
1

EE 457 Unit 7c

Virtual Memory

2

Virtual Memory Concept

• A mechanism for hiding the details of how much physical

memory exists and how it’s being shared

• Allows the OS to

– Efficiently share the physical memory between several _______

___________ and provide ___________ against each other

– Remove the need of the programmer to know _______________ is

physically present and/or give the illusion of ____________ physical

memory than is present

• Use MM as a cache for multiple programs and their data as they

run using ________________________ as the home location

3

Memory Hierarchy & Caching

• Lower levels act as a cache for upper levels

Disk / Secondary Storage

~1-10 ms

Main Memory

~ 100 ns

L2 Cache

~ 10ns

L1 Cache

~ 1ns

Registers

L1/L2 is a

“cache” for

main memory

Virtual memory

provides each

process its own

address space in

secondary storage

and uses main

memory as a cache

4

Virtual Memory Motivation

• Virtual memory is largely discussed in operating systems

courses

– We will focus on HW support for VM

• Magnetic hard drive consists of

– Double sided surfaces/platters (with R/W head)

– Each platter is divided into concentric tracks of small sectors that each

store several thousand bits

Surfaces

Read/Write Head 0

Read/Write Head 7

Read/Write Head 1

…

Track 0

Track 1

Sector 0

Sector 1

Sector 2

• Seek Time: Time needed to

position the read-head above

the proper track

• Rotational delay: Time needed

to bring the right sector under

the read-head

• Depends on rotation

speed (e.g. 5400 RPM)

• Transfer Time:

• Disk Controller Overhead:

____ ms

____ ms

0.1 ms

+ 2.0 ms

~___ ms

5

Address Spaces

• Physical address spaces

corresponds to the actual system

address bus width and range (i.e.

main memory and I/O)

• Each process/program runs in its

own private “virtual” address

space

– Virtual address space can be larger

(or smaller) than physical memory

– Virtual address spaces are protected

from each other

32-bit _________

Address Space w/

only 1 GB of Mem

0x00000000

0xffff ffff

Mem.

I/O

Not

used

0x3fffffff

Not

used

0x80000000

0xbfffffff

Mem.

0x00000000

0xffff ffff

32-bit ____________

Address Spaces

(> 1GB Mem)

I/O

Mem

Program/Process

1,2,3,…

6

Virtual Address Spaces

• Virtual address spaces are

broken into blocks called

• Depending on the

program, much of the

virtual address space will

• All ______ pages are

“housed” in secondary

storage (hard drive)

0

1

2

3

unused

0

1

2

0

1

2

3

Secondary

Storage

…

unused

…

unused

…

unused

0

1

2

3

0

1

2

0

1

2

3

Used/Unused Blocks in

Virtual Address Space

Mem.

0x0000000
0

0xffff ffff

Fictitious Virtual

Address Spaces

I/O

Mem

Program/Process

1,2,3,…

7

Physical Address Space

• Physical memory is broken

into page-size blocks called

• Multiple programs are run

concurrently and their

pages (code & data) need

to reside in physical

memory

• Physical memory acts as a

_____ for pages from the

secondary storage as each

program executes

0x00000000

0x3fffffff
frame

1GB Physical

Memory and

32-bit Address

Space

…

frame

I/O

and

un-

used

area

0xffffffff

0

1

2

3

unused

0

1

2

0

1

2

3

Secondary

Storage

…

unused

…

unused

…

unused

0

1

2

3

0

1

2

0

1

2

3

Fictitious Virtual

Address Spaces

8

Physical Memory Usage

• HW & the OS will _____ the

virtual addresses used by the

program to the physical

address where that page

resides

• If an attempt is made to

access a page that is not in

physical memory, a

__________________ is

declared and the ____ brings

in the page to physical

memory (possibly evicting

another page)

0x00000000

0x3fffffff
frame

1

Physical

Memory and

Address Space

0

3

2

0

frame

I/O

and

un-

used

area

0xffffffff

0

1

2

3

unused

0

1

2

0

1

2

3

Secondary

Storage

…

unused

…

unused

…

unused

0

1

2

3

0

1

2

0

1

2

3

Fictitious Virtual

Address Spaces

9

Page Size and Address Translation

• Usually pages are _________ in size to amortize the large access time

• Example: 32-bit virtual & physical address, 1 GB physical memory,

4 KB pages

• Virtual page number to physical page frame translation performed by HW

unit = MMU (Mem. Management Unit)

Offset within pageVirtual Address Virtual Page Number

31 __ __ 0

Offset within pagePhysical Address ____________________

31 30 __ __ 0

00

Copied

12

Translation
Process

29

__

__

10

VM Design Implications

• SLOW secondary storage access on page faults (10 ms)

– Implies page size should be ___________ (i.e. once we’ve taken

the time to find data on disk, make it worthwhile by accessing a

reasonably large amount of data)

– Implies the placement of pages in main memory should be

__________ to reduce ___________ and maximize page hit

rates

– Implies a “page fault” is going to take so much time to even

access the data that we can handle them in _______ (via an

exception) rather than using HW like typical cache misses

– Implies eviction algorithms like ______ can be used since

reducing page miss rates will pay off greatly

– Implies _________ (write-______ would be too expensive)

11

Address Translation Issues

• A virtual page with 20-bit VPN can be sitting anywhere in the

256K = 218 page frames in physical memory

– TAG = 20 + 1 = 21 bits, _________ comparators

• This is impractical

• Instead, most systems implement full associativity using a

look-up table = PAGE TABLE

Frame 2

Frame 1

Frame 0

…

Frame n

VPN

Tag (VPN)V M

Page Frame #

…

Tag (VPN)V M

Tag (VPN)V M

Tag (VPN)V M

0

2

1

n

Virtual Address

offset

=

=

=

=

=

12

Analogy for Page Tables

• Suppose we want to build a caller-ID mechanism for your

contacts on your cell phone

– Let us assume 1000 contacts represented by a 3-digit integer (0-999) by

the cell phone (this ID can be used to look up their names)

– We want to use a simple Look-Up Table (LUT) to translate phone numbers

to contact ID’s, how shall we organize/index our LUT

213-745-9823

LUT indexed w/

contact ID

000

LUT indexed w/ all

possible phone #’s

626-454-9985

…

323-823-7104

818-329-1980

001

002

999

null000-000-0000

..

…

null

000213-745-9823

999-999-9999

Sorted LUT indexed

w/ used phone #’s

436

213-745-9823 000

…

002

999323-823-7104

213-730-2198

818-329-1980

Does / Doesn’t Work Does / Doesn’t Work Does / Doesn’t Work

1 2 3

13

Analogy for Page Tables

• Can we use the table indexed using all possible phone numbers (because it only

requires 1 access) but somehow reduce the size especially since much of it is unused?

• Do you have friends from every ________? Likely contacts are clustered in only a few.

• Use a 2-level organization

– 1st level LUT is indexed on __________ and contains pointers to 2nd level tables

– 2nd level LUT’s indexed on __________ numbers and contains contact ID entries

LUT indexed w/ all

possible phone #’s

null

…

…

000

1st Level Index =

Area Code

null000-000-0000

..

…

null

000213-745-9823

999-999-9999

…

Table

2nd Level Index =

000-0000

999-9999

Table

000-0000

999-9999

If only 2 used

area codes

then only ____

entries rather

than 1010

entries

14

Analogy for Page Tables

• Could extend to 3 levels if desired

– 1st Level = Area code and pointers to 2nd level tables

– 2nd Level = First 3-digits of local phone and pointers to 3rd level tables

– 3rd Level = Contact ID’s

null

…

…

000

213

323

1st Level Index =

Area Code

Area Code

…

2nd Level Index =

Local Phone #

000

999

000

999

323

Table

213

Table

null

null

745

823

null

null

3rd Level Index =

Local Phone #

000

999

213-745

Table

null

000

null

9823

000

999

323-823

Table

null

999

null

7104

15

Analogy for Page Tables

• If we add a friend from area code 408 we would have to add a second and

third level table for just this entry

null

…

…

000

213

323

1st Level Index =

Area Code

Area Code

…

2nd Level Index =

Local Phone #

000

999

000

999

323

Table

213

Table

null

null

745

823

null

null

3rd Level Index =

Local Phone #

000

999

213-745

Table

null

000

null

9823

000

999

323-823

Table

null

999

null

7104

16

Page Tables

• Page table is built by the OS and maintained in the _______________ at some

chosen place by the OS

– Allows virtual memory page placement to be fully associative in physical memory

– One page table per process and indexed on virtual address

– PTBR is a ____________ register pointing to the start address of currently executing process’ page

table

VAOffset w/in pageVirtual Page Number

31 12 11 0

Page Table Size

= ____ entries * ___ bits

= approx. _______________

PTBR = Page Table Base Reg.

Offset w/in page PAPhys. Frame #

31 12 11 0

00

Page Frame Number

…

Valid /

Present

20

CPUMemory

18

17

Multi-Level Page Table

• VPN is broken into fields to index each level of

the multi-level page table

Offset w/in page

Virtual Address

Level
Index 1

31 12 11 022 21

Level
Index 2

PTBR

Offset w/in pagePhysical Address Phys. Frame #

31 12 11 0

00

18 29

1010

1st Level Table

2nd Level Table

18

Another View

0

1

2

1023

0

1

2

1023

0

1

2

1023

0

1

2

1023

Offset w/in page
Level

Index 1

31 12 11 022 21

Level
Index 2

1010

Pointer to start of

2nd Level Table

PPFN’s

frame

I/O

and

un-

used

area

frame 0x0

Entries whose pages are not in

physical memory essentially “point”

to where that page’s data

19

To Tag or Not?

• Fully associative caches needed to store

TAGs to check if the block is present.

• Do we need to store tags with the PPFN in

the page table?

• Consider a book, assuming we start

numbering pages at 1, do we need to print

the page number along with the page

content?

– ____ since every page exists we can just

– Since we have an entry in the Page Table for

every Virtual Page Number, we _____

_____________ to tag our entries

Page Table Size

= 220 entries * 19 bits

= approx. 220*4bytes = 4MB

Page Frame Number

…

Valid /

Present

Memory

20

Handling Page Faults

• Valid bit (1 = desired page in memory / 0 = page not present / page fault)

• Referenced = To implement ___________________________

• Protection: Read/Write/eXecute

Page Frame Number

Valid / Present

Modified / Dirty

Referenced

Protection

Cacheable

21

Page Fault Steps

• HW will…

– Record the offending address, the EPC, and cause (page

fault)

• SW will…

– Pick an empty frame or ____________________

– __________ the evicted page if it has been _______

• May block process while waiting and yield processor

– Bring in the desired page and update the _________

• May block process while waiting and yield processor

– Restart the offending instruction

22

Page Replacement Policies

• Possible algorithms: LRU, FIFO, Random

• Since page misses are so costly (slow) we can afford to spend sometime

keeping statistics to implement LRU

• Implementing exact LRU would require updating statistics every access (using

some kind of timestamp). This is too much to do in HW and we don’t want to

use SW when we have hits

• HW will implement simple mechanism that allows SW to implement a

_______________ algorithm

– HW will set the “Referenced” bit when a page is used

– At certain intervals, SW will use these reference bits to keep _________ on which

pages have been used in that interval and then ______ the reference bits

– On _____________, these statistics can be used to find the pseudo-LRU page

23

Cache & VM Comparison

Cache Virtual Memory

Block Size 16-64B 4 KB – 64 MB

Mapping Schemes Direct or Set Associative Fully Associative

Miss handling and

replacement

HW SW

Replacement Policy Full LRU if low associativity

/ Random is also used

Pseudo-LRU can be

implemented

24

SPARC VM Implementation

Offset w/in pageIndex 1

8 11 06

Index 2Process ID Index 3

6

0

4095

MMU holds 4096 entry

table (one entry per

context/process)

[Essentially, PTBR for each

process]

Context Table
First

Level Second

Level Third

Level 4K

Page

Desired

word

PPFN

bytes ______

bytes _______

bytes

How many accesses to memory does it take to get the

desired word that corresponds to the given virtual address?

Would that change for a 1- or 2- level table?

Virtual Address:

25

Performance Issues

• Let cache hits = 10ns, memory accesses=100ns

• Assume a program makes an access to data located in cache…

– Without VM, only requires __________ cache access time

– With VM, address must first be translated via the page table (recall page

table is in memory)

• If a single-level, one access to the page table (MM) = 100ns

• If two-levels, two access to the page tables = 200ns

• If three-levels, three access to the page tables = 300ns

• Finally, physical address can access cache = 10 ns (if hit)

• Total time equals __________ (where L=# of Level of Page Table)

• Translation is _____________ as currently implemented!!!

26

Translation Lookaside Buffer (TLB)

• Solution: Let’s create a cache for translations = Translation

Lookaside Buffer (TLB)

• Needs to be small (64-128 entries) so it can be fast, with high degree of

___________ (at least _______ and many times _________________) to

avoid conflicts

– On hit, the PPFN is produced and concatenated with the offset

– On miss, a page table walk is needed

TLB

CacheCPU
VA

PA data

10 ns

10 ns

10+10=20 ns

27

Translation Lookaside Buffer (TLB)

Offset w/in page Virtual AddressVirtual Page Number

31 12 11 0

Page Frame #

Offset w/in page
Physical Address

Phys. Frame #

31 12 11 0

V MTag = VPN

=

=

=

=

TLB

Fully

Direct

Set-Assoc.

20

12

TLB only has a few

entries so now we

need to store tags.

Phys. Tag Index
Byte

Offset

Data Data Data DataTagV

=

1,

Hit

Desired Word

8 8 8 8

32

1416

TLB

Data Cache

Data Cache

Fully

Direct

Set-Assoc.

28

TLB Block Size

• A block in cache may be

– 1 word

– 2 words

– 4 words

• Consider a direct mapped cache mapping can the

word field be 0-bits?

• But an entry in the TLB is _____________

– ____________…TLB mappings have ____________

Tag Block Word
Byte

Offset

18 10 2 2

29

A 4-Way Set Associative TLB

• 64 entry 4-way SA TLB (wet field indexes each “way”)

– On hit, page frame # supplied quickly w/o page table access

Offset w/in page Virtual AddressVirtual Page Number

31 12 11 0

Offset w/in page Physical AddressPhys. Frame #

31 12 11 0

SetTag

Tag PF# Tag PF#Tag PF# Tag PF#

= = = =

Way 1Way 0 Way 2 Way 3
__

__

What is the page size? _____

Tag size? __________

Comparator Width? _______

30

Virtual Memory System Examples

Microprocessor AMD Opteron P4 PPC 7447a

Virtual Address 48-bit 32- or 48-bit 52-bit

Physical Address 40-bit 36-bit 32- or 36-bit

TLB Entries

(I/D/L2 TLB)

L1: 40/40

L2: 512/512

L1: 128/128 L1: 128 / 128

TLB Mapping L1: Fully

L2: 4-way SA

Fully

(? 4-way)

2-way set

associative

Min. Page Size 4 KB 4 KB 4 KB

Notes: Large VA’s include ASID (process ID’s) and other segment information

Sources: H&P, “CO&D”, 3rd ed., Freescale.com,

31

TLB Issues

• Because of high degree of associativity and limited working set

of pages (usually) we can get VERY HIGH hit rates for the TLB

– Variable page size settable by OS to allow for different working set sizes

– Example: 64 TLB entries and 4 KB pages = 256KB

• Often times, separate TLB’s for instruction and data address

translation

32

TLB Miss Process

• On a TLB miss, there is some division of work between the hardware (MMU) and

OS

• Option 1

– MMU can perform the TLB search followed by a page table walk if needed

– If page fault occurs, OS takes over to bring in the page

• Option 2

– MMU performs TLB Search

– If TLB miss, OS can perform page table walk and bring in page if necessary

• When we want to remove a page from MM

– First flush blocks from ______ belonging to that page (writing back if necessary)

– ________________ of those blocks

– ________________ entry (if any) corresponding to that page

• If D=1, set dirty bit in page table

– If page is dirty, copy page back to the disk

– Simple way to remember this…

• If _____________ leave a party then the _____________ (cache blocks & TLB entries) must

leave too

33

Other Issues

• Property of Inclusion

– Cache contents are a (subset / superset) of main memory contents

– Main memory contents are a (subset / superset) of page/swap file on disk

– TLB contents are a (subset / superset) of _______________________

34

Cache, VM, and Main Memory
TLB VM Cache Possible Y/N & Description

Hit Hit Hit

Hit Hit Miss

Miss Hit Hit

Miss Hit Miss

Miss Miss Miss

Hit Miss Miss

Hit Miss Hit

Miss Miss Hit

Taken from H & P, “Computer Organization” 3rd, Ed.

35

Cache Addressing with VM

• Cache review

– Set or block field indexes LUT holding tags

– 2 steps to determine hit:

• Index (lookup) to find tags (using block or set bits)

• Compare tags to determine hit

• Sequential connection between indexing and tag comparison

• Rather than waiting for address translation and then

performing this two step hit process, can we overlap

the translation and portions of the hit sequence?

– Yes if we choose page size, block size, and set/direct

mapping carefully

36

Cache Index/Tag Options

• Physically indexed, physically tagged (PIPT)

– Wait for full address translation

– Then use physical address for both indexing and

tag comparison

• Virtually indexed, physically tagged (VIPT)

– Use portion of the virtual address for indexing

then wait for address translation and use physical

address for tag comparisons

– Easiest when index portion of virtual address

w/in offset (page size) address bits, otherwise

aliasing may occur

• Virtually indexed, virtually tagged (VIVT)

– Use virtual address for both indexing and

tagging…No TLB access unless cache miss

– Requires invalidation of cache lines on context

switch or use of process ID as part of tags

Offset VAVPN

31 12 11 0

Offset PAPFN

31 12 11 0

Set/BlkTagP
IP

T

Offset VAVPN

31 12 11 0

Offset PAPFN

31 12 11 0

Tag

Set/Blk

Offset VAVPN

31 12 11 0

Offset PAPFN

31 12 11 0

Set/BlkTag

V
IP

T
V

IV
T

37

Multiple Processes

• Recall each process has its own virtual address space, page

table, and translations

• How does TLB handle context switch

– Can choose to only hold translations for _______________ and thus

______________ all entries on context switch

– Can hold translations for _______________ concurrently by

concatenating a process or address space _____________ to the VPN

tag

Offset VAVPN

31 12 11 0

Unique ID for

each process

Page Frame # V MTag

=

=

=

=

38

Shared Memory

• In current system, all memory is

private to each process

• To share memory between two

processes, the OS can allocate

an entry in each process’ page

table to point to the same

physical page

• Can use different protection

bits for each page table entry

(e.g. P1 can be R/W while P2

can be read only)

0

1

2

3

0

1

2

…

…

0

1

2

…
Physical

Memory

Virtual Address

Spaces

P1

P2

39

A Complete VM / Cache Example

• Use the following specification for the following questions

– 64-bit data, 32-bit virtual/physical address

– Page Size: 128KB

– TLB Size: 256 entry 4-way set associative

– Page Table Org.: 3-levels

• A 64 entry A-Table (page directory) followed by several 32 entry B-Tables

(2nd level tables) followed by some number of C-Tables (3rd level)

– Cache Organization

• Cache Size: 512KB

• 8-way set associative

• Block size: 2 words [Word = 64-bits = 8 bytes]

40

Address Bus and Interleaving

• Use the following specification for the following questions

– 64-bit data, 32-bit virtual/physical address

– Cache Organization: Block size: 2 words [1 Word = 64-bits = 8 bytes]

• How many banks would you suggest for interleaving purposes?

2 Banks so we can

quickly get _______

to the ________

when a block is

transferred

Physical Address Word

31

Byte

Proc.

Bank 0
(____)

Bank 1
(____)

/BE_______

64

28

A31-A_

Block ID

8

8

31 __ ____

Byte

31 0
Logical

Address Bus

Logical

Address Bus
____ ____

64-bit Data bus

= ___ bytes

= ___ Byte enables

(/BE[____])

41

TLB Mapping

• Use the following specification for the following questions

– 64-bit data, 32-bit virtual/physical address

– Page Size: 128KB

– TLB Size: 256 entry 4-way set associative

Logical

Address Bus

Page Size =

of TLB Sets:

OffsetVPN

31 __ __ 0

Tag Set

42

Page Table Mapping

• Use the following specification for the following questions

– Page Size: 128KB

– Page Table Org.: 3-levels

• A 64 entry A-Table (page directory)

32 entry B-Tables (2nd level tables)

some number of C-Tables (3rd level)

Virtual Address

VPN = ___-bits

Level 1 Page Table =

Level 2 Page Table =

Level 3 Page Table =

Offset=___-bitsVPN=___-bits

31 __ _ 0

Level 1 Level 2 Level 3

43

Data Cache Design

• Use the following specification for the following questions

– Cache Organization

• Cache Size: 512KB

• 8-way set associative

• Clock size: 2 words [Word = 64-bits = 8 bytes]

64-bit data = 8 (23) bytes per word

Block Size =

of Cache blocks =

of Sets =

of Tag bits =

Logical

Address Bus
Word

3

0

Tag Set

31

Byte

44

Data Cache Implementation

• How many comparators and of what size are needed to

determine cache hit or miss?

• What is the size of the TAG RAM’s?

__ comparators of __-bits

Tag RAM Size = ____

Logical

Address Bus
Word

3

0

Tag Set

31

Byte

Set

Tag RAM

DI[__:0]

DO[__:0]

A____

A______

+ V-bit

A[__:0]

= Hit/Miss

Tag

x 8
__

__

__

