I USC Viterbi

School of Engineering

EE 457 Unit 7a

Cache and Memory Hierarchy

I USC Viterbi

School of Engineering

Memory Hierarchy & Caching

* Use several levels of faster and faster memory to hide delay of

upper levels

Registers

L1 Cache
~1ns

L2 Cache
~10ns

Main Memory
~100 ns

Corep Ouo

Secondary Storage
~1-10 ms

Unit of Transfer:
Word, Half, or Byte
(LW, LH, LB or SW, SH, SB)

Unit of Transfer:
Cache block/line
1-8 words
(Take advantage of spatial
locality)

Unit of Transfer:
Page
4KB-64KB words
(Take advantage of
spatial locality)

I USC\ﬁt?FP; _
Cache Blocks/Lines

e Cacheis broken into
or

— Any time data is brought
in, it will bring in the entire \.ow (Word)
block of data

— Blocks start on addresses
of their size

Proc.

Cache bus

128B Cache
[4 blocks (lines) of
8-words (32-bytes)]

Wide (multi-word)
FSB

0x400000
0x400040
0x400080
0x4000c0
0x400100
0x400140

urepy

Aowapy

USC Viterbi

School of Engineering

Cache Blocks/Lines

e Whenever the processor
generates aread or a
write, it will first check the
cache memory to see if it
contains the desired data

— If so, it can get the data
from cache

— Otherwise, it must go to the
slow main memory to get
the data

0x400000
0x400040
0x400080
0x4000c0
0x400100
0x400140

@ Cache forward
desired word

Proc.

Request word @

[] 0 0x400028

Cache does not

have the data and

requests whole

@ Memory responds 1

cache line 400020-
40003f

| USCVit,e.,rbi _
Cache & Virtual Memory

» Exploits the Principle of Locality

— Allows us to implement a hierarchy of memories: cache,
MM, second storage

— Temporal Locality: If an item is reference it will tend to be

* Examples: , , setting a variable

and then reusing it many times

— Spatial Locality: If an item is referenced items whose
will tend to be referenced soon

and

* Examples:

] USCVit?,r,bi ‘
Cache Definitions

* Cache = Desired data is in cache
* Cache = Desired data is not present in cache
* When a cache miss occurs, a new block is brought from MM into cache

- Through: First load the word requested by the CPU and forward it to
the CPU, while continuing to bring in the remainder of the block

- Through: First load entire block into cache, then forward requested
word to CPU
* On a Write-Miss we may choose to not bring in the MM block since writes
exhibit less locality of reference compared to reads
* When CPU writes to cache, we may use one of two policies:
— Write (Store Through): Every write updates both cache and MM
copies to keep them in sync. (i.e. coherent)
— Write : Let the CPU keep writing to cache at fast rate, not updating
MM. Only copy the block back to MM when it needs to be replaced or flushed

| USCWF??P{
Write Through Cache

* Write-through option:
— Update both levels of hierarchy

— Depending on hardware
implementation, higher-level
may have to wait for write to
complete to lower level

Proc.

A
i

dVrite word (hit)

IQCache and memory

— Later when block is evicted, no
writeback is needed

— Multiple writes require multiple
main memory updates

copies are updated

On eviction, no
writeback needed

_________ - 0x400000

II Key Idea: Communicate | 0x400040
EVERY change to main 0x400080
memory as they happen (keeps ! 0x4000c0

\ both copies in sync) _! 0x400100
0x400140

P (S Viterbi (722
Write Back Cache

* Write-back option:
— Update only cached copy

— Processor can continue
quickly

— Later when block is evicted,
entire block is written back
(because bookkeeping is kept
on a per block basis)

Proc.

%Write word (hit)

Cache updates

alue & signals
rocessor to
ontinue

— Notice that multiple writes
only require 1 writeback upon

e On eviction, entire

eviction block written back
__________ 0x400000 L | L1
I’Key Idea: Communicate ONLY Y 0x400040
the FINAL version of ablockto | 0x400080
main memory (when the block is | 0x4000c0
\ gvicted) ~» 0x400100
0x400140

I USC Viterbi

School of Engineering

Mapping and Replacement

Mapping Function: The correspondence between MM blocks
and cache block frames is specified by means of a mapping
function

- Associative (increases _ rate,but ___, slow hardware)
- Mapping (decreased ___ rate, but fast, hardware)

— Associative (compromise of the above two methods)

Replacement Algorithm: How do we decide which of the
current cache blocks is removed to create space for a new
block

— Random

— Least Recently Used (LRU)

I USC Viterbi

hool of Engineering

CACHE MAPPINGS OVERVIEW

. USC Viterbi _

School of Engineerin

Cache Question

Hi, I'm a block of cache
data and I'm lost! Can
you tell me what
address | came from?
oxbfffeffo?
0x0080alc4?

Memory / RAM

0x000

@—@ oxeef

00 Oa 56 c4 81 e@ fa ee
39 bf 53 el b8 00 ff 22

0x010
ox01f
0x020

ox02f

0x420
ox42f

0x7a0
ox7af

| USCVitqb; _
Cache Implementation

* Assume a cache of 4 blocks of 16-bytes each

* Must store more than just data!

* What other bookkeeping and identification info is needed?
— Is the block empty or full?

— Has the block been modified?
— Where did the block come from? Address range of the block data?

Cache

Addr: 0x7c@-ox7cf
Valid Modified

0x72co-7cf

Addr: 0x470-0x47f
Valid Unmodified

0470-47f

Empty

Empty

Empty

Empty

I USC Viterbi

School of Engineering

Implementation Terminology

What bookkeeping values must be stored with the cache in

addition to the block data?

. bit: An additional bit is maintained to indicate that
whether the TAG is valid (meaning it contains the TAG of an
actual block)

— Initially when you turn power on the cache is empty and all valid bits
are turned to ‘0’ (invalid)

. Bit: This bit associated with the TAG indicates when
the block was modified (got dirtied) during its stay in the
cache and thus needs to written back to MM

— Used only with the write-back cache policy

* Tag— Portion of the block’s used to identify

the MM block residing in the cache from other MM blocks

I USC Viterbi

hool of Engineering

Identifying Blocks via Address Range

* Possible methods
— Store start and end address (requires multiple comparisons)

— Ensure block ranges sit on binary boundaries (upper address bits
identify the block with a single value)
* Analogy: Hotel room layout/addressing

4 word (16-byte) blocks:

100 120 200 220

Addr. Range Binary

1t Digit = Floor

2nd Digit = Aisle

3d Digit = Room w/in
aisle

101 121 201 221

000-00f 0000 | 0000 | 0000..1111

202
203
204
205

222
223
224

102
103
104
105

122
123
124

010-01f 0000 | 0001 | @000..1111

125 225

8 word (32-byte) blocks:

2" Floor

1st Flo

To refer to the range of
rooms on the second
floor, left aisle we would
just say rooms 20x

106 126 206 226

107 127 207 227 Addr. Range Binary

108 128 208 228 000-01F 0000 | 000 | @e@e0..11111

109 129 209 229

020-03f 0000 001 00000..11111

Analogy: Hotel Rooms

| USC\ﬁt?Fb; _
Cache Implementation

* Assume 12-bit addresses and 16-byte blocks

* Block offset will range from xx0 to xxF
— Address can be broken down as follows
— A[11:4] = Tag = Identifies block range (i.e., xx0-xxF)
— A[3:0] = Byte offset within the cache block

A[11:4]
Tag

A[3:0]
| Byte ‘

Addr. = 0x124 Addr. = 0xACC
Byte 4 w/in block Byte 12 w/in
120-12F block ACO-ACF

00010010 | 0100 | 1010 1100 | 1100 |

| USC\[it;{b;r_
Cache Implementation

* To identify which MM block resides in each cache
block, the tags need to be stored along with the
"dirty/modified" and "valid" bits

Memory / RAM

0x000
oxoof
0x010
Cache oxo1f
0x020
T=0111 1100 ox02f
Vo1 peo || ::0XA€0= 7 cE
e o || 2:,0470-47F 0x470
ox47f
T=0111 1100
V=0 D=0 Empty. v
T=0000 0000 0x7co
V=0 D=0 Empty ox7cf

I USC Viterbi

School of Engineering

Fully Associative Mapping (S=1, K=N)

. block from memory can be put in
cache block (i.e., no restriction)
— We have to search everywhere to determine hit or miss

Memory / RAM

* Single set with all the blocks

0x000
oxo0f
Cache ox010
~ ox01f
rrenis 1100 | ey e oY 0x020
ox02f
T=0100 0111
vo1 o1 || Cache Blk 1 ...
0x420
T=0100 0111
V=0 D=0 Cache Blk 2 ox42f
T=0000 0000 .
-0 ooo || Cache Blk '3
V=0 b=0 0x720
ox7af

| USCYIFGIrbl
Direct Mapping (S=N, K=1)

* Each block from memory can only be put in location
* Given n cache blocks,
MM block i maps to cache block “ "
* Each set has only 1 block
Memory / RAM
0x000
MMIBIKC 67 | o g | =0mod4
Cache MMecBIK* 1 0x010 —=1mod 4
T=0111 11 oxe1f
v-1 e || Cache Blk @ MMecBIK: 3 0x020 | _ 5 iy
ox02f
oo | Cache BIK:1 MM °BIK' 3°21 | 0x@38 | _ 5 04,
)
T=SigeDS; cidhe BIK®2 MM°BIK 4 X0t =0mod 4
@x050 |
T=3229Dgg Cyche BIIC'S MM°BIK' 5 gxggg =1 mod 4
X
MM°BIK' 6 OxO6T =2mod 4

. USC Viterbi _

School of Engineerin

K-way Set-Associative Mapping

* Given S sets, block i of MM maps to : “imod S”
* Within the set, block can be put
* Given N = total cache blocks,
let K = number of cache blocks per set = N/S
. . Memory / RAM
— K comparisons required for search ox000
X
MM:°B1Kk @ ox0of | = 0 mod 2
Cache MMeBIK: 17| Oxe1e | 4 040
i T=0111 101 oxo1f
v-e Do || Gache Blk @ MMBIK: 2 0x020 | _ () 10 2
Set0 < ox02f
e ool ll Cache BIK'1 MM 'BIK' 3 g%‘ggi =1mod 2
h X
T=0100 001 0x040 | _
ot 1 oo oo | Cache BIK'2 MM°BIK 4 Ox0At =0mod 2
ox050 |
T=6332 ggg CychE BIICY MM °BIK' 5 gxggg =1 mod 2
1 X
MM“B1K' 6 OxOEE =0mod 2

. USC Viterbi

School of Engineering

CACHE MAPPING
IMPLEMENTATION

I USC Viterbi

School of Engineering

Fully Associative Cache Example

Processor Die Main Memory
¢ Cache Mapping Example: \4 Tag Cache Word 0000 000-111
— Fully Associative =+ 1[1[1]0]o0 Data <— 000-111 0001 000-111
~ 4 =)+o1[1]o]0 Data 000-111 0010 000-111
- MM=128 words =)+ 1]o|1]0]o0 Data 000-111 0011 000-111
— Cache Size = =)= 1|1[oo0]1 Data 000-111 0100 000-111
32 words 0101 000-111
— Block Size = Tag Word 0110 000-111
8 words 0111 000-111
o) CPUAddress |1|0|0]|O0|1|1]1 1000 000-111
e Fully Associative mapping 1001 000-111
allows a MM block to be 1]1]0j0j0]1]0 1010 000-111
placed in (associate with) 1011 000-111
cache block 1100 000-111
X X X Processor Core Logic 1101 000-111
¢ To determine hit/miss we 1110 000-111
have to search 1111 000-111
Word data
corresponding to
address

1111000-1111111

| USCYiterbi
Fully Associative Hit Logic

hool of Engineering

* Cache Mapping Example:

— Fully Associative, MM = 128 words (27), Cache Size = 32 (2°) words,
Block Size = (2°) words

¢ Number of blocks in MM =

* BlockID =

* Number of Cache Block Frames =
— Store Tags of 4-bits + 1 valid bit
— Need 4 each of

* CAM (Content Addressable Memory) is a special memory
structure to store the tag+valid bits that takes the place of
these comparators but is too expensive

. USC Viterbi _

School of Engineerin

Fully Associative Does Not Scale

* |f 80386 used Fully Associative Cache Mapping :

— Fully Associative, MM = 4GB (232), Cache Size = 64KB (2'°), Block Size =
(16=2%) bytes = 4 words

¢ Number of blocks in MM =
e BlockID =

* Number of Cache Block Frames =
Tags of 28-bits + 1 valid bit
Comparators each of 29 bits

— Store
— Need

. USC Viterbi

School of Engineering

Fully Associative Address Scheme

e A[1:0] unused => /BE3.../BEO

— Word access only (LW and SW...no LB, SH, etc.)
* Word bits = (B=Block Size)
* Tag = Remaining bits

I USC Viterbi

School of Engineering

Direct Mapping Cache Example

Processor Die Main Memory
e Limit each MM block to V Ta Cache Word 00 00 000-111
- A 1[1]1 Data 000-111 00 01 000-111
possible location in cache 011 Data 000-111 00 10 000-111
* Cache Mapping Example: 1[04 Data 000-111 00 11 000-111
_ Direct Maopin 110 Data 000-111 01 00 000-111
pping 01 01 000-111
— MM =128 words 01 10 000-111
-Tag -BLK -Word
— Cache Size = 01 11 000-111
3 4 CPU Address 10 00 000-111
words 1loloflof1]1]1 10 01 000-111
— Block Size = 10 10 000-111
8 words 10 11 000-111
. 11 00 000-111
¢ Each MM block i maps to Processor Core Logic 11 01 000-111
Cache frame 11 10 000-111
11 11 000-111
— N =#of cache frames —

— Tag identifies which group that
colored block belongs

Group of blocks that

each map to different
cache blocks but share

the same tag

Analogy

I USC Viterbi

School of Engineering

Direct Mapping Address Usage

* Cache Mapping Example:

— Direct Mapping, MM = 128 words (27), Cache Size = 32 (2°) words,
Block Size = (2°) words

* Number of blocks in MM =27/ 23 =24
* Block ID =4 bits
* Number of Cache Block Frames =2°/23=22=4

— Number of "colors” => Number of Block field Bits
. = 4 Groups of blocks
— 2 Tag Bits
2 [2 3|
Block ID=4

| USCVitq}_;; _
Direct Mapping Hit Logic
* Direct Mapping Example:

— MM =128 words, Cache Size = 32 words, Block Size = 8 words
* Block field addresses tag RAM and compares stored tag with tag of desired address

Processor Core Logic -
CBLK Main Memory
CPUAddress [1]oJoJof1]1[71] 00 00 000-111
k] 00 01 000-111
17170 I 00 10 000-111
o CIEEERE 00 11 000-111
01 00 000-111
RAM RAM 01 01 000-111
e o - -
Adar [11111]| > Adar -

R 00111 10 00 000-111
<=><_‘ Data 01000 10 01 000-111
1 (1’ ; 01111 10 10 000-111
10000 10 11 000-111
11 00 000-111
10111 11 01 000-111
Tilge 11 10 000-111
1111 11 000-111

. USC Viterbi

School of Engineering

Direct Mapping Address Usage

If 80386 used Direct Cache Mapping :

— MM = 4GB (23?), Cache Size = 64KB (2'°), Block Size = (16=2%) bytes = 4
words

Number of blocks in MM = 232 / 24 = 228

Number of Cache Block Frames = 21/ 2% =212 = 4096
Block field bits

. Groups of blocks
— 16 Tag Field Bits

— Number of "colors” =>

Tag I CBLK I Wordl Byte]

I e [2 |
Block ID=28

| USCVit,e.,r,bi _
Tag and Data RAM

* 80386 Direct Mapped Cache Organization

Cache Tag RAM 64KB Cache Data RAM
(4K x 17)
CBLK CBLK
Addr Addr
16KB 16KB 16KB 16KB
Data Mem Mem Mem Mem
Valid
1 Tag Hit or
= Miss
11
(BE3 /BE2 /BE1 /BEO,
f 1
16 12 2 2 ‘ Key Idea: Direct Mapped = 1 Lookup/Comparison to determine a
Block ID=28 Byte | hit/miss

I USC Viterbi

School of Engineering

Direct Mapping Address Usage

* Divide MM and Cache into equal size blocks of __ words
— M main memory blocks, N cache blocks
— Log,(B) word field bits

* Ablock in caches is often called a cache block/line frame since
it can hold many possible MM blocks over time

* For direct mapping, if you have N cache frames, then define N
“colors/patterns”
- block field bits

* Repeatedly paint MM blocks with those N colors in round-
robin fashion

. groups will form
— Log,(___) tagfield bits

| USC\ﬁt?Fpi _
Direct Mapping Datapath

* How many TAG RAM’s?

— Is that answer dependent on address

field sizes?
* How many entries in the TAG
RAM? [7ag [cBLK] Word |
' 1 [oJofofi[i][1]

* How many bits wide is each entry
in the TAG RAM?

* How many DATA RAM’s?
— What size is the address field?

. USC Viterbi

School of Engineering

Alternate Direct Mapping Scheme

Main Memory Main Memory

. Mapping A Mapping B

* Canyou “color” (i.e. ::;“:0 Pgo g " apz;ng o
0000 0000

map) the blocks of 000 o0

P) " BLK 01 0001 01 0 oo01 00 990

main memory in a BLK 10 0010 10 999 0010 00 “"1’3

different order? BLK 11 o011 11 990 o011 00 000

. Use as 0100 00 ??3 0100 01 ???

P — o101 01 999 o101 01 900

BLK field or 0110 10 000 0110 01 000

. 111 111

bits 0111 11 000 o111 01 000

+ Which is more w00 % [0

000

desirable or does it o o il e 10 o

5 1010 10 o%0 1010 10 o0

not really matter? Jo11 " 000 1011 10 00

1100 00 ??? 1100 11 gff

1101 01 ??? 1101 11 ???

1110 10 ??? 1110 1 ???

1111 11 ??‘1’ 1111 1" ???

[[T word | [[T word |

I USC Viterbi

School of Engineering

Set-Associative Mapping Example

I USC Viterbi

Single or Parallel RAM'’s

Processor Die Main Memory
. . H ° 000
* |s it cheaper to have Cache Mapping Y fegCache Word gl %000 .
Example: AN Al Data wayo | {5 s 000 1 g
1) 2KB RAM ’ | lof1]0]1 Data Way1 | 9%° - 001 0 poa
— () — Direct Mapping K Data Wayo | 1% [001 1 000
— (2) 1KB RAM’s ~ MM = 128 words “LL Data i [gf—2o0 I
o
. — Cache Size = o 01T 0 000
° 2 111
Area wise a 2KB RAM 32 words Bl
. . . _ < 100 0 000
* For tag and data RAMs it would be more economical ™ Slockdze) | e
words o
. , o 101 0
to use fewer, blg RAM’s . i CPUAddress [1]0]ofo[1[1]1 & 101 1 00
Each MM block i maps I i
. © 110 0
» However, consider need for parallel access to Cache frame S o] B
- Processor Core Logic ~ 111 0 ???
— S=#ofsets (of 5] 2111 1 oo
M RAM RAM cache frames) . e

that

L L — Tag identifies which [7ag [set [word | ear:huz'l:p t°°§ifferef,t

L group that colored Analogy cache blocks but share

h
Only one item Two items accessed in block be'°ng5 to the same tag
at a time parallel

I (IS Viterbi @ | I []S Viterhi @0

School of Engineering School of Engineering
Set-A jative Dat th Set-A iative Dat th
N=8 Total Cache Blocks
4 Sets with 2-ways each
N=8 Total Cache Blocks
_ V_Tag Cache Word 4 Sets with 2-ways each
o [1]1]o]1 Data wayo| %
SIRERE Data Wert| %%
_ 11olol1 Data Wayo 2111? Way-0 Way-0 Way-1 Way-1
3 000 Cache Tag RAM Data RAM Cache Tag RAM Data RAM
ol l1][1][1]0 Data W' | 7 000 — 000
r 000 Addr Addr Addr > Addr
MIEEEE Data wao| 0 — e] 000
3| [of 1 ol+] Data war] % L] —— i] —— o
ol |0[1]0]1 Data_waro| 1) —] — i
B 110l1]0 Data Way1 ?‘3? 111 11
- Data Data Data Data
Way-0 Way-0 Way-1 Way-1 m
Cache Tag RAM Data RAM Cache Tag RAM Data RAM
Addr —— Addr 000 S0 Addr Addr 9% - Set | Word
| — 000 Set1 | — 000 Kt
— 500 Sot2 [— 500 Miss
— 500 St — 50
111 11 1 | —— |
Data Data Data Data Valid l Tag l Set I Word l

CPUAddress [1]oJo[1]o[1]1]1]

I USC Viterbi

School of Engineering

Set-Associative Mapping Address Usage

* DefineK =

* If you have N total cache frames, then define number of sets,
S, =

* Define S colors/patterns
— Log,(S) = Log,() set field bits

* Repeatedly paint MM blocks with those S colors in round-
robin fashion

. groups will form
— Log,() tag field bits

I USC Viterbi

hool of Engineering

Set-Associative Mapping Datapa’Eh

* How many TAG RAM’s?

Key Idea: K-Ways => K comparators

(What is a 1-way Set Associative Mapping)

* How many entries in the TAG

?
RAM: e e o |

* Place tags from different sets that
belong to ‘Way 0’ in one tag ram,
‘Way 1’ in another, etc.

* How many DATA RAM’s?

— What size is the address field?

. USC Viterbi

School of Engineering

K-Way Set Associative Mapping

* |f 80386 used K-Way Set-Associative Mapping:
— MM = 4GB (23?), Cache Size = 64KB (2'°), Block Size = (16=2%) bytes = 4
words

* Number of blocks in MM =232/ 24 =228
* Number of Cache Block Frames = 216/ 2% =

* Set Associativity/Ways (K) = 2 Blocks/Set
— Number of "colors” => 2'7/2 = 211 Sets => 11 Set field bits

o 228 /211 =2V =128K Groups of blocks
— 17 Tag Field Bits

IWordlByte]
2 [2 |

Tag I Set

17 [
Block ID=28

EEEE—————E S A
Tag RAM Organizations

» 80386 2-Way Set-Associative Cache Organization

Cache Tag RAM
(2K x 18)

Cache Tag RAM
(2K x 18)

Addr Addr

Hit or
Miss

1 Tag 1 Tag

Valid Valid
2 [2 |

17 [
Block ID=28

I USC Viterbi

Data RAM Organizations

* 80386 2-Way Set-Associative Cache Organization

32KB Cache Data RAM 32KB Cache Data RAM
—>{ Addr Addr
8KB 8KB 8KB 8KB 8KB 8KB 8KB 8KB
Mem Mem Mem Mem Mem Mem Mem Mem
1 t 1 t t il 1 t
| | | | | | | |
(BE3 /BE2 /BE1 /BEO , (BE3 /BE2 /BE1 /BEO ,
——
17 R 2 | 2 |
Block ID=28 [Byte |

I USC Viterbi

Set Associative Example

[Tag I Set I Wordl Byte]

[18 [10 J=27]<¢2]

* Suppose the cache size is 2'? blocks
* What is the set size?

* |f the set associativity can be changed,

— What is the smallest set size?
¢ Maximum # of sets =
* Largest Set Field= Smallest Tag=

. Mapping

— What is the largest set size?
* Minimum # of sets =
* Smallest Set Field= , Largest Tag=

. Mapping

. USC Viterbi

School of Engineering

Summary of Mapping Schemes

* Fully associative

— Most flexible (less evictions) ’

31

MM

0
| Offset ‘Addr

Tag

— Longest search time O(N) Fully Associative

No hashing...can be placed
anywhere in cache. Must search N

* Direct-mapped cache

— Least flexible (more evictions) ;‘:cam"s' .
- ; MM
Shortest search time O(1) Tag Offset | A yar
— 1 Tag RAM/comparator and 1 Data RAM Direct Mapped Cache
L. . h(a) = block field
* K-way Set Associative mapping Only search 1 location.
— Compromise
* 1-way set associative = ’ st 0 MM
T f
* N-way set associative = o Sl Offset Addr

K-way Set Associative Mapping
h(a) = set field
Only search k locations

— Work to search is O(K)
* For small K, search in parallel: O(1)
* K Tag RAMs/comparators and K Data RAMs

. USC Viterbi

School of Engineering

LIBRARY ANALOGY

. US(C Viterbi
School of Engineering

Mapping Functions

* A mapping function determines the correspondence
between MM blocks and cache block frames
* 3 Schemes
— Fully Associative
— Direct Mapping
— Set-Associative
e Really just 1 scheme
— Fully Associative = N-way Set Associative
— Direct Mapping = 1-way Set Associative

I USC Viterbi

Library <& Memory

* Compare MM to a large
library

* Compare cache to your
dorm room book shelf

e “Address” of a book =
10-digit ISBN number

* Assume library has a

Cache Block

Block Frame

Doheny Library|

location on the shelf for Room for | DO'g RooM
. 1000 books ISBN 10-digit
all 10%° possible books - L {0 biion

| USCViterbi _

School of Engineering

Book Addressing

Addresses are not
stored in memory (only
data)

Assume library has a
location on the shelf for
all 109 possible books

No need to print ISBN

Cache Block

Block Frame

Doheny Library|

on the book if each moom or | DO Koo
. . e TPy
book has a location (find ~ ™*** ——mmr— Rl iR

a book by going to its
slot using ISBN as index)

| USC\[itgg}?;r_
Fully Associative Analogy

¢ Cache stores full Block-1D as
a TAG to identify that block

* When we check a book out
and take it to our dorm room Cache
shelf... Block Frame

— Let’s allow it to be putin
any free slot on the shelf

Block

— We need to keep the entire
ISBN number as a TAG Doheny Library|

. . . Di R
+ To find a book with a given Roomfor | —0'gp 0o
1000 books T | ISBN10-digit
ISBN on our shelf, we must 10" = 10 billion

look through them all

| USCViterbi
Direct Mapping Analogy

e Cache uses block field to identify the slot
in the cache and then stores remainder
as TAG to identify that block from others
that also map to that slot

¢ Assume we number the slots on our
book shelf from 0 to 999

* When we check a book out and take it to
our dorm room shelf we can...

— Use last 3-digits of ISBN to pick the slot to
store it

— If another book is their, take it back to
Doheny library (evict it)

— Store upper 7 digits to identify this book
from others that end with the same 3-
digits

¢ Tofind a book with a given ISBN on our
shelf, we use the last
3-digits to choose which slot to look in
and then compare the upper 7-digits

Cache
N
Block
Frames
Dorm Room
Room for Shelf
1000 books
Slot 789 on

our shelf

s/
%/

ISBN
0123456789
Tag

School of Engineering

Block

Doheny Library|

ISBN 10-digit
107 = 10 billion

I -

(0123456789) mod 1000 =
789

I USC Viterbi

School of Engineering

Set Associative Mapping Analogy

¢ Cache blocks are divided into groups known as
sets. Each MM block is mapped to a particular
set but can be anywhere in the set (i.e. all TAGS
in the set must be compared)

* Assume our bookshelf is 10 shelves with room
for 100 books each

* When we check a book out and take it to our
dorm room shelf we can...

— Use last 1-digit of ISBN to pick the shelf but store
the book anywhere on the shelf where there is
an empty slot

— Only if the shelf is full do we have to pick a book
to take back to Doheny library (evict it)

— Store upper 9 digits to identify this book from
others that end with the same 1-digit

* To find a book with a given ISBN on our shelf,
we use the last
1-digits to choose which shelf to look in and
then compare upper 9-digits with those of all
the books on the shelf

N Cache
Block
Frames
Dorm Room
10 shelves of Shelf
100 books
each

i o
|_I

Shelf 9 is §
%/
-

chosen
ISBN

0123456789
Tag

Block

Doheny Library|

ISBN 10-digit

]
10 = 10 billion

(0123456789) mod 10 = 9

USC Viterbi

School of Engineering

Set Associative Mapping Analogy

* Can we confidently say,

— We can bring in any
(10/100/0ther) book(s)

— We can bringin
(10/100/0ther) consecutive
book(s)

* Library analogy:

— 10 sets each with 100 slots =
100-way set associative
cache

N Cache
Block
Frames
Dorm Room
10 shelves of Shelf
100 books
each

i o
|_I

Shelf 9is §
chosen /
=
<.
ISBN
0123456789

Tag

Block

Doheny Library|

ISBN 10-digit
10 = 10 billion

I -

(0123456789) mod 10 = 9

