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EE 457 Unit 9a

Exploiting ILP

Out-of-Order Execution
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Credits

• Some of the material in this presentation is taken from:

– Computer Architecture: A Quantitative Approach

• John Hennessy & David Patterson

• Some of the material in this presentation is derived from 

course notes and slides from

– Prof. Michel Dubois (USC)

– Prof. Murali Annavaram (USC)

– Prof. David Patterson (UC Berkeley)
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Exploiting Parallelism
• With increasing transistor budgets of modern processors (i.e., 

can do more things at the same time) the question becomes 

how do we find enough useful tasks to increase performance, 

or, put another way, what is the most effective way of 

exploiting parallelism!

• Many types of parallelism available

– __________ Level Parallelism (ILP): Overlapping instructions within a 

single process/thread of execution

– __________ Level Parallelism (TLP): Overlap execution of multiple 

processes/threads

– __________ Level Parallelism (DLP): Overlap an operation 

(instruction) that is to be applied independently to multiple data 

values (usually, an array)

for (int i=0; i < MAX; i++) { A[i] = A[i] + 5; }

• We'll focus on ILP in this unit
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Outline

• Instruction Level Parallelism

– _______________ (IO) pipeline

• From academic 5-stage pipeline

• To 8-stage MIPS R4000 pipeline

• Superscalar, superpipelined

– _________________ (OoO) Execution

• This unit: OoO Execution (Compute the result) AND 

OoO Completion (write result to memory or a register).

(Problem: Exceptions)

• Next Unit: OoO Execution BUT In-order completion
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Instruction Level Parallelism (ILP)

• Although a program defines a sequential ordering of instructions, in reality 

many instructions can be executed in parallel (i.e. out of (________) _____).  

• ILP refers to the process of finding instructions from a single program/thread 

of execution that can be executed in parallel

• Data flow (________________________) limits out-of-order execution

• _____________ instructions (no data dependencies) can be executed at the 

same time)

• _____________________ also provide some ordering constraints

lw   $s3,0($s4)

and  $t3,$t2,$t3

add  $t0,$t0,$s4

or   $t5,$t3,$t2

sub  $t1,$t1,$t2

beq  $t0,$t8,L1

xor  $s0,$t1,$s2

/                 /                 / 

/                 /                 / 

/                 /                 /

Cycle 1:

Cycle 2:

Cycle 3:

Dependency 
Graph

Program 
Order

(In-order)

We may perform 
execution out-of-order
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Basic Blocks

• Basic Block (def.) = Sequence of instructions that will 

always be ________________

– No __________________ out

– No branch targets coming ____

– Also called “straight-line” code

– Average size: _____ instrucs.

• Instructions in a basic block can be overlapped if 

there are no data dependencies

• ________ dependences really ________________ of 

possible instructions to overlap

– W/o extra hardware, we can only overlap execution of 

instructions within a basic block 

lw   $s3,0($s4)

and  $t3,$t2,$t3

L1:  add  $t0,$t0,$s4

or   $t5,$t3,$t2

sub  $t1,$t1,$t2

beq  $t0,$t8,L1

xor  $s0,$t1,$s2

This is a 
basic block 
(starts w/ 
target, ends 
with branch)
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SUPERSCALAR & SUPERPIPELINING

Other In-Order techniques
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Overview

• Superscalar = More than 1 instruction completing ___________________

– 2-way superscalar = Proc. that can issue 2 instructions per clock cycle

– Success is sensitive to ability to find independent instructions to issue in the same cycle 

• Superpipelining = Many small stages to boost _____________________

– Success depends of finding instructions to schedule in the shadow of data and control hazards

Instruc. 
Fetch

Instruc. 
Decode

Execute
Data 

Memory
Write back

Instruc. 
Fetch

Instruc. 
Decode

Execute
Data 

Memory
Write back

Instruction 
1

Instruction 
2

IF1 IF2 ID EX DM1 DM2 DM3 WB

IF1 IF2 ID EX DM1 DM2 DM3 WB

Instruction 
1

Instruction 
2

Superscalar: Executing more than 1 instruction per clock cycle (CPI < 1 or IPC > 1)

Superpipelining: Divide logic into many short stages (Higher Clock Frequency)
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2-way Superscalar
• Ex: One ALU & Data transfer (LW/SW) instruction can be issued at the same time

• Relies on compiler to find and reorder appropriate instructions (using nops if no 

appropriate instruction can be found

I-Cache

D-Cache

ALU
Reg.
File

(4 Read, 
2 Write)

PC

Addr.
Calc.

2 instructions

In
te

g
e
r 

S
lo

t
L
D

/S
T

 S
lo

t

Pipeline StagesInstruction

WBMEMEXIDIFALU or branch

WBMEMEXIDIFLW/SW

WBMEMEXIDIFALU or branch

WBMEMEXIDIFLW/SW

WBMEMEXIDIFALU or branch

WBMEMEXIDIFLW/SW
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Sample Scheduling

• Compiler can reorder instructions to find integer and memory 

instructions to fuse together that can be run down the 

pipeline at the same time

# $6 = A

# $7 = n = # of iterations

L1: ld $9, 0(%6)

add  $9, $9, 5

st %r9,0(%rdi)

add  $6, $6, 4

add  $7, $7, -1

jne $0,%esi,L1

void f1(int *A, int n) {

do {

*A += 5; 

A++;

n--;

} while (n != 0);

}

w/ modifications and code movement
IPC = 6 instrucs. / 4 cycle = 1.5 

time

LD/ST SlotInt./Branch Slot

lw $9,0($6)addi $7, $7, -1

addi $6, $6, 4

addi $9, $9, 5

st $9,-4($6)bne $0,$7,L1
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Scheduling Strategies

• ____________ Scheduling

– _________ re-orders instructions in such a way that no 

dependencies will be violated and allows for OoOE

• ____________ Scheduling

– ______ implementing the Tomasulo algorithm or other similar 

approach will re-order instructions to allow for OoOE

• More Advanced Concepts

– Branch prediction and speculative execution (execution beyond 

a branch flushing if incorrect) will be covered later
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Static Scheduling

• Strengths

– Hardware simplicity [Better clock rate]

• Power/energy advantage

• Compiler has a global view of the program anyway, so it should be able to 

do a “good” job

– Very predictable: static performance predictions are reliable

• Weaknesses

– Requires _______________  to take advantage of new/modified 

architecture

– Cannot foresee dynamic (data-dependent) events

• Cache miss, conditional branches (can only recedule instructions in a basic 

block)

– Cannot precompute memory addresses

– No good solution for precise exceptions with out-of-order completion
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OUT-OF-ORDER EXECUTION
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IM Reg

ALU

Reg

MUL

DIV

DMEM
(Cache)

Queues + 
Functional 

Units

Out-of-Order Motivation

• We will focus on dynamically scheduled, OoO processors

• Hide the impact of dynamic events such as a __________________

– Let ______________ instructions behind a stalled instruction execute

• Separate functional units (ALU, MUL, DMEM, etc.)

• "Queues" where instructions wait

until they are ready at which point

they can execute "out-of-order"

LW $4,0($5) 

// cache miss

ADD $6,$7,$4

SUB $1,$2,$3

MUL $9,$7,$2
LW

S
U

B
A

D
D

M
U

L
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Dispatch, Execution, and Completion

• "Execution" here means ___________ the results not 

necessarily writing them to a register or memory

• Completion means committing/__________ the results to 

register file or memory

• While we say out-of-order execution we really mean/want:

– In-order (Program order) Issue/Dispatch (IoD)

– Out-of-Order Execution (OoOE)

– In-order Completion (IoC)  [hard]

• So we'll start with the easier

Out-of-Order Completion (OoOC)

Issue/Dispatch

Execution

Completion

In-order In-order

Out-of-Order

LW $4,0($5) 

// cache miss

ADD $6,$7,$4

SUB $1,$2,$3

MUL $9,$7,$2
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Branch Handling

• We will present the concept of OoOC (out-of-order 

completion) which is a bit easier and then come back to the 

desired approach of In-Order Completion (IOC)

• OoOC Issues

– Branches…we should not commit an instruction that came after (in 

program order) a branch

– Solution: _______ dispatching instructions

after a branch until we resolve the 

outcome

LW $4,0($5)   // cache miss
BEQ $4,$0,L1
ADD $6,$7,$8 

// What if we execute this 
ADD out of order

Issue/Dispatch

Execution

Completion

In-order In-order
Out-of-Order

Stall branches 
here
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Data Hazard Stalling

• In our 5-stage pipeline (in-order execution) RAW dependency 

was solved by

– Forwarding (preferably) or 

– Stalling (LW followed by dependent instruction)

• Dependent instructions stalled in the ID stage if necessary

• Do we want to stall in the decode stage in our OoO processor?

– ____!  Doing so would necessarily stall ______________________ us

IM Reg ALU DM Reg

LW $4
ADD $1,$3,$4

(Stall here) bubble

Stalling here would ______ up 

the pipeline
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EX Stage Stalling

• In our 5-stage pipeline, could we have stalled in the EX stage

• ____! If ADD depended on an instruction in ____ then it has no place to 

___________ that forwarded data while it stalls
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Why? What if ADD was also 

dependent on the instruction in 

WB… ADD has no place to 

buffer that forwarded value 

Thus we stall in ID so we can 

use the Register File to grab 

dependent values.  Further 

stalling in ID incurs only 1 cycle 

penalty as would stalling in EX.
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Where to Stall? 

• But to implement OoO execution, we cannot stall in the decode stage 

since that would prevent any further issuing of instructions

• Thus, now we will issue to queues for each of the multiple functional units 

and have the instruction stall in the queue until it is ready

Stalling here would plug up the 

pipeline

IM Reg

ALU

Reg

MUL

DIV

DMEM
(Cache)

Queues + 
Functional 

Units
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Forwarding in OoO Execution
• In 5-stage pipeline later instructions carried their source register IDs into the 

EX stage to be compared with destination register ID’s of their earlier 

instructions

• But in OoO execution, we may have many (earlier) instructions in front of us 

and would require more complex hardware to determine who is producing 

the data we need (especially when multiple producers exist and we want the 

latest version)

• Instead, the dispatch unit will ______________ tell the dependent 

instruction who to get data from using part of Tomasulo's algorithm
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Tomasulo’s Plan

• OoO Execution

• Multiple functional units

– Integer ALU, Data memory, Multiplier, Divider

• Queues between ID and EX stages (in place of ID/EX 

register)

– Allows later instructions to keep issuing even if earlier ones 

are stalled

• Method for dealing with RAW data hazards by 

specifying who dependent instructions should get 

data from

– But with OoO execution, _______________ arise!
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NEW DATA HAZARDS

WAR and WAW
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RAW, WAR, and WAW

• RAW = Read After Write

– lw $8, 40($2)

– add $9, $8, $7

• WAR = Write After Read

– add $9, $8, $6   say $6 is not available yet, can LW execute?

– lw $8, 40($2)

• WAW = Write After Write

– add $9, $8, $6   say $6 is not available yet, can LW execute?

– lw $9, 40($2)

Why would anyone produce one result in $9 without utilizing 

that result? Why would he overwrite it with another result?  

How is this possible?
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WAW can easily occur

• How is WAW possible?

• Example 1

– Say a company gives standard bonus to 

most of the employees and a higher bonus 

to managers

– The software may set a default value to the 

standard bonus and then overwrite for the 

special case

• Example 2

– Consider multiple iterations of a loop body 

L1: lw   $2, 40($1)

mult $4, $2, $3

sw   $4, 40($1)

addi $1, $1,-4

bne  $1, $0,L1

for(i=MAX; i != 0; i--)

A[i] = A[i] * 3;

Original Code

L1: lw   $2, 40($1)

mult $4, $2, $3

sw   $4, 40($1)

addi $1, $1,-4

bne  $1, $0,L1

L1: lw   $2, 40($1)

mult $4, $2, $3

sw   $4, 40($1)

addi $1, $1,-4

bne  $1, $0,L1

int x = standard_bonus;

if (manager)

x = special_bonus;

set_bonus(x);
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RAW, WAR, and WAW

• Some terminology to remember

• RAW = Read After Write

– lw $8, 40($2)

– add $9, $8, $7

• WAR = Write After Read

– add $9, $8, $6  

– lw $8, 40($2)

• WAW = Write After Write

– add $9, $8, $6  

– lw $9, 40($2)

RAW

A ______ dependency

WAR

An _____-dependency

WAW

An _____-dependency

_
_

_
_

_
_
_
 D
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Note: No information is communicated in WAR/WAW hazards.  

If no info is communicated can we somehow solve these hazards?
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RAW, WAR, and WAW

• In-order execution:
– We need to deal with RAW only

• Out-of-order execution

– Now we need to deal with WAR and WAW hazards besides RAW

– Any of these hazards seem to ___________ re-ordering instructions 

and executing them out-of-order
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Register Renaming

• WAR and WAW hazards can

always be solved by simply 

choosing a _____________ 

register since no data is being 

_______________ but we were 

simply "reusing" a register

• If we had 64 registers instead 

of 32 registers, then perhaps 

the compiler might have used 

$48 instead of $8 and we could 

have executed the second part 

of the code before the first part

lw $8, 40($2)

add  $8, $8, $8

sw $8, 40($2)

lw $48, 60($3)

add  $48, $48, $48

sw $48, 60($3)

This is an example of a name-dependency 

First iteration

Second 
iteration 
(using 
alternate 
register, $48)

WAR = Write After Read

add $9, $8, $6  

lw $8____, 40($2)

WAW = Write After Write

add $9, $8, $6  

lw $9____, 40($2)
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Register Renaming

• Renaming requires more registers

• We have limited _____________ registers

– Registers the instruction set is _________

• We could have more __________ registers

– Actual registers part of the register file

lw $8, 40($2)

add  $8, $8, $8

sw $8, 40($2)

lw $8, 60($3)

add  $8, $8, $8

sw $8, 60($3)

It is clear the compiler is using $8 as a 
temporary register

If there is a delay in obtaining $2 the first 
part of the code cannot proceed

Unfortunately, the second part of the code 
cannot proceed because of the name 
dependency for $8

Assume Delayed
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Increasing Number of Registers

• Can a later implementation provide 64 

registers (instead of 32) while maintaining 

binary compatibility with previously compiled 

code?

• Answer: Yes / No  

• Why?

Machine code has ____________________

opcode=6 rs=5 rt=5 rd=5 shamt=5 func=6R-Type
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Register Renaming

• Rather than creating new architectural registers, let 

us internally provide multiple "versions" of the ____

_______________ register 

– $8v1 = $8 version 1

– $8v2 = $8 version 2

lw $8v1, 40($2)

add  $8v2, $8v1, $8v1

sw $8v2, 40($2)

lw $8v3, 60($3)

add  $8v4, $8v3, $8v3

sw $8v4, 60($3)

$8

$8v1

$8v2

$8v3

$8v4"Arch. Reg"

Phys Reg
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Tomasulo's Approach to Renaming

• Cannot change the number of architectural registers

• Instead we will perform 

Register Renaming through Tagging Registers

– This solves name dependency problems (WAR and WAW) 

while attending to true dependency (RAW) through waiting 

in queues

– Please be sure you understand this!
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OoO Execution & Tomasulo's Algorithm

I-Cache

Block Diagram Adapted 
from Prof. Michel Dubois

(Simplified for EE457)

Register 
Status 
Table

Integer / 
Branch
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Instruc. 
Queue
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Common Data Bus

Issue 
Unit

Dispatch

Fetch multiple instructions per 
clock cycle in PROGRAM ORDER 
(i.e. normal order generated by 
the compiler)

Decode & dispatch multiple 
instructions per cycle tracking 
dependencies on earlier 
instructions

Instructions wait in queues 
until their respective 
functional unit (the 
hardware that will compute 
their value) is free AND 
they have their data 
available (from the 
instructions they depend 
upon). These act as 
additional "physical 
registers"

Results and TAGs of 
multiple instructions can 
be written back per cycle.  
Results are broadcast to 
any instruction waiting for 
that result.

Uses "tags" to track 
which instruction is 
the latest producer 
(version) of a register. 
(Helps solve RAW, 
WAR, WAW 
dependencies)



33

Tomasulo’s Algorithm

• Dispatch/Issue unit decodes and dispatches instructions

• Assign a binary code (aka ______) to each instruction ______________ a 

register value using the TAG FIFO

• Adds a Register Status Table (RST) that holds the TAG of the instruction that 

is producing the ________________ version of each architectural register 

or NULL if the LATEST version is in the _________________

• The destination operand is represented by the TAG but not the actual 

register name

• For source operands, an instruction carries either the values (if TAG is null in 

RST) or TAGs of the operands (but not the actual register name)

• When an instruction executes and produces a result it broadcasts the result 

and its destination TAG

– Any instruction waiting can compare its __________ tags with the __________ 

tag and grab the value if they match

– If entry in RST matches the TAG then this instruction is the ___________ 

producer of the register and the value will be written to the register file

34

Tagging process

Issue Logic

INT MUL/DIV/SQRTINT 
ALU

Load/
Store

sqrt $2, $10

lw $8, 40($2)

add  $8, $8, $8

sw $8, 40($2)

lw $8, 60($3)

add  $8, $8, $8

sw $8, 60($3)

$1
$2
$3
$4
$5
$6
$7
$8

…

$31

RF

$1
$2
$3
$4
$5
$6
$7
$8

…

$31

T1: SQRT $2 Val / $10 Val 

RST = Register 
Status Table

RF = Register File

RST
(Identify latest 

version of a reg.)
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Tagging process: CC1

Issue Logic

INT MUL/DIV/SQRTINT 
ALU

Load/
Store

sqrt $2, $10

lw $8, 40($2)

add  $8, $8, $8

sw $8, 40($2)

lw $8, 60($3)

add  $8, $8, $8

sw $8, 60($3)

T1
$1
$2
$3
$4
$5
$6
$7
$8

…

$31

RF

$1
$2
$3
$4
$5
$6
$7
$8

…

$31

T1: SQRT $2 Val / $10 Val 
RST = Register 
Status Table

RF = Register File

RST
(Identify latest 

version of a reg.)

Instruction that will write to a destination register, 
take a TAG and enter that TAG into the RST to 

track the latest version/producer
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Tagging process: CC3

Issue Logic

INT MUL/DIV/SQRTINT 
ALU

Load/
Store

sqrt $2, $10

lw $8, 40($2)

add $8, $8, $8

sw $8, 40($2)

lw $8, 60($3)

add  $8, $8, $8

sw $8, 60($3)

RST

T1

T2 T3

$1
$2
$3
$4
$5
$6
$7
$8

…

$31

RF

$1
$2
$3
$4
$5
$6
$7
$8

…

$31

T3: ADD  T2 /  T2 T1: SQRT $2 Val / $10 Val T2: LW  T1 /  40
RST = Register 
Status Table

RF = Register File

Notice the RST only stores the TAG of the 
LATEST producer/version.  Solves WAR/WAW 

hazards by not accepting a writeback unless it is 
from the latest/producer
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Tagging process: CC5

Issue Logic

INT MUL/DIV/SQRTINT 
ALU

Load/
Store

sqrt $2, $10

lw $8, 40($2)

add $8, $8, $8

sw $8, 40($2)

lw $8, 60($3)

add  $8, $8, $8

sw $8, 60($3)

RST

T1

T3 T4

$1
$2
$3
$4
$5
$6
$7
$8

…

$31

RF

$1
$2
$3
$4
$5
$6
$7
$8

…

$31

T3: ADD  T2 /  T2 T1: SQRT $2 Val / $10 Val 

T4: LW  $3 val /  60

SW T3 / T1 / 40

T2: LW  T1 /  40

RST = Register 
Status Table

RF = Register File
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Tagging process: CC8

Issue Logic

INT MUL/DIV/SQRTINT 
ALU

Load/
Store

sqrt $2, $10

lw $8, 40($2)

add $8, $8, $8

sw $8, 40($2)

lw $8, 60($3)

add $8, $8, $8

sw $8, 60($3)

RST

T1

T5 => null

$1
$2
$3
$4
$5
$6
$7
$8

…

$31

RF

0x2222

$1
$2
$3
$4
$5
$6
$7
$8

…

$31

T5: ADD 0x1111 /  0x1111

T3: ADD  T2 /  T2 T1: SQRT $2 Val / $10 Val 

SW T3 / T1 / 40

T2: LW  T1 /  40

RST = Register 
Status Table

RF = Register File

T5: Sum 0x2222

T5: Sum 0x2222
When latest producer writes to register, we reset 
RST entry to NULL (indicates that the RF has the 
latest value and issuing instructions can just take 

that value from the RF)
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Tagging process: CC10

Issue Logic

INT MUL/DIV/SQRTINT 
ALU

Load/
Store

sqrt $2, $10

lw $8, 40($2)

add $8, $8, $8

sw $8, 40($2)

lw $8, 60($3)

add $8, $8, $8

sw $8, 60($3)

RST

T1 => null
$1
$2
$3
$4
$5
$6
$7
$8

…

$31

RF

0x2222

$1
$2
$3
$4
$5
$6
$7
$8

…

$31

T3: ADD  T2 /  T2 T1: SQRT $2 Val / $10 Val 

SW T3 / T1 / 40

T2: LW  T1 /  40

RST = Register 
Status Table

RF = Register File

T1: SQRT 0xacd0

T1: SQRT 0xacd0
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Tagging process: CC13

Issue Logic

INT MUL/DIV/SQRTINT 
ALU

Load/
Store

sqrt $2, $10

lw $8, 40($2)

add $8, $8, $8

sw $8, 40($2)

lw $8, 60($3)

add $8, $8, $8

sw $8, 60($3)

RST

$1
$2
$3
$4
$5
$6
$7
$8

…

$31

RF

0xacd0

0x2222

$1
$2
$3
$4
$5
$6
$7
$8

…

$31

SW 0xacf0 / 0xacd0 / 40

RST = Register 
Status Table

RF = Register File
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Register Renaming

Issue Logic

INT MUL/DIV/SQRTINT 
ALU

Load/
Store

sqrt $2, $10

add $2, $2, $2

add $2, $2, $2

add $2, $2, $2

add $2, $2, $2

RST

$1
$2
$3
$4
$5
$6
$7
$8

…

$31

RF

$1
$2
$3
$4
$5
$6
$7
$8

…

$31

T1: SQRT  $2 Val / $10 Val

RST = Register 
Status Table

RF = Register File
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Unique TAGs

• Like SSN, we need a unique TAG

• SSN’s are reused.

• Similarly TAGS can be reused

• TAGs are similar to number TOKEN

Helps to create a 
virtual queue.

We do not need 
that here

In State Bank of India, the cashier issues 
brass token to customers trying to draw 
money as an ID (and not at all to put them 
in any virtual queue / ordering). Token 
numbers are in random order.

The cashier verifies the signature in the 
record rooms, returns with money, calls the 
token number and issues the money.

Tokens are reclaimed & reused.
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Tags (= Tokens)

• How many tokens should the bank casheir 

have to start with?

• What happens if the tokens run out?

• Does the cashier need to have any order in 

holding tokens and issuing tokens?

• Do they have to collect the tokens back?
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TAG FIFO

• To issue and collect tokens (TAGS) use a circular FIFO (First-

In/First-Out) unit

– While the FIFO order is not important here, a FIFO is the easiest to 

implement in hardware compared to a random order in a pile

• Filled (with say) 64 tokens (___________) initially on reset

• Tokens return ________________

• Put tokens back in the FIFO and ___________

FIFO’s are taught in EE 560

0

1

2

…

TAG FIFO

63

wp rp

FULL

2

…

TAG FIFO

63

2 Tokens issued

1

2

…

TAG FIFO

63

1 Tokens returned
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Organization for OoO Execution

I-Cache Block Diagram 
Adapted from Prof. 

Michel Dubois

(Simplified for EE 457)

Register 
Status 
Table

Integer / 
Branch

D-Cache Div Mul

TAG FIFO

Instruc. 
Queue
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Unit

Dispatch
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Front-End & Back-End

• IFQ (Instruction Fetch Queue)

– A FIFO structure

• Dispatch (Issue) Unit

– Includes RST, RF, Tag FIFO

• Load/Store and other Issue Queues

• Issue Units

• Functional units

• CDB (Common Data Bus)

– Like a public address system that everyone can see/hear 

when data is produced
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More Tomasulo Algorithm

• Front End

– Instructions are fetched

– They are stored in a FIFO (IFQ)

– When instruction reached the head of the IFQ it is

• Decoded

• Dispatched to an issue queue/functional unit

• Even if some of the inputs are not ready (takes TAGs)

• Back End

– Instructions in issue queues wait for their input operands

– Once register operands are ready instructions can be scheduled for execution provided

they will not conflict for the CDB or their functional unit

– Instructions execute in their functional unit and their result is put on the CDB

– All instructions in queues and the register file “watch” the CDB and grab the value they 

are waiting for when it is produced

• Bottleneck in Tomasulo's algorithm?

– The _________!

– Do all instructions use the __________? ________________________________
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MEMORY DISAMBIGUATION

Data hazards and memory
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Load/Store Queue (LSQ)

• For our course, the LSQ performs

– Address calculation

– Memory disambiguation

• ________________________ hazards due to memory 

reads and writes

// Is there a dependency here?

SW $2,0($5)

LW  $8,0($5) 

// What about here?

SW $2, 1000($4)

LW $3, 0($6)
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Memory Disambiguation

• Data hazards (RAW, WAR, WAW) can occur in memory just as 

with registers, and hazards in memory are much harder to deal 

with since many ___________ could produce the same address

RAW

sw $2, 2000($0)

lw $8, 2000($0)

WAW

sw $2, 2000($0)

sw $8, 2000($0)

WAR

lw $2, 2000($0)

sw $8, 2000($0)

This later lw can proceed only if there is 
no store ahead of it with the same address

This later sw can proceed only if there is 
no store ahead of it with the same address

This later sw can proceed only if there is 
no load ahead of it with the same address
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Address Calculation for LW/SW

• EE 557 approach for address calculation

– Loads & store in 2 sub-instructions

• 1 instruction computes address and is dispatched to 

integer ALU

• 1 instruction access data cache and is issued to LSQ

• Address is communicated from integer ALU to LSQ via 

CDB forwarding using a tag

• EE 560/457 approach

– Use a dedicated adder in the LSQ to compute 

address (so just 1 dispatched instruction)
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Memory Disambiguation

• When can LSQ can issue a LW or SW to cache?

– Loads can issue to a cache when their address is ready

– Stores can issue to cache when both address & data is ready

– Memory hazards (RAW, WAR, WAW) are resolved in the LSQ

• Load can issue to cache if no _________ with same address is before it

• Store can issue to cache if no _________ or _________ with same address 

before it

• Otherwise, access waits in LSQ 

– If an address is unknown it is assumed to be the ___________

• Worst case to enforce correctness

– The process of figuring out and comparing memory address is called 

“disambiguation”
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LAST CONSIDERATIONS FOR 

OUT-OF-ORDER 

EXECUTION/COMPLETION

Issue Queue priority, Branches, etc.
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Issue Unit

• How do we determine when to issue an instruction to the

functional unit?

– Is the instruction ready

– Is the functional unit free to start the operation?

– CDB availability constraint

• Will there ___________________ when operation finished?

– Priority/conflict resolution

• If many instructions are available, which should be chosen? (Is round-

robin priority adequate)?

How do we prioritize 
instructions that are ready?
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Issue Queue Priority

• Priority (based on the order of arrival among 

ready instructions)

– Is it necessary or just desirable?

– Local priority within queues?

– Global priority across the queues?

How do we prioritize 
instructions that are ready?
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LSQ Ordering/Priority

• Maintaining instructions in the order of arrival

– Issue order/program order in a queue

• Is this necessary and/or desirable?

– In the case of LSQ?

• ________________________________________

– In the case of Integer, MUL, DIV queues?

• Desirable, so that an earlier instruction gets executed 

whenever possible, thereby reducing queue pressure 

from too many instructions waiting on it
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Conditional Branches
• Dispatcher stalls when it reaches a branch (and waits until it is resolved)

• Branches are dispatched to integer queue where they wait for their 

operands (if necessary)

• When branch executes it puts its outcome & target on CDB

– If untaken, dispatch unit resumes

– If taken, then dispatch clears flushes the IFQ and resumes at target

• Since we stop dispatching instructions after a branch, does it mean that 

this branch is the last instruction to be executed in the back-end?

• Is it possible that the back-end holds simultaneously

– A. Some instructions dispatched before 

the branch .. AND ..

– B. Some instructions issued after 

the branch

ADD $4,$5,$5 

BEQ $6,$7,L1

...

L1: SUB $1,$2,$3

MUL $9,$7,$2
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Structural Hazards + Exceptions

• Structural Stalls

– Dispatch must stall if ____________ OR 

all entries in the desired functional 

unit’s issue queue are occupied AND an 

instruction of that type is attempting to 

dispatch

– Fetch unit must stall if the _________

– Functional units stall when no ready

instructions in the queue or CDB

scheduling conflicts

• Precise exceptions not supported

– Some instructions ________ the 

offending instruction may have 

updated registers or memory!  _____!

– We'll handle this in the next unit


