• Desirable, so that an earlier instruction gets executed

whenever possible, thereby reducing queue pressure

from too many instructions waiting on it

57

Conditional Branches
• Dispatcher stalls when it reaches a branch (and waits until it is resolved)

• Branches are dispatched to integer queue where they wait for their

operands (if necessary)

• When branch executes it puts its outcome & target on CDB

– If untaken, dispatch unit resumes

– If taken, then dispatch clears flushes the IFQ and resumes at target

• Since we stop dispatching instructions after a branch, does it mean that

this branch is the last instruction to be executed in the back-end?

• Is it possible that the back-end holds simultaneously

– A. Some instructions dispatched before

the branch .. AND ..

– B. Some instructions issued after

the branch

ADD $4,$5,$5

BEQ $6,$7,L1

...

L1: SUB $1,$2,$3

MUL $9,$7,$2

58

Structural Hazards + Exceptions

• Structural Stalls

– Dispatch must stall if ____________ OR

all entries in the desired functional

unit’s issue queue are occupied AND an

instruction of that type is attempting to

dispatch

– Fetch unit must stall if the _________

– Functional units stall when no ready

instructions in the queue or CDB

scheduling conflicts

• Precise exceptions not supported

– Some instructions ________ the

offending instruction may have

updated registers or memory! _____!

– We'll handle this in the next unit

