
1

EE 457 Unit 9a

Exploiting ILP

Out-of-Order Execution

2

Credits

• Some of the material in this presentation is taken from:
– Computer Architecture: A Quantitative Approach

• John Hennessy & David Patterson

• Some of the material in this presentation is derived from
course notes and slides from
– Prof. Michel Dubois (USC)

– Prof. Murali Annavaram (USC)

– Prof. David Patterson (UC Berkeley)

3

Exploiting Parallelism
• With increasing transistor budgets of modern processors (i.e.,

can do more things at the same time) the question becomes
how do we find enough useful tasks to increase performance,
or, put another way, what is the most effective way of
exploiting parallelism!

• Many types of parallelism available
– Instruction Level Parallelism (ILP): Overlapping instructions within a

single process/thread of execution

– Thread Level Parallelism (TLP): Overlap execution of multiple
processes/threads

– Data Level Parallelism (DLP): Overlap an operation (instruction) that is
to be applied independently to multiple data values (usually, an array)

for (int i=0; i < MAX; i++) { A[i] = A[i] + 5; }

• We'll focus on ILP in this unit

4

Outline

• Instruction Level Parallelism

– In-order (IO) pipeline
• From academic 5-stage pipeline

• To 8-stage MIPS R4000 pipeline

• Superscalar, superpipelined

– Out-of-Order (OoO) Execution
• This unit: OoO Execution (Compute the result) AND

OoO Completion (write result to memory or a register).
(Problem: Exceptions

• Next Unit: OoO Execution BUT In-order completion

5

Instruction Level Parallelism (ILP)

• Although a program defines a sequential ordering of instructions, in reality
many instructions can be executed in parallel (i.e. out of (program) order).

• ILP refers to the process of finding instructions from a single program/thread
of execution that can be executed in parallel

• Data flow (data dependencies) limits out-of-order execution

• Independent instructions (no data dependencies) can be executed at the
same time)

• Control hazards also provide some ordering constraints

lw $s3,0($s4)

and $t3,$t2,$t3

add $t0,$t0,$s4

or $t5,$t3,$t2

sub $t1,$t1,$t2

beq $t0,$t8,L1

xor $s0,$t1,$s2

lw $s3,0($s4) / add $t0,$t0,$s4 / sub $t1,$t1,$t2 / and $t3,$t2,$t3

/ beq $t0,$t8,L1 / / or $t5,$t3,$t2

/ / xor $s0,$t1,$s2 /

Cycle 1:

Cycle 2:

Cycle 3:

LW ADD SUB AND

BEQ

XOR

OR

Dependency

Graph

Program

Order

(In-order)

We may perform

execution out-of-order

6

Basic Blocks

• Basic Block (def.) = Sequence of instructions that will
always be executed together

– No conditional branches out

– No branch targets coming in

– Also called “straight-line” code

– Average size: 5-7 instrucs.

• Instructions in a basic block can be overlapped if
there are no data dependencies

• Control dependences really limit our window of
possible instructions to overlap

– W/o extra hardware, we can only overlap execution of
instructions within a basic block

lw $s3,0($s4)

and $t3,$t2,$t3

L1: add $t0,$t0,$s4

or $t5,$t3,$t2

sub $t1,$t1,$t2

beq $t0,$t8,L1

xor $s0,$t1,$s2

This is a

basic block

(starts w/

target, ends

with branch)

7

SUPERSCALAR & SUPERPIPELINING
Other In-Order techniques

8

Overview

• Superscalar = More than 1 instruction completing per clock cycle (IPC > 1)

– 2-way superscalar = Proc. that can issue 2 instructions per clock cycle

– Success is sensitive to ability to find independent instructions to issue in the same cycle

• Superpipelining = Many small stages to boost clock freq.
– Success depends of finding instructions to schedule in the shadow of data and control hazards

Instruc.

Fetch

Instruc.

Decode
Execute

Data

Memory
Write back

Instruc.

Fetch

Instruc.

Decode
Execute

Data

Memory
Write back

Instruction

1

Instruction

2

IF1 IF2 ID EX DM1 DM2 DM3 WB

IF1 IF2 ID EX DM1 DM2 DM3 WB

Instruction

1

Instruction

2

Superscalar: Executing more than 1 instruction per clock cycle (CPI < 1 or IPC > 1)

Superpipelining: Divide logic into many short stages (Higher Clock Frequency)

S
u

p
e

rs
c

a
la

r
S

u
p

e
rp

ip
e

li
n

in
g

9

2-way Superscalar
• Ex: One ALU & Data transfer (LW/SW) instruction can be issued at the same time

• Relies on compiler to find and reorder appropriate instructions (using nops if no
appropriate instruction can be found

I-Cache

D-Cache

ALU
Reg.

File

(4 Read,

2 Write)

PC

Addr.

Calc.
2 instructions

In
te

g
e

r
S

lo
t

L
D

/S
T

 S
lo

t

Instruction Pipeline Stages

ALU or branch IF ID EX MEM WB

LW/SW IF ID EX MEM WB

ALU or branch IF ID EX MEM WB

LW/SW IF ID EX MEM WB

ALU or branch IF ID EX MEM WB

LW/SW IF ID EX MEM WB

10

Sample Scheduling

• Compiler can reorder instructions to find integer and memory
instructions to fuse together that can be run down the
pipeline at the same time

$6 = A
$7 = n = # of iterations
L1: ld $9, 0(%6)

add $9, $9, 5
st %r9,0(%rdi)
add $6, $6, 4
add $7, $7, -1
jne $0,%esi,L1

void f1(int *A, int n) {
do {

*A += 5;
A++;
n--;

} while (n != 0);
}

w/ modifications and code movement

IPC = 6 instrucs. / 4 cycle = 1.5

time

Int./Branch Slot LD/ST Slot

addi $7, $7, -1 lw $9,0($6)

addi $6, $6, 4

addi $9, $9, 5

bne $0,$7,L1 st $9,-4($6)

11

Scheduling Strategies

• Static Scheduling

– Compiler re-orders instructions in such a way that no
dependencies will be violated and allows for OoOE

• Dynamic Scheduling

– HW implementing the Tomasulo algorithm or other similar
approach will re-order instructions to allow for OoOE

• More Advanced Concepts

– Branch prediction and speculative execution (execution beyond
a branch flushing if incorrect) will be covered later

12

Static Scheduling

• Strengths
– Hardware simplicity [Better clock rate]

• Power/energy advantage

• Compiler has a global view of the program anyway, so it should be able to
do a “good” job

– Very predictable: static performance predictions are reliable

• Weaknesses
– Requires re-compilation to take advantage of new/modified

architecture

– Cannot foresee dynamic (data-dependent) events

• Cache miss, conditional branches (can only recedule instructions in a basic
block)

– Cannot precompute memory addresses

– No good solution for precise exceptions with out-of-order completion

13

OUT-OF-ORDER EXECUTION

14

IM Reg

ALU

Reg

MUL

DIV

DMEM

(Cache)

Queues +

Functional

Units

Out-of-Order Motivation

• We will focus on dynamically scheduled, OoO processors

• Hide the impact of dynamic events such as a cache miss
– Let independent instructions behind a stalled instruction execute

• Separate functional units (ALU, MUL, DMEM, etc.)

• "Queues" where instructions wait
until they are ready at which point
they can execute "out-of-order"

LW $4,0($5)
// cache miss
ADD $6,$7,$4
SUB $1,$2,$3
MUL $9,$7,$2

LW

S
U

B
A

D
D

M
U

L

15

Dispatch, Execution, and Completion

• "Execution" here means producing the results not necessarily
writing them to a register or memory

• Completion means committing/writing the results to register
file or memory

• While we say out-of-order execution we really mean/want:
– In-order (Program order) Issue/Dispatch (IoD)

– Out-of-Order Execution (OoOE)

– In-order Completion (IoC) [hard]
• So we'll start with the easier

Out-of-Order Completion (OoOC)

Issue/Dispatch

Execution

Completion

In-order In-order

Out-of-Order

LW $4,0($5)
// cache miss
ADD $6,$7,$4
SUB $1,$2,$3
MUL $9,$7,$2

16

Branch Handling

• We will present the concept of OoOC (out-of-order
completion) which is a bit easier and then come back to the
desired approach of In-Order Completion (IOC)

• OoOC Issues
– Branches…we should not commit an instruction that came after (in

program order) a branch

– Solution: Stall dispatching instructions
after a branch until we resolve the
outcome

LW $4,0($5) // cache miss

BEQ $4,$0,L1

ADD $6,$7,$8

// What if we execute this

ADD out of order

Issue/Dispatch

Execution

Completion

In-order In-order
Out-of-Order

Stall branches

here

17

Data Hazard Stalling

• In our 5-stage pipeline (in-order execution) RAW dependency
was solved by
– Forwarding (preferably) or

– Stalling (LW followed by dependent instruction)

• Dependent instructions stalled in the ID stage if necessary

• Do we want to stall in the decode stage in our OoO processor?
– No! Doing so would necessarily stall everyone behind us

IM Reg ALU DM Reg

LW $4
ADD $1,$3,$4

(Stall here) bubble

Stalling here would plug up the
pipeline

18

EX Stage Stalling

• In our 5-stage pipeline, could we have stalled in the EX stage

• No! If ADD depended on an instruction in WB then it has no place to store
that forwarded data while it stalls

In
s
tr

u
c
ti
o

n
 R

e
g
is

te
r

Register File

Read

Reg. 1 #

Read

Reg. 2 #

Write

Reg. #

Write

Data

Read

data 1

Read

data 2

Sign

Extend

P
ip

e
lin

e
 S

ta
g
e

 R
e
g
is

te
r

A
L

U Res.

Zero

0

1

Sh.

Left

2

+

P
ip

e
lin

e
 S

ta
g
e

 R
e
g
is

te
r

D
-C

a
c

h
e

P
ip

e
lin

e
 S

ta
g
e

 R
e
g
is

te
r

0

1

16 32

5

5

0

1

rs

rt

rs

rt

rd

0

1

2

0

1

2

Forwarding

Unit

ALUSrc
ALUSelB

ALUSelA

Regwrite &

WriteReg# Regwrite,

WriteReg#

D
a
ta

 M
e
m

.
o

r
A

L
U

 r
e
s
u

lt

P
ri

o
r

A
L

U

R
e
s
u

lt

I-
C

a
c

h
e

P
C

.

PCWrite
IRWrite HDU

Control E
x

M
e
m

W
B

Stall

M
e
m

W
B

W
B

0

10

0

10

0

1

+4

IF.Flush

M
e
m

T
o

R
e
g

Branch

M
e
m

R
e
a
d

 &

M
e
m

W
rite

FLUSH

Reset

Why? What if ADD was also
dependent on the instruction in
WB… ADD has no place to
buffer that forwarded value

Thus we stall in ID so we can
use the Register File to grab
dependent values. Further
stalling in ID incurs only 1 cycle
penalty as would stalling in EX.

19

Where to Stall?

• But to implement OoO execution, we cannot stall in the decode stage
since that would prevent any further issuing of instructions

• Thus, now we will issue to queues for each of the multiple functional units
and have the instruction stall in the queue until it is ready

Stalling here would plug up the
pipeline

IM Reg

ALU

Reg

MUL

DIV

DMEM

(Cache)

Queues +

Functional

Units

20

Forwarding in OoO Execution
• In 5-stage pipeline later instructions carried their source register IDs into the

EX stage to be compared with destination register ID’s of their earlier
instructions

• But in OoO execution, we may have many (earlier) instructions in front of us
and would require more complex hardware to determine who is producing
the data we need (especially when multiple producers exist and we want the
latest version)

• Instead, the dispatch unit will explicitly tell the dependent instruction who to
get data from using part of Tomasulo's algorithm

In
s
tr

u
c
ti
o

n
 R

e
g
is

te
r

Register File

Read

Reg. 1 #

Read

Reg. 2 #

Write

Reg. #

Write

Data

Read

data 1

Read

data 2

Sign

Extend

P
ip

e
lin

e
 S

ta
g
e

 R
e
g
is

te
r

A
L

U Res.

Zero

0

1

Sh.

Left

2

+

P
ip

e
lin

e
 S

ta
g
e

 R
e
g
is

te
r

D
-C

a
c

h
e

P
ip

e
lin

e
 S

ta
g
e

 R
e
g
is

te
r

0

1

16 32

5

5

0

1

rs

rt

rs

rt

rd

0

1

2

0

1

2

Forwarding

Unit

ALUSrc
ALUSelB

ALUSelA

Regwrite &

WriteReg# Regwrite,

WriteReg#

D
a

ta
 M

e
m

.
o

r
A

L
U

 r
e
s
u

lt

P
ri

o
r

A
L

U

R
e

s
u

lt

I-
C

a
c

h
e

P
C

.

PCWrite
IRWrite HDU

Control E
x

M
e
m

W
B

Stall

M
e
m

W
B

W
B

0

10

0

10

0

1

+4

IF.Flush

M
e
m

T
o

R
e

g

Branch

M
e
m

R
e

a
d

 &

M
e
m

W
rite

FLUSH

Reset

21

Tomasulo’s Plan

• OoO Execution

• Multiple functional units

– Integer ALU, Data memory, Multiplier, Divider

• Queues between ID and EX stages (in place of ID/EX
register)

– Allows later instructions to keep issuing even if earlier ones
are stalled

• Method for dealing with RAW data hazards by
specifying who dependent instructions should get
data from

– But with OoO execution, new hazards arise!

22

NEW DATA HAZARDS
WAR and WAW

23

RAW, WAR, and WAW

• RAW = Read After Write

– lw $8, 40($2)

– add $9, $8, $7

• WAR = Write After Read

– add $9, $8, $6 say $6 is not available yet, can LW execute?

– lw $8, 40($2)

• WAW = Write After Write

– add $9, $8, $6 say $6 is not available yet, can LW execute?

– lw $9, 40($2)

Why would anyone produce one result in $9 without utilizing
that result? Why would he overwrite it with another result?
How is this possible?

24

WAW can easily occur

• How is WAW possible?

• Example 1
– Say a company gives standard bonus to

most of the employees and a higher bonus
to managers

– The software may set a default value to the
standard bonus and then overwrite for the
special case

• Example 2
– Consider multiple iterations of a loop body

L1: lw $2, 40($1)

mult $4, $2, $3

sw $4, 40($1)

addi $1, $1,-4

bne $1, $0,L1

for(i=MAX; i != 0; i--)

A[i] = A[i] * 3;

Original Code

L1: lw $2, 40($1)

mult $4, $2, $3

sw $4, 40($1)

addi $1, $1,-4

bne $1, $0,L1

L1: lw $2, 40($1)

mult $4, $2, $3

sw $4, 40($1)

addi $1, $1,-4

bne $1, $0,L1

int x = standard_bonus;

if (manager)

x = special_bonus;

set_bonus(x);

25

RAW, WAR, and WAW

• Some terminology to remember

• RAW = Read After Write

– lw $8, 40($2)

– add $9, $8, $7

• WAR = Write After Read

– add $9, $8, $6

– lw $8, 40($2)

• WAW = Write After Write

– add $9, $8, $6

– lw $9, 40($2)

RAW
A true dependency

WAR
An anti-dependency

WAW
An anti-dependencyN

a
m

e
 D

e
p

d
e
n

c
ie

s

Note: No information is communicated in WAR/WAW hazards.
If no info is communicated can we somehow solve these hazards?

26

RAW, WAR, and WAW

• In-order execution:
– We need to deal with RAW only

• Out-of-order execution
– Now we need to deal with WAR and WAW hazards besides RAW

– Any of these hazards seem to prevent re-ordering instructions and
executing them out-of-order

27

Register Renaming

• WAR and WAW hazards can
always be solved by simply
choosing a DIFFERENT register
since no data is being
communicated but we were
simply "reusing" a register

• If we had 64 registers instead
of 32 registers, then perhaps
the compiler might have used
$48 instead of $8 and we could
have executed the second part
of the code before the first part

lw $8, 40($2)

add $8, $8, $8

sw $8, 40($2)

lw $48, 60($3)

add $48, $48, $48

sw $48, 60($3)

This is an example of a name-dependency

First iteration

Second

iteration

(using

alternate

register, $48)

WAR = Write After Read

add $9, $8, $6

lw $8$48, 40($2)

WAW = Write After Write

add $9, $8, $6

lw $9$49, 40($2)

28

Register Renaming

• Renaming requires more registers

• We have limited architectural registers

– Registers the instruction set is aware of

• We could have more physical registers

– Actual registers part of the register file

lw $8, 40($2)

add $8, $8, $8

sw $8, 40($2)

lw $8, 60($3)

add $8, $8, $8

sw $8, 60($3)

It is clear the compiler is using $8 as a

temporary register

If there is a delay in obtaining $2 the first

part of the code cannot proceed

Unfortunately, the second part of the code

cannot proceed because of the name

dependency for $8

Assume Delayed

29

Increasing Number of Registers

• Can a later implementation provide 64
registers (instead of 32) while maintaining
binary compatibility with previously compiled
code?

• Answer: Yes / No
NO

• Why?
Machine code has 5-bit fields for register ID’s

opcode=6 rs=5 rt=5 rd=5 shamt=5 func=6R-Type

30

Register Renaming

• Rather than creating new architectural registers, let
us internally provide multiple "versions" of the same
architectural register

– $8v1 = $8 version 1

– $8v2 = $8 version 2

lw $8v1, 40($2)

add $8v2, $8v1, $8v1

sw $8v2, 40($2)

lw $8v3, 60($3)

add $8v4, $8v3, $8v3

sw $8v4, 60($3)

$8

$8v1

$8v2

$8v3

$8v4"Arch. Reg"

Phys Reg

31

Tomasulo's Approach to Renaming

• Cannot change the number of architectural registers

• Instead we will perform
Register Renaming through Tagging Registers

– This solves name dependency problems (WAR and WAW)
while attending to true dependency (RAW) through waiting
in queues

– Please be sure you understand this!

32

OoO Execution & Tomasulo's Algorithm

I-Cache

Block Diagram Adapted

from Prof. Michel Dubois

(Simplified for EE457)

Register

Status

Table

Integer /

Branch
D-Cache Div Mul

Instruc.

Queue

R
e

g
.

F
il

e
In

t.
 Q

u
e

u
e

L
/S

 Q
u

e
u

e

D
iv

 Q
u

e
u

e

M
u

lt
.

Q
u

e
u

e

Common Data Bus

Issue

Unit

Dispatch

Fetch multiple instructions per

clock cycle in PROGRAM ORDER

(i.e. normal order generated by

the compiler)

Decode & dispatch multiple

instructions per cycle tracking

dependencies on earlier

instructions

Instructions wait in queues

until their respective

functional unit (the

hardware that will compute

their value) is free AND

they have their data

available (from the

instructions they depend

upon). These act as

additional "physical

registers"

Results and TAGs of

multiple instructions can

be written back per cycle.

Results are broadcast to

any instruction waiting for

that result.

Uses "tags" to track

which instruction is

the latest producer

(version) of a register.

(Helps solve RAW,

WAR, WAW

dependencies)

33

Tomasulo’s Algorithm

• Dispatch/Issue unit decodes and dispatches instructions

• Assign a binary code (aka TAG) to each instruction producing a register
value using the TAG FIFO

• Adds a Register Status Table (RST) that holds the TAG of the instruction that
is producing the LATEST version of each architectural register or NULL if the
LATEST version is in the register file

• The destination operand is represented by the TAG but not the actual
register name

• For source operands, an instruction carries either the values (if TAG is null in
RST) or TAGs of the operands (but not the actual register name)

• When an instruction executes and produces a result it broadcasts the result
and its destination TAG

– Any instruction waiting can compare its SRC tags with the destination tag and
grab the value if they match

– If entry in RST matches the TAG then this instruction is the latest producer of
the register and the value will be written to the register file

34

Tagging process

Issue Logic

INT MUL/DIV/SQRTINT

ALU

Load/

Store

sqrt $2, $10

lw $8, 40($2)

add $8, $8, $8

sw $8, 40($2)

lw $8, 60($3)

add $8, $8, $8

sw $8, 60($3)

$1
$2
$3
$4
$5
$6
$7
$8

…

$31

RF

$1
$2
$3
$4
$5
$6
$7
$8

…

$31

T1: SQRT $2 Val / $10 Val

RST = Register

Status Table

RF = Register File

RST
(Identify latest

version of a reg.)

35

Tagging process: CC1

Issue Logic

INT MUL/DIV/SQRTINT

ALU

Load/

Store

sqrt $2, $10

lw $8, 40($2)

add $8, $8, $8

sw $8, 40($2)

lw $8, 60($3)

add $8, $8, $8

sw $8, 60($3)

T1
$1
$2
$3
$4
$5
$6
$7
$8

…

$31

RF

$1
$2
$3
$4
$5
$6
$7
$8

…

$31

T1: SQRT $2 Val / $10 Val
RST = Register

Status Table

RF = Register File

RST
(Identify latest

version of a reg.)

Instruction that will write to a destination register,

take a TAG and enter that TAG into the RST to

track the latest version/producer

36

Tagging process: CC2

Issue Logic

INT MUL/DIV/SQRTINT

ALU

Load/

Store

sqrt $2, $10

lw $8, 40($2)

add $8, $8, $8

sw $8, 40($2)

lw $8, 60($3)

add $8, $8, $8

sw $8, 60($3)

RST

T1

T2

$1
$2
$3
$4
$5
$6
$7
$8

…

$31

RF

$1
$2
$3
$4
$5
$6
$7
$8

…

$31

T1: SQRT $2 Val / $10 Val T2: LW T1 / 40
RST = Register

Status Table

RF = Register File

37

Tagging process: CC3

Issue Logic

INT MUL/DIV/SQRTINT

ALU

Load/

Store

sqrt $2, $10

lw $8, 40($2)

add $8, $8, $8

sw $8, 40($2)

lw $8, 60($3)

add $8, $8, $8

sw $8, 60($3)

RST

T1

T2 T3

$1
$2
$3
$4
$5
$6
$7
$8

…

$31

RF

$1
$2
$3
$4
$5
$6
$7
$8

…

$31

T3: ADD T2 / T2 T1: SQRT $2 Val / $10 Val T2: LW T1 / 40
RST = Register

Status Table

RF = Register File

Notice the RST only stores the TAG of the

LATEST producer/version. Solves WAR/WAW

hazards by not accepting a writeback unless it is

from the latest/producer

38

Tagging process: CC4

Issue Logic

INT MUL/DIV/SQRTINT

ALU

Load/

Store

sqrt $2, $10

lw $8, 40($2)

add $8, $8, $8

sw $8, 40($2)

lw $8, 60($3)

add $8, $8, $8

sw $8, 60($3)

RST

T1

T3

$1
$2
$3
$4
$5
$6
$7
$8

…

$31

RF

$1
$2
$3
$4
$5
$6
$7
$8

…

$31

T3: ADD T2 / T2 T1: SQRT $2 Val / $10 Val

SW T3 / T1 / 40

T2: LW T1 / 40

RST = Register

Status Table

RF = Register File

39

Tagging process: CC5

Issue Logic

INT MUL/DIV/SQRTINT

ALU

Load/

Store

sqrt $2, $10

lw $8, 40($2)

add $8, $8, $8

sw $8, 40($2)

lw $8, 60($3)

add $8, $8, $8

sw $8, 60($3)

RST

T1

T3 T4

$1
$2
$3
$4
$5
$6
$7
$8

…

$31

RF

$1
$2
$3
$4
$5
$6
$7
$8

…

$31

T3: ADD T2 / T2 T1: SQRT $2 Val / $10 Val

T4: LW $3 val / 60

SW T3 / T1 / 40

T2: LW T1 / 40

RST = Register

Status Table

RF = Register File

40

Tagging process: CC6

Issue Logic

INT MUL/DIV/SQRTINT

ALU

Load/

Store

sqrt $2, $10

lw $8, 40($2)

add $8, $8, $8

sw $8, 40($2)

lw $8, 60($3)

add $8, $8, $8

sw $8, 60($3)

RST

T1

T4 T5

$1
$2
$3
$4
$5
$6
$7
$8

…

$31

RF

$1
$2
$3
$4
$5
$6
$7
$8

…

$31

T5: ADD T4 / T4

T3: ADD T2 / T2 T1: SQRT $2 Val / $10 Val

T4: LW $3 val / 60

SW T3 / T1 / 40

T2: LW T1 / 40

RST = Register

Status Table

RF = Register File

41

Tagging process: CC7

Issue Logic

INT MUL/DIV/SQRTINT

ALU

Load/

Store

sqrt $2, $10

lw $8, 40($2)

add $8, $8, $8

sw $8, 40($2)

lw $8, 60($3)

add $8, $8, $8

sw $8, 60($3)

RST

T1

T5

$1
$2
$3
$4
$5
$6
$7
$8

…

$31

RF

$1
$2
$3
$4
$5
$6
$7
$8

…

$31

T5: ADD T4 / T4

T3: ADD T2 / T2 T1: SQRT $2 Val / $10 Val

T4: LW $3 val / 60

SW T3 / T1 / 40

T2: LW T1 / 40

RST = Register

Status Table

RF = Register File

T4: Read 0x1111

42

Tagging process: CC8

Issue Logic

INT MUL/DIV/SQRTINT

ALU

Load/

Store

sqrt $2, $10

lw $8, 40($2)

add $8, $8, $8

sw $8, 40($2)

lw $8, 60($3)

add $8, $8, $8

sw $8, 60($3)

RST

T1

T5 => null

$1
$2
$3
$4
$5
$6
$7
$8

…

$31

RF

0x2222

$1
$2
$3
$4
$5
$6
$7
$8

…

$31

T5: ADD 0x1111 / 0x1111

T3: ADD T2 / T2 T1: SQRT $2 Val / $10 Val

SW T3 / T1 / 40

T2: LW T1 / 40

RST = Register

Status Table

RF = Register File

T5: Sum 0x2222

T5: Sum 0x2222
When latest producer writes to register, we reset

RST entry to NULL (indicates that the RF has the

latest value and issuing instructions can just take

that value from the RF)

43

Tagging process: CC9

Issue Logic

INT MUL/DIV/SQRTINT

ALU

Load/

Store

sqrt $2, $10

lw $8, 40($2)

add $8, $8, $8

sw $8, 40($2)

lw $8, 60($3)

add $8, $8, $8

sw $8, 60($3)

RST

T1

null

$1
$2
$3
$4
$5
$6
$7
$8

…

$31

RF

0x2222

$1
$2
$3
$4
$5
$6
$7
$8

…

$31

T3: ADD T2 / T2 T1: SQRT $2 Val / $10 Val

SW 0x2222, $3 val / 60

SW T3 / T1 / 40

T2: LW T1 / 40

RST = Register

Status Table

RF = Register File

T5: Sum 0x2222

44

Tagging process: CC10

Issue Logic

INT MUL/DIV/SQRTINT

ALU

Load/

Store

sqrt $2, $10

lw $8, 40($2)

add $8, $8, $8

sw $8, 40($2)

lw $8, 60($3)

add $8, $8, $8

sw $8, 60($3)

RST

T1 => null
$1
$2
$3
$4
$5
$6
$7
$8

…

$31

RF

0x2222

$1
$2
$3
$4
$5
$6
$7
$8

…

$31

T3: ADD T2 / T2 T1: SQRT $2 Val / $10 Val

SW T3 / T1 / 40

T2: LW T1 / 40

RST = Register

Status Table

RF = Register File

T1: SQRT 0xacd0

T1: SQRT 0xacd0

45

Tagging process: CC11

Issue Logic

INT MUL/DIV/SQRTINT

ALU

Load/

Store

sqrt $2, $10

lw $8, 40($2)

add $8, $8, $8

sw $8, 40($2)

lw $8, 60($3)

add $8, $8, $8

sw $8, 60($3)

RST

$1
$2
$3
$4
$5
$6
$7
$8

…

$31

RF

0xacd0

0x2222

$1
$2
$3
$4
$5
$6
$7
$8

…

$31

T3: ADD T2 / T2

SW T3 / 0xacd0 / 40

T2: LW 0xacd0 / 40

RST = Register

Status Table

RF = Register File

T2: Read 0x5678

Since RST entry for $8 is NULL, RF will not update

when LW attempts to writeback.

46

Tagging process: CC12

Issue Logic

INT MUL/DIV/SQRTINT

ALU

Load/

Store

sqrt $2, $10

lw $8, 40($2)

add $8, $8, $8

sw $8, 40($2)

lw $8, 60($3)

add $8, $8, $8

sw $8, 60($3)

RST

$1
$2
$3
$4
$5
$6
$7
$8

…

$31

RF

0xacd0

0x2222

$1
$2
$3
$4
$5
$6
$7
$8

…

$31

T3: ADD 0x5678 / 0x5678

SW T3 / 0xacd0 / 40

RST = Register

Status Table

RF = Register File

T3: Sum 0xACF0

47

Tagging process: CC13

Issue Logic

INT MUL/DIV/SQRTINT

ALU

Load/

Store

sqrt $2, $10

lw $8, 40($2)

add $8, $8, $8

sw $8, 40($2)

lw $8, 60($3)

add $8, $8, $8

sw $8, 60($3)

RST

$1
$2
$3
$4
$5
$6
$7
$8

…

$31

RF

0xacd0

0x2222

$1
$2
$3
$4
$5
$6
$7
$8

…

$31

SW 0xacf0 / 0xacd0 / 40

RST = Register

Status Table

RF = Register File

48

Register Renaming

Issue Logic

INT MUL/DIV/SQRTINT

ALU

Load/

Store

T4: ADD T3 / T3

sqrt $2, $10

add $2, $2, $2

add $2, $2, $2

add $2, $2, $2

add $2, $2, $2

RST

T1, T2, T3, T4
$1
$2
$3
$4
$5
$6
$7
$8

…

$31

RF

$1
$2
$3
$4
$5
$6
$7
$8

…

$31

T3: ADD T2 / T2

T2: ADD T1 / T1 T1: SQRT $2 Val / $10 Val

RST = Register

Status Table

RF = Register File

49

Unique TAGs

• Like SSN, we need a unique TAG

• SSN’s are reused.

• Similarly TAGS can be reused

• TAGs are similar to number TOKEN

Helps to create a

virtual queue.

We do not need

that here

In State Bank of India, the cashier issues

brass token to customers trying to draw

money as an ID (and not at all to put them

in any virtual queue / ordering). Token

numbers are in random order.

The cashier verifies the signature in the

record rooms, returns with money, calls the

token number and issues the money.

Tokens are reclaimed & reused.

50

Tags (= Tokens)

• How many tokens should the bank casheir
have to start with?

• What happens if the tokens run out?

• Does the cashier need to have any order in
holding tokens and issuing tokens?

• Do they have to collect the tokens back?

51

TAG FIFO

• To issue and collect tokens (TAGS) use a circular FIFO (First-
In/First-Out) unit
– While the FIFO order is not important here, a FIFO is the easiest to

implement in hardware compared to a random order in a pile

• Filled (with say) 64 tokens (in any order) initially on reset

• Tokens return in any order

• Put tokens back in the FIFO and reissue

FIFO’s are taught in EE 560

0

1

2

…

TAG FIFO

63

wp rp

FULL

2

…

TAG FIFO

63

wp

rp

2 Tokens issued

1

2

…

TAG FIFO

63

wp

rp

1 Tokens returned

52

Organization for OoO Execution

I-Cache Block Diagram

Adapted from Prof.

Michel Dubois

(Simplified for EE 457)

Register

Status

Table

Integer /

Branch
D-Cache Div Mul

TAG FIFO

Instruc.

Queue

R
e
g

.
F

il
e

In
t.

 Q
u

e
u

e

L
/S

 Q
u

e
u

e

D
iv

 Q
u

e
u

e

M
u

lt
.

Q
u

e
u

e

CDB

Issue

Unit

Dispatch

53

Front-End & Back-End

• IFQ (Instruction Fetch Queue)

– A FIFO structure

• Dispatch (Issue) Unit

– Includes RST, RF, Tag FIFO

• Load/Store and other Issue Queues

• Issue Units

• Functional units

• CDB (Common Data Bus)

– Like a public address system that everyone can see/hear
when data is produced

54

More Tomasulo Algorithm
• Front End

– Instructions are fetched

– They are stored in a FIFO (IFQ)

– When instruction reached the head of the IFQ it is

• Decoded

• Dispatched to an issue queue/functional unit

• Even if some of the inputs are not ready (takes TAGs)

• Back End
– Instructions in issue queues wait for their input operands

– Once register operands are ready instructions can be scheduled for execution provided
they will not conflict for the CDB or their functional unit

– Instructions execute in their functional unit and their result is put on the CDB

– All instructions in queues and the register file “watch” the CDB and grab the value they
are waiting for when it is produced

• Bottleneck in Tomasulo's algorithm?
– The CDB!!!

– Do all instructions use the CDB? No, not SW, J (jump), BEQ

55

MEMORY DISAMBIGUATION
Data hazards and memory

56

Load/Store Queue (LSQ)

• For our course, the LSQ performs

– Address calculation

– Memory disambiguation

• RAW, WAR, WAW hazards due to memory reads and
writes

// Is there a dependency here?

SW $2,0($5)
LW $8,0($5)

// What about here?

SW $2, 1000($4)
LW $3, 0($6)

57

Memory Disambiguation

• Data hazards (RAW, WAR, WAW) can occur in memory just as
with registers, and hazards in memory are much harder to deal
with since many combinations could produce the same address

RAW

sw $2, 2000($0)

lw $8, 2000($0)

WAW

sw $2, 2000($0)

sw $8, 2000($0)

WAR

lw $2, 2000($0)

sw $8, 2000($0)

This later lw can proceed only if there is

no store ahead of it with the same address

This later sw can proceed only if there is

no store ahead of it with the same address

This later sw can proceed only if there is

no load ahead of it with the same address

58

Address Calculation for LW/SW

• EE 557 approach for address calculation

– Loads & store in 2 sub-instructions

• 1 instruction computes address and is dispatched to
integer ALU

• 1 instruction access data cache and is issued to LSQ

• Address is communicated from integer ALU to LSQ via
CDB forwarding using a tag

• EE 560/457 approach

– Use a dedicated adder in the LSQ to compute
address (so just 1 dispatched instruction)

59

Memory Disambiguation

• When can LSQ can issue a LW or SW to cache?
– Loads can issue to a cache when their address is ready

– Stores can issue to cache when both address & data is ready

– Memory hazards (RAW, WAR, WAW) are resolved in the LSQ

• Load can issue to cache if no store with same address is before it

• Store can issue to cache if no store or load with same address before it

• Otherwise, access waits in LSQ

– If an address is unknown it is assumed to be the same

• Worst case to enforce correctness

– The process of figuring out and comparing memory address is called
“disambiguation”

60

LAST CONSIDERATIONS FOR
OUT-OF-ORDER
EXECUTION/COMPLETION

Issue Queue priority, Branches, etc.

61

Issue Unit

• How do we determine when to issue an instruction to the
functional unit?
– Is the instruction ready

– Is the functional unit free to start the operation?

– CDB availability constraint

• Will there be room on the CDB when operation finished?

– Priority/conflict resolution

• If many instructions are available, which should be chosen? (Is round-
robin priority adequate)?

How do we prioritize

instructions that are ready?

62

Issue Queue Priority

• Priority (based on the order of arrival among
ready instructions)

– Is it necessary or just desirable?

– Local priority within queues?

– Global priority across the queues?

How do we prioritize

instructions that are ready?

63

LSQ Ordering/Priority

• Maintaining instructions in the order of arrival

– Issue order/program order in a queue

• Is this necessary and/or desirable?

– In the case of LSQ?

• Necessary! To enforce memory disambiguation

– In the case of Integer, MUL, DIV queues?

• Desirable, so that an earlier instruction gets executed
whenever possible, thereby reducing queue pressure
from too many instructions waiting on it

64

Conditional Branches
• Dispatcher stalls when it reaches a branch (and waits until it is resolved)

• Branches are dispatched to integer queue where they wait for their
operands (if necessary)

• When branch executes it puts its outcome & target on CDB

– If untaken, dispatch unit resumes

– If taken, then dispatch clears flushes the IFQ and resumes at target

• Since we stop dispatching instructions after a branch, does it mean that
this branch is the last instruction to be executed in the back-end?

• Is it possible that the back-end holds simultaneously

– A. Some instructions dispatched before
the branch .. AND ..

– B. Some instructions issued after
the branch

ADD $4,$5,$5
BEQ $6,$7,L1
...

L1: SUB $1,$2,$3
MUL $9,$7,$2

65

Structural Hazards + Exceptions

• Structural Stalls
– Dispatch must stall if IFQ empty OR all

entries in the desired functional unit’s
issue queue are occupied AND an
instruction of that type is attempting to
dispatch

– Fetch unit must stall if the IFQ is full

– Functional units stall when no ready
instructions in the queue or CDB
scheduling conflicts

• Precise exceptions not supported
– Some instructions after the offending

instruction may have updated registers
or memory! BAD!

– We'll handle this in the next unit

66

BACKUP

67

Tagging Registers: CC1

lw $8, 40($2)

add $8, $8, $8

sw $8, 40($2)

lw $8, 60($3)

add $8, $8, $8

sw $8, 60($3)

sqrt $2, $10

Orange means dispatched and

SQRT is a long-latency

computation

RST = Register Status Table

RF = Register File

Destination Dependent source

RST
DOG

DOG
$1
$2
$3
$4
$5
$6
$7
$8

…

$31

RF

$1
$2
$3
$4
$5
$6
$7
$8

…

$31

68

Tagging Registers: CC2

lw $8, 40($2)

add $8, $8, $8

sw $8, 40($2)

lw $8, 60($3)

add $8, $8, $8

sw $8, 60($3)

sqrt $2, $10

Orange means dispatched and

SQRT is a long-latency

computation

RST = Register Status Table

RF = Register File

Destination Dependent source

RST

DOG

LION

$1
$2
$3
$4
$5
$6
$7
$8

…

$31

RF

$1
$2
$3
$4
$5
$6
$7
$8

…

$31

DOG

DOG

LION

69

Tagging Registers: CC3

lw $8, 40($2)

add $8, $8, $8

sw $8, 40($2)

lw $8, 60($3)

add $8, $8, $8

sw $8, 60($3)

sqrt $2, $10

Orange means dispatched and

SQRT is a long-latency

computation

RST = Register Status Table

RF = Register File

Destination Dependent source

RST

DOG

TIGER

$1
$2
$3
$4
$5
$6
$7
$8

…

$31

RF

$1
$2
$3
$4
$5
$6
$7
$8

…

$31

DOG

DOG

LION

LION LIONTIGER

70

lw $8, 40($2)

add $8, $8, $8

sw $8, 40($2)

Tagging Registers: CC4

lw $8, 60($3)

add $8, $8, $8

sw $8, 60($3)

sqrt $2, $10

Orange means dispatched and

SQRT is a long-latency

computation

RST = Register Status Table

RF = Register File

Destination Dependent source

RST

DOG

TIGER

$1
$2
$3
$4
$5
$6
$7
$8

…

$31

RF

$1
$2
$3
$4
$5
$6
$7
$8

…

$31

DOG

DOG

LION

LION LIONTIGER

TIGER

71

lw $8, 40($2)

add $8, $8, $8

sw $8, 40($2)

Tagging Registers Review

• Dispatch unit decodes and dispatches instructions

• For destination operand, an instruction carreis a
TAG (but not the actual register name)

• For source operands, an instruction carries either
the values (if no TAG in RST) or TAGs of the
operands (but not the actual register name)

• When

lw $8, 60($3)

add $8, $8, $8

sw $8, 60($3)

sqrt $2, $10

RST

DOG

TIGER

$1
$2
$3
$4
$5
$6
$7
$8

…

$31

RF

$1
$2
$3
$4
$5
$6
$7
$8

…

$31

DOG

DOG

LION

LION LIONTIGER

TIGER

72

Organization for OoO Execution

I-Cache Block Diagram

Adapted from Prof.

Michel Dubois

(Simplified for EE 457)

Register

Status

Table

Integer /

Branch
D-Cache Div Mul

TAG FIFO

Instruc.

Queue

R
e
g

.
F

il
e

In
t.

 Q
u

e
u

e

L
/S

 Q
u

e
u

e

D
iv

 Q
u

e
u

e

M
u

lt
.

Q
u

e
u

e

CDB

Issue

Unit

Dispatch

73

Multiple Functional Units

• We now provide multiple functional units

• After decode, issue to a queue, stalling if the unit is busy or
waiting for data dependency to resolve

IM Reg

ALU

Reg

MUL

DIV

DMEM

(Cache)

Queues +

Functional

Units

74

Multiple Functional Units

• We now provide multiple functional units

• After decode, issue to a queue, stalling if the unit is busy or
waiting for data dependency to resolve

IM Reg

ALU

DM Reg

MUL

DIV

DM

(Cache)

Queues +

Functional

Units

75

Where to Stall?

• But to implement OoO execution, we cannot stall in the decode stage
since that would prevent any further issuing of instructions

• Thus, now we will issue to queues for each of the multiple functional units
and have the instruction stall in the queue until it is ready

IM Reg

ALU

DM Reg

MUL

DIV

Addr

Calc.

Queues +

Functional

Units

Stalling here would plug up the
pipeline

76

Functional Unit Latencies

Functional Unit Latency
(Required stalls cycles

between dependent [RAW] instrucs.)

Initiation Interval
(Distance between 2 independent instructions

requiring the same FU)

Integer ALU 0 1

FP Add 3 1

FP Mul. 6 1

FP Div. 24 25

EX

Int. ALU, Addr. Calc.

FP Add

Int. & FP MUL

Int. & FP DIV

A1 A2 A3 A4

M1 M2 M3 M4 M5 M6 M7

Look Ahead: Tomasulo
Algorithm will help absorb

latency of different functional
units and cache miss latency by
allowing other ready instruction

proceed out-of-order

An added complication of

out-of-order execution &

completion: WAW & WAR

hazards

77

OoO Execution w/ ROB
• ROB allows for OoO execution but in-order completion

I-Cache

Br. Pred.

Buffer

Integer /

Branch

Exec. Unit

Div Mul

ROB

(Reorder

Buffer)

Instruc.

Queue

R
e
g

.
F

il
e

In
t.

 Q
u

e
u

e

L
/S

 Q
u

e
u

e

D
iv

 Q
u

e
u

e

M
u

lt
.

Q
u

e
u

e

CDB

Issue

Unit

D-Cache

Dispatch

D-Cache

L/S Buffer

Addr.

Buffer

Exceptions?
No problem

	Slide 1: EE 457 Unit 9a
	Slide 2: Credits
	Slide 3: Exploiting Parallelism
	Slide 4: Outline
	Slide 5: Instruction Level Parallelism (ILP)
	Slide 6: Basic Blocks
	Slide 7: SuperScalar & Superpipelining
	Slide 8: Overview
	Slide 9: 2-way Superscalar
	Slide 10: Sample Scheduling
	Slide 11: Scheduling Strategies
	Slide 12: Static Scheduling
	Slide 13: Out-of-order Execution
	Slide 14: Out-of-Order Motivation
	Slide 15: Dispatch, Execution, and Completion
	Slide 16: Branch Handling
	Slide 17: Data Hazard Stalling
	Slide 18: EX Stage Stalling
	Slide 19: Where to Stall?
	Slide 20: Forwarding in OoO Execution
	Slide 21: Tomasulo’s Plan
	Slide 22: New Data Hazards
	Slide 23: RAW, WAR, and WAW
	Slide 24: WAW can easily occur
	Slide 25: RAW, WAR, and WAW
	Slide 26: RAW, WAR, and WAW
	Slide 27: Register Renaming
	Slide 28: Register Renaming
	Slide 29: Increasing Number of Registers
	Slide 30: Register Renaming
	Slide 31: Tomasulo's Approach to Renaming
	Slide 32: OoO Execution & Tomasulo's Algorithm
	Slide 33: Tomasulo’s Algorithm
	Slide 34: Tagging process
	Slide 35: Tagging process: CC1
	Slide 36: Tagging process: CC2
	Slide 37: Tagging process: CC3
	Slide 38: Tagging process: CC4
	Slide 39: Tagging process: CC5
	Slide 40: Tagging process: CC6
	Slide 41: Tagging process: CC7
	Slide 42: Tagging process: CC8
	Slide 43: Tagging process: CC9
	Slide 44: Tagging process: CC10
	Slide 45: Tagging process: CC11
	Slide 46: Tagging process: CC12
	Slide 47: Tagging process: CC13
	Slide 48: Register Renaming
	Slide 49: Unique TAGs
	Slide 50: Tags (= Tokens)
	Slide 51: TAG FIFO
	Slide 52: Organization for OoO Execution
	Slide 53: Front-End & Back-End
	Slide 54: More Tomasulo Algorithm
	Slide 55: Memory Disambiguation
	Slide 56: Load/Store Queue (LSQ)
	Slide 57: Memory Disambiguation
	Slide 58: Address Calculation for LW/SW
	Slide 59: Memory Disambiguation
	Slide 60: LAST Considerations For Out-Of-Order Execution/Completion
	Slide 61: Issue Unit
	Slide 62: Issue Queue Priority
	Slide 63: LSQ Ordering/Priority
	Slide 64: Conditional Branches
	Slide 65: Structural Hazards + Exceptions
	Slide 66: BACKUP
	Slide 67: Tagging Registers: CC1
	Slide 68: Tagging Registers: CC2
	Slide 69: Tagging Registers: CC3
	Slide 70: Tagging Registers: CC4
	Slide 71: Tagging Registers Review
	Slide 72: Organization for OoO Execution
	Slide 73: Multiple Functional Units
	Slide 74: Multiple Functional Units
	Slide 75: Where to Stall?
	Slide 76: Functional Unit Latencies
	Slide 77: OoO Execution w/ ROB

