
8.1

EE 457 Unit 8

Exceptions
“What Happens When Things Go Wrong”

8.2

BACKGROUND

User and Kernel Mode, Coprocessor Registers

8.3

MIPS Programmer-Visible Registers

• MIPS locates other important
registers in logical "___________"

• Why not just have more
numbered GPRs ($0-$63)?
– Would require ___________ in the

instruction format

• Coprocessor 0 Registers
– Status Register

• Holds various control bits for
processor modes, handling
interrupts, etc.

– Cause Register
• Holds information about exception

• Coprocessor 1 Registers
– Floating-point registers used for

single or double-precision (i.e. at
least 64-bits wide)

MIPS Core

GPR’s

$f0 - $f31

64 or more

Coprocessor 1 –
Floating-point Regs.

Coprocessor 0 –
Status & Control Regs

Status:

Cause:

PC:

Special Purpose Registers

HI:

LO:

$0 - $31

32-bits

8.4

MIPS Coprocessor Register Access

• Normal MIPS instructions _________

access coprocessor registers directly

(since instruction format does not have

enough bits)

• Coprocessor registers can be accessed

via the mfc0 (move from c0) and mtc0

(move to c0) instructions

• mfc0 $gpr,$c0_reg

– R[gpr] = C0[c0_reg]

• mtc0 $gpr,$c0_reg

– C0[c0_reg] = R[gpr]

• Sequence:
– Move value from coprocessor register to

normal GPR

– Process that value with regular MIPS
instructions

– Move value back to coprocessor register

MIPS Core

GPR’s

$f0 - $f31

64 or more

Coprocessor 1 –
Floating-point Regs.

Coprocessor 0 –
Status & Control Regs

Status:

Cause:

PC:

Special Purpose Registers

HI:

LO:

$0 - $31

32-bits

8.5

User vs. Kernel Mode

• Kernel mode is a special mode of the processor for executing trusted (___)

code

– Certain _____________________ are only allowed to code running in kernel

mode

– OS and other system software should run in kernel mode

• User mode is where user applications are designed to run to limit what

they can do on their own

– Provides protection by forcing them to use the OS for many services

• User vs. kernel mode determined by some bit(s) in some processor control

register

– x86 Architecture uses lower 2-bits in the CS segment register (referred to as

the Current Privilege Level bits [CPL])

– MIPS: User Mode bit in the processor status register

• On an exception, the processor will automatically switch to

kernel mode

8.6

Kernel Mode Privileges

• Privileged instructions

– User apps. shouldn’t be allowed to
disable/enable interrupts, change
memory mappings, etc.

• Privileged Memory or I/O access

– Processor supports special areas of
memory or I/O space that can only be
accessed from kernel mode

• Separate stacks and register sets

– MIPS processors can use “shadow”
register sets (alternate GPR’s when in
kernel mode).

Kernel

Space

Address
Space

0x00000000

User

Space

0xc0000000

0xffffffff

8.7

EXCEPTIONS OVERVIEW

8.8

What are Exceptions?

• Exceptions are "rare" events that cause a ______ in

normal ___________________

• Can be synchronous (called by an instruction in the

program)

– Traps or __________ (calls from user apps to OS functions)

• Can be asynchronous (triggered by the hardware)

– _________________

– _________________

• Response: The processor _____________ must call a

"predetermined" ___________ routine (aka

"handler" or "service routine")

8.9

Exception Processing

• Exception handling is similar to a subroutine ('jal') call but performed

automatically by the hardware

– Must save PC of offending instruction, program state, and any information needed to

return afterwards

– _____________ the pipeline using the hardware already present for branches/jumps

– Execute the software handler by loading the ______ with its start address (must be preset

or looked up by the hardware without help from software)

– Execute the handler routine to deal with the exception

– Return and restore the state

User Program

System Exception

Handler

Return from

exception

1. Exception occurs

2. Save State

3. Call handler

4. Restore state

5. Return

6. Resume normal

execution

Exception occurs

8.10

Sync. Exceptions: System Calls/Traps

• A controlled-method for user application calling OS

services

• Switches processor to “kernel” mode of the processor

where certain privileges are enabled that we would not

want normal user apps to access

MIPS System call

addi $v0,$0,5 // $v0 = service num.

syscall // enter OS

TF

Trap Flag

PSW

Processor

Status Word

Instruction Tracing and Breakpoint
Single-stepping & Breakpoint in x86x86 System Call (old DOS OS call)

IN AH, 01H

INT 20H // getchar()

8.11

Exception Examples 1

ActionStageExample

Take ASAPWBI/O Device Interrupt

• A peripheral device requires action from the CPU

(Interrupt I/O Driven)

PreciseIDOperating System Calls (“Traps”) [e.g. File Open]

• Trap instruction causes processor to enter kernel mode

PreciseIDInstruction Tracing and Breakpoints

• When TRAP Bit is set all instructions cause exceptions

• Particular instructions are flagged for exceptions

(debugging)

PreciseEXArithmetic Exceptions

• Overflow or Divide-by-0

8.12

Exception Examples 2

ActionStageExample

Precise

Page Faults

• Virtual memory access fault (no Page Table entry resident in

memory)

Abort

Process

EXMisaligned Memory Address

• Address is not multiple of operand size

Abort

Process

Memory Protection Violations

• Address is out of bounds; RWX violation

Precise

(Why not

abort)

Undefined Instructions

• Decode unit does not recognize opcode or other fields

• Could be useful to extend the instruction set

Take ASAPWBHardware failure

• Unrecoverable hardware error is detected; execution is

compromised

Take ASAPWBPower Failure

• Power has fallen below a threshold; Trap to software to save as

much state as possible

8.13

Review: Exception Processing

• Save necessary state to be able to restart the process

– Save ____of offending instruction

• Call an appropriate _______________ to deal with

the error / interrupt / syscall

– Handler identifies cause of exception and handles it

– May need to save more state

• Restore state and return to offending application (or

kill it if recovery is impossible)

8.14

MIPS Coprocessor 0 Registers

• Status Register

– Enables and disables the handling of exceptions/interrupts

– Controls user/kernel processor modes

• Kernel mode allows access to certain regions of the address space

and execution of certain instructions

• Cause Register: Indicates which exception/interrupt

occurred

• _______________ Register

– Indicates the address of the instruction causing the

exception

– This is also the instruction we should return to after

handling the exception (similar to ________ for _____)

8.15

Status Register

• Allows software to understand the state of the processor and

to control whether certain exceptions (interrupts) are ignored

• Register 12 in coprocessor 0

– IM[7:0] – Interrupt Mask bits (1 = ignore / 0 = allow)

– UM – User Mode (1 = User mode / 0 = Kernel Mode)

– ERL/EXL = Exception/Error Level

• 1 = Already handling exception or error / 0 = Normal exec.

• If either bit is ‘1’ processor is also said to be in kernel mode

– IE = Interrupt Enable

• 1 = Allow unmasked interrupts / 0 = Ignore all interrupts

U
M

E
X

L

IE

31 15 8 4 2 1 0

0 0IM
0 0 0 0IM
1

IM
2

IM
3

IM
4

IM
5

IM
6

IM
7

0000 0000 0000 0000
Status

Register E
R

L
8.16

Cause Register

• Register 13 in coprocessor 0

• Bit definitions

– BD – Branch Delay

• The offending instruction was in the branch

delay slot

• EPC points at the branch but it was EPC+4

that caused the exception

– PI[7:0] – Pending Interrupt

• 1 = Interrupt Requested / 0 = No interrupt

requested

– Exception Code – Indicates cause of

exception (see table)

Cause

Register

31 15 8 7 6 2 1 0

0 0P
I0 0P
I1

P
I2

P
I3

P
I4

P
I5

P
I6

P
I7000 0000 0000 0000 Exception Code

B
D

CauseCode

Interrupt (HW)0

Load (4), Store (5)

Address Error

4, 5

Instruc. (6), Data (7) Bus

Error

6, 7

Syscall8

Breakpoint9

Reserved Instruc.10

CoProc. Unusable11

Arith. Overflow12

Trap13

Floating Point15

8.17

EPC Register

• Exception PC holds the address of the offending

instruction

– Can be used along with ‘Cause’ register to find and correct

some error conditions

• _______ instruction used to return from exception

handler and back to execution point in original code

(unless handling the error means having the OS kill

the process)

– _______ Operation: PC = EPC

31 0
EPC =

Exception PC
Address of instruction that generated the exception

8.18

Problem of Calling a Handler

• We can't use explicit jal instructions to call

exception handlers since we don’t

.text

MAIN: ----

jr $ra

Many instructions could cause
an error condition. Or a

hardware event like a keyboard
press could occur at any point in

the code.

8.19

Handler Calling Methods

• Since we don’t know when an exception will occur there must be a preset

location where an exception handler should be defined or some way of telling

the processor in advance where our exception handlers will be located

Kernel

Space

Method 1

0x00000000

User

Space

0x80000000

0xffffffff

0x80000180

Exception

Handler

Kernel

Space

Method 2

0x00000000

User

Space

0x80000000

0xffffffff

0x80000180
Exception

Handler

INT 1 Hand.

INT 2 Hand.

INT n Hand.

0x80000200

0x80000300

0x80000???

Kernel

Space

Method 3

0x00000000

User

Space

0x80000000

0xffffffff

Handler 1

INT 1 Hand.

INT 2 Hand.

x2

x1

x3

addr x1
addr x2
addr x3

8.20

Solution for Calling a Handler

• Method 1: Single _________________ for master
handler
– Early MIPS architecture defines that the exception

handler should be located at 0x8000_0180. Code there
should then examine CAUSE register and then call
appropriate handler routine

• Method 2: ____________________ (usually for
interrupts)
– Each interrupt handler at a different address based on

interrupt number (a.k.a. vector) (INT1 @ 0x80000200,
INT2 @ 0x80000300)

• Method 3: _____________________
– Table in memory holding start address of exception

handlers (i.e. overflow exception handler pointer at
0x0004, FP exception handler pointer at 0x0008, etc.)

8.21

"PRECISE" EXCEPTIONS

8.22

Why are Exceptions So Important?

• Exceptions are part of the ISA (Instruction Set Architecture)

specification

• Any implementation of an ISA must comply with its

“Exception model”

• Precise exception handling constrains what the architecture

can do

– Exceptions are rare yet we must functionally support them

– If we did not have to comply to the exception model, architects would

have a lot more freedom in their design

When designing micro-architectures for the common case,

exceptions must always be in the back of your mind!

8.23

Precise Exceptions

• Precise Exceptions: A pipelined or advanced out-of-

order execution processor's exception handling

should _______________________to exceptions on

a single-cycle CPU.

– Any instructions BEFORE the offending instruction should

____________ before the handler runs

– Any instructions AFTER the offending instruction should

not appear to have executed (_____________memory or

register)

• Very difficult in architectures in which multiple

instruction execute concurrently (i.e. our 5-stage

pipeline)

8.24

Exceptions in the 5-Stage Pipeline

• To support precise exceptions in the 5-stage pipeline we

must…

– Identify the pipeline stage and instruction causing the exceptions

• Any stage can trigger an exception (except for the WB stage)

– Identify the cause of the exception

– Save the process state at the faulting instruction

• Including registers, PC, and cause

• Usually done by software exception handler

– Complete the execution of instructions preceding the faulting

instruction

– Flush instruction following the faulting instruction plus the faulting

instruction

– Transfer control to exception handler

Use many of the same mechanisms as conditional branches.

8.25

Exception in EX stage

In
s
tr

u
c
ti
o
n
 R

e
g
is

te
r

Register File

Read
Reg. 1 #

Read
Reg. 2 #

Write
Reg. #

Write
Data

Read
data 1

Read
data 2

Sign
Extend

P
ip

e
lin

e
 S

ta
g
e
 R

e
g
is

te
r

A
L

U Res.

0

1

Sh.

Left 2

P
ip

e
lin

e
 S

ta
g
e
 R

e
g
is

te
r

D
-C

a
c
h

e

P
ip

e
lin

e
 S

ta
g
e
 R

e
g
is

te
r

0

1

16 32

5

5

0

1

rs

rt

rs

rt

rd

0

2

3

0

2

3

Forwarding
Unit

ALUSrcA
L

U
S

e
lB

ALUSelA

I-
C

a
c
h

e

P
C

.

PCWrite
IR

W
ri

te

HDU

Control E
x

M
e
m

W
BStall

M
e
m

W
B

W
B

• Save EPC=PC+4 of offending instruction

• Record Cause

• Add 3rd input of 0x8000_0180 to PCSrc Mux (start

address of exception handler)

+4

IF.Flush

M
e

m
T

o
R

e
g

M
e

m
R

e
a

d
 &

M

e
m

W
rite

FLUSH

Reset

1

1

+

=

Branch

EX.RegWrite

EX.RegDst

RegDst

EPC

Cause

0

1

2

8
0

0
0

_
0

1
8

0

8.26

Exception Handling Complexities

• When the arithmetic exception is triggered in EX, we must flush IF, ID and

EX and start fetching from 0x8000_0180

• Note that the handler’s software must have access to CAUSE and EPC

registers to figure out what to do

• Realize though exceptions may occur in all but the WB stage

– 4 possible values of __________________

– Software needs to know which value is the actual cause and EPC

– Depending on the stage where the exception occurs, we have to flush

different stages

IM Reg ALU DM Reg

EPC

Cause

EPC

Cause

EPC

Cause

EPC

Cause

EPC

Cause

But it gets worse!!!

Muxes

8.27

More Complex Complexities?

• What happens if multiple exceptions occur in the

same cycle from different instructions in different

stages
– Should take the “oldest” exception in “___________________ order”

– “Program/process order” = Order if only ____ instruction were

executed at a time (= _________ order)

– Thus oldest instruction is the one deepest (furthest) into the pipeline

– There is no point in dealing with all exceptions, just the oldest one

– Let software deal with the oldest and then restart…if later instruction

were going to generate an exception, then they will __________

upon restart and we can handle it then

But it gets worse!!!

IM Reg ALU DM Reg

I-Fetch
TLB miss /
Page Fault

Illegal
Instruction

SW address
computation

LW
TLB miss
Page hit

(no exception)

Cycle n
We can start handling illegal instruction exception. What

could happen on cycle n+1?

xor $9, $9, $9

lw $2, 0($3)

sw $4, 0($3)

illegal

add $5, $6, $7

Program Order

8.28

More Complex Complexities?

• Remember we must complete

instruction preceding the faulting

instruction

• Remember we are supposed to handle

exceptions in ___________ order (not

_______________ order)

IM Reg ALU DM Reg

I-Fetch
TLB miss /
Page Fault

Illegal
Instruction

SW page fault
LW

Which exception should we have

handled?
Cycle n+1

xor $9, $9, $9

lw $2, 0($3)

sw $4, 0($3)

illegal

add $5, $6, $7

Program Order Temporal Order

2

1a

1b

8.29

Simplify the Process

• It is not practical to take an exception in the cycle when it happens

– Multiple exceptions in the same cycle

– It is complex to take exception in various pipeline stages since we have to take them in program

order and not temporal order

• Instead, we will just tag an instruction in the pipeline if it causes and exception

(recording the cause and EPC)

– Turn the offending instruction into a NOOP (bubble)

– Let the instructions continue to flow down the pipeline and handle the offending instruction’s

execution in the WB stage

• The cause and status info is carried down the pipe via stage registers

– Exception remains ____________ until it reaches the WB stage

– Exceptions are then processed into the WB stage

IM Reg ALU DM Reg

EPC

Cause

EPC

Cause

EPC

Cause

EPC

Cause

EPC

Cause

Muxes Actual EPC & Cause Register

8.30

Handling in WB Stage

• Handling in WB stage helps deal with temporal vs. program

order issues

CC1 CC2 CC3 CC4 CC5 CC6 CC7 CC8

IM Reg ALU DM Reg

IM Reg ALU DM Reg

IM Reg ALU DM Reg

IM Reg ALU DM Reg

40: LW $1,0($8)

44: AND $12,$2,$5

48: OR $13,$6,$2

52: ADD $14,$2,$2

…

8.31

Simplified Processing

• Precise exceptions are now taken in WB along with other HW interrupts

• Faulting instructions “carry” their cause and EPC values through the

pipeline stage registers

• Only one set of EPC and CAUSE registers in the WB stage

• When an instruction flagged as faulting reaches the WB stage

– Flush IF, ID, EX, MEM

• Make sure that if a _________________ stage that it is not allowed to write

– Load the handler address in the PC

– Make sure EPC & Cause are software-readable (movable to GPR’s)

This is a general approach to dealing with exceptions in

the processor:

Wait until the faulting instruction exits the machine to

trigger the handling procedure

