
6c.1

EE 457 Unit 6c

Control Hazards

6c.2

Overview

• Branching requires knowing 2 values:

– Branch ____________: Should I branch or not

(i.e. is $1 == $3)?

• Only 2 option (yes or no)

• Use T = Taken and NT = Not taken to describe these

2 outcomes

– Branch target: Where should I branch?

• Requires computation of new PC value

(i.e. PC = __________)

• Where in the pipeline do I know these values?

– Branch outcome: End of EX stage (______ bit from

ALU)

– Branch target: End of EX stage (________)

– End of EX stage…Too _______ to do anything with

it (wait until MEM stage)

40: BEQ $1,$3,28

44: AND $12,$2,$5

48: OR $13,$6,$2

52: ADD $14,$2,$2

…

72: LW $4,50($7)

6c.3

Branch Outcome and Target

In
s
tr

u
c
ti
o
n
 R

e
g
is

te
r

Register File

Read
Reg. 1 #

Read
Reg. 2 #

Write
Reg. #

Write
Data

Read
data 1

Read
data 2

Sign
Extend

P
ip

e
lin

e
 S

ta
g
e
 R

e
g
is

te
r

A
L

U Res.

Zero

0

1

Sh.
Left

2

+

P
ip

e
lin

e
 S

ta
g
e
 R

e
g
is

te
r

D
-C

a
c
h

e

P
ip

e
lin

e
 S

ta
g
e
 R

e
g
is

te
r

0

1

16 32

5

5

0

1

rs

rt

rs

rt

rd

0

1

2

0

1

2

Forwarding
Unit

ALUSrc
ALUSelB

ALUSelA

Regwrite &
WriteReg# Regwrite,

WriteReg#

D
a

ta
 M

e
m

.
o

r
A

L
U

 r
e

s
u

lt

P
ri

o
r

A
L

U

R
e

s
u

lt

I-
C

a
c
h

e

P
C

.

PCWrite
IRWrite HDU

Control E
x

M
e
m

W
B

Stall

M
e
m

W
B

W
B

0

10

0

10

0

1

+4

IF.Flush
M

e
m

T
o

R
e

g

Branch

M
e

m
R

e
a

d
 &

M

e
m

W
rite

FLUSH

Reset

Branch Target
(PC + d)

Branch
Outcome

(Taken or Not)

Take action in
MEM stage

6c.4

Branch Penalty

In
s
tr

u
c
ti
o
n
 R

e
g
is

te
r

Register File

Read
Reg. 1 #

Read
Reg. 2 #

Write
Reg. #

Write
Data

Read
data 1

Read
data 2

Sign
Extend

P
ip

e
lin

e
 S

ta
g
e
 R

e
g
is

te
r

A
L

U Res.

Zero

0

1

Sh.
Left

2

+

P
ip

e
lin

e
 S

ta
g
e
 R

e
g
is

te
r

D
-C

a
c
h

e

P
ip

e
lin

e
 S

ta
g
e
 R

e
g
is

te
r

0

1

16 32

5

5

0

1

rs

rt

rs

rt

rd

0

1

2

0

1

2

Forwarding
Unit

ALUSrc
ALUSelB

ALUSelA

Regwrite &
WriteReg# Regwrite,

WriteReg#

D
a

ta
 M

e
m

.
o

r
A

L
U

 r
e

s
u

lt

P
ri

o
r

A
L

U

R
e

s
u

lt

I-
C

a
c
h

e

P
C

.

PCWrite
IRWrite HDU

Control E
x

M
e
m

W
B

Stall

M
e
m

W
B

W
B

0

10

0

10

0

1

+4

IF.Flush

M
e

m
T

o
R

e
g

Branch

M
e

m
R

e
a

d
 &

M

e
m

W
rite

FLUSH

Reset

Take action in
MEM stage? ? ?

Branch Penalty: Number of instructions we need to ________
(aka "_________") after a taken branch
• Number of __________________ cycles after a taken branch

Branch Target
(PC + d)

Branch
Outcome

(Taken or Not)

6c.5

Control Hazards

• Control (branch) hazards are

named such because they deal with

issues related to program control

instructions (branch, jump,

subroutine call, etc.)

• There is some delay in determining

a branch or jump instruction and

thus incorrect instructions may

already be in the pipeline

40: BEQ $1,$3,28

44: AND $12,$2,$5

48: OR $13,$6,$2

52: ADD $14,$2,$2

…

72: LW $4,50($7)

6c.6

An Opening Example

• How can we solve this problem?

CC1 CC2 CC3 CC4 CC5 CC6 CC7 CC8 CC9

IM Reg ALU DM Reg

IM Reg ALU DM Reg

IM Reg ALU DM Reg

IM Reg ALU DM Reg

IM Reg ALU DM Reg

40: BEQ $1,$3,28

44: AND $12,$2,$5

48: OR $13,$6,$2

52: ADD $14,$2,$2

72: LW $4,52(7)

3 instructions

enter the pipeline

by CC4
…

Beq=true

BEQ outcome

known in MEM

stage (CC4)

6c.7

Option 1: Stalling

• Option 1: Start stalling the pipeline as soon as you detect that it is a branch and

keep stalling until you know the outcome

CC1 CC2 CC3 CC4 CC5 CC6 CC7 CC8 CC9

IM Reg ALU DM Reg

IM Reg ALU DM Reg

IM Reg ALU DM Reg

IM Reg ALU DM Reg

IM Reg ALU DM Reg

40: BEQ $1,$3,28

44: AND $12,$2,$5

48: OR $13,$6,$2

52: ADD $14,$2,$2

72: LW $4,52(7)

…

BEQ=true

Disadvantage:

• Penalty of _______ for ______

branch and

• HW is _________________

• Still need to ______ the following

instruc.

6c.8

Option 2: Flushing
• Option 2: Pipeline assumes sequential execution by default. Optimistically assume

sequential execution. Since the incorrectly fetched instructions are still in stages

[IF, ID, EX] that do not ________________(write a register or memory) they can be

safely flushed. Let us add support for this flushing…

CC1 CC2 CC3 CC4 CC5 CC6 CC7 CC8 CC9

IM Reg ALU DM Reg

IM Reg ALU DM Reg

IM Reg ALU DM Reg

IM Reg ALU DM Reg

IM Reg ALU DM Reg

40: BEQ $1,$3,28

44: AND $12,$2,$5

48: OR $13,$6,$2

52: ADD $14,$2,$2

72: LW $4,52(7)

…

BEQ=true

Still have a 3 clock penalty when the

branch outcome is true

6c.9

Option 2: Flushing
• Option 2: Pipeline assumes sequential execution by default. Optimistically assume

sequential execution. Since the incorrectly fetched instructions are still in stages

[IF, ID, EX] that do no alter processor state (write a register or memory) they can be

safely flushed. Let us add support for this flushing…

CC1 CC2 CC3 CC4 CC5 CC6 CC7 CC8 CC9

IM Reg ALU DM Reg

IM Reg ALU DM Reg

IM Reg ALU DM Reg

IM Reg ALU DM Reg

40: BEQ $1,$3,28

44: AND $12,$2,$5

48: OR $13,$6,$2

52: ADD $14,$2,$2

…

BEQ=false

__________ when the branch

outcome is false

6c.10

Late Branch Determination

In
s
tr

u
c
ti
o
n
 R

e
g
is

te
r

Register File

Read
Reg. 1 #

Read
Reg. 2 #

Write
Reg. #

Write
Data

Read
data 1

Read
data 2

Sign
Extend

P
ip

e
lin

e
 S

ta
g
e
 R

e
g
is

te
r

A
L

U Res.

Zero

0

1

Sh.
Left

2

+

P
ip

e
lin

e
 S

ta
g
e
 R

e
g
is

te
r

D
-C

a
c
h

e

P
ip

e
lin

e
 S

ta
g
e
 R

e
g
is

te
r

0

1

16 32

5

5

0

1

rs

rt

rs

rt

rd

0

1

2

0

1

2

Forwarding
Unit

ALUSrc
ALUSelB

ALUSelA

Regwrite &
WriteReg# Regwrite,

WriteReg#

D
a

ta
 M

e
m

.
o

r
A

L
U

 r
e

s
u

lt

P
ri

o
r

A
L

U

R
e

s
u

lt

I-
C

a
c
h

e

P
C

.

PCWrite
IRWrite HDU

Control E
x

M
e
m

W
B

Stall

M
e
m

W
B

W
B

0

10

0

10

0

1

+4

IF.Flush

M
e

m
T

o
R

e
g

Branch

M
e

m
R

e
a

d
 &

M

e
m

W
rite

FLUSH

Reset

IF.Flush is a reminder to the DECODE

stage that incoming instruction should

be flushed (is not a valid instruction)

6c.11

Flushing Strategy

• To flush we merely override the pipeline control signals to

______________ similar to the stall logic

– ____________ can be re-used and triggered by a successful branch

(Branch AND ALUZero = 1)

– Stalling only dealt with ID and subsequent stages, not ___ stage

– Successful branch requires that the instruction in IF be _________, but

on the next cycle how will the ________ stage know that the bits in

the ______ register are not a ______ instruction but a

_________________ instruction

• When a branch outcome is true we will…

– Zero out the control signals in the ID,EX,MEM stages

– Set a control bit in the ___________ register that will tell the

____________ stage on the ________ cycle that the instruction is

INVALID

6c.12

Late Branch Determination

In
s
tr

u
c
ti
o
n
 R

e
g
is

te
r

Register File

Read
Reg. 1 #

Read
Reg. 2 #

Write
Reg. #

Write
Data

Read
data 1

Read
data 2

Sign
Extend

P
ip

e
lin

e
 S

ta
g
e
 R

e
g
is

te
r

A
L

U Res.

Zero

0

1

Sh.
Left

2

+

P
ip

e
lin

e
 S

ta
g
e
 R

e
g
is

te
r

D
-C

a
c
h

e

P
ip

e
lin

e
 S

ta
g
e
 R

e
g
is

te
r

0

1

16 32

5

5

0

1

rs

rt

rs

rt

rd

0

1

2

0

1

2

Forwarding
Unit

ALUSrc
ALUSelB

ALUSelA

Regwrite &
WriteReg# Regwrite,

WriteReg#

D
a

ta
 M

e
m

.
o

r
A

L
U

 r
e

s
u

lt

P
ri

o
r

A
L

U

R
e

s
u

lt

I-
C

a
c
h

e

P
C

.

PCWrite
IRWrite

HDU

Control E
x

M
e
m

W
B

Stall

M
e
m

W
B

W
B

0

10

0

10

0

1

+4

IF.Flush

M
e

m
T

o
R

e
g

Branch

M
e

m
R

e
a

d
 &

M

e
m

W
rite

FLUSH

Reset

0

1

What if HDU declares a STALL at the

same time a Branch is taken?

When we stall, PCWrite = __ and..

PC+d
(branch target)

Taken branch =
[DO UPDATE PC]Stall = [DO

NOT
UPDATE PC]

6c.13

Late Branch Determination

In
s
tr

u
c
ti
o
n
 R

e
g
is

te
r

Register File

Read
Reg. 1 #

Read
Reg. 2 #

Write
Reg. #

Write
Data

Read
data 1

Read
data 2

Sign
Extend

P
ip

e
lin

e
 S

ta
g
e
 R

e
g
is

te
r

A
L

U Res.

Zero

0

1

Sh.
Left

2

+

P
ip

e
lin

e
 S

ta
g
e
 R

e
g
is

te
r

D
-C

a
c
h

e

P
ip

e
lin

e
 S

ta
g
e
 R

e
g
is

te
r

0

1

16 32

5

5

0

1

rs

rt

rs

rt

rd

0

1

2

0

1

2

Forwarding
Unit

ALUSrc
ALUSelB

ALUSelA

Regwrite &
WriteReg# Regwrite,

WriteReg#

D
a

ta
 M

e
m

.
o

r
A

L
U

 r
e

s
u

lt

P
ri

o
r

A
L

U

R
e

s
u

lt

I-
C

a
c
h

e

P
C

.

PCWrite
IRWrite

HDU

Control E
x

M
e
m

W
B

Stall

M
e
m

W
B

W
B

0

10

0

10

0

1

+4

IF.Flush

M
e

m
T

o
R

e
g

Branch

M
e

m
R

e
a

d
 &

M

e
m

W
rite

FLUSH

Reset

1

1

PC+d
(branch target)

Taken branch =
[DO UPDATE PC]Stall = [DO

NOT
UPDATE PC]

Fix the HDU’s PCWrite by OR’ing with

the Flush signal so that PCWrite will

be ‘1’ whenever a branch is taken.

6c.14

Early Branch Determination

• The stage distance between _________ and

__________________ and __________________ determines

how many instructions are flushed (i.e. the branch penalty)

– Again, branch penalty is the number of instructions/clock cycles that

are wasted when a branch is taken

• If we can determine the branch outcome and target

computation earlier, we can __________ this penalty

• Observation: All necessary information for both branch

outcome and target computation are available (late) in the

_______________ stage

– Move comparison and PC+disp. operations to the __________ stage

– Requires moving ________________ since branch instructions may

need data from later in the pipe.

6c.15

Early Branch Determination

In
s
tr

u
c
ti
o
n
 R

e
g
is

te
r

Register File

Read
Reg. 1 #

Read
Reg. 2 #

Write
Reg. #

Write
Data

Read
data 1

Read
data 2

Sign
Extend

P
ip

e
lin

e
 S

ta
g
e
 R

e
g
is

te
r

A
L

U Res.

Sh.
Left 2

P
ip

e
lin

e
 S

ta
g
e
 R

e
g
is

te
r

D
-C

a
c
h

e

P
ip

e
lin

e
 S

ta
g
e
 R

e
g
is

te
r

0

1

16 32

5

5

0

1

rs

rt

rs

rt

rd

0

2

3

0

2

3

Forwarding
Unit

ALUSrcA
L

U
S

e
lB

ALUSelA

M
e

m
R

e
a

d
,

R
e

g
w

ri
te

,
W

ri
te

R
e

g
D
a

ta
 M

e
m

.
o

r
A

L
U

 r
e

s
u

lt

P
ri

o
r

A
L

U

R
e

s
u

lt

I-
C

a
c
h

e

P
C

.

PCWrite

IR
W

ri
te

HDU

Control E
x

M
e
m

W
BStall

M
e
m

W
B

W
B

• Add a comparator to the Decode stage and

move the forwarding into this stage

• We now forward from the ____ of one stage

to the ________ of the previous

+4

IF.Flush

M
e

m
T

o
R

e
g

M
e

m
R

e
a

d
 &

M

e
m

W
rite

FLUSH

Reset

1

1

+

=

0 1

Branch

A
L

U
R

e
s

u
lt

R
e

g
w

ri
te

,
M

e
m

R
e

a
d

W

ri
te

R
e

g
#

W
ri

te
R

e
g

#

EX.RegWrite

EX.RegDst

RegDst

0

1

6c.16

Early Determination w/ Predict NT

BEQ $a0,$a1,L1 (NT)

L2: ADD $s1,$t1,$t2

SUB $t3,$t0,$s0

OR $s0,$t6,$t7

BNE $s0,$s1,L2 (T)

L1: AND $t3,$t6,$t7

SW $t5,0($s1)

LW $s2,0($s5)

Using early determination & predict NT keeps the
pipeline full when we are correct and has a ______

instruction penalty for our 5-stage pipeline

WBMem.
(ME)

Exec.
(EX)

Decode
(ID)

Fetch
(IF)

BEQC1

BEQADDC2

BEQADDSUBC3

BEQADDSUBORC4

BEQADDSUBORBNEC5

C6

C7

C8

C9

C10

6c.17

Branch Delay Slots

• Problem: After a branch we fetch instructions

that we are not sure should be executed

• Idea: Find an instruction(s) that should

________ be executed (independent of

whether branch is ___ or ___), move them to

directly after the branch, and have HW just let

them be ______________________ no

matter what the branch outcome is

• Branch delay slot(s) = ________________

that the HW will execute after a branch and

not flush

– Assuming early branch determination (i.e. in

decode), only need ____ delay slot

x = x + y;

y--;

if(x < 5) {

dat[i] = a;

a = 0;

}

else {

dat[i] = b;

b = 0;

}

i++;

Consider the code
above. What lines of
code are guaranteed
to execute regardless

of whether the if or
else execute?

6c.18

Branch Delay Slot Example

sub $s3,$s4,$s5
beq $s3,$t8, ELSE
add $s0,$s1,$s2
…

sub $s3,$s4,$s5
add $s0,$s1,$s2
beq $s3,$t8, ELSE
delay slot instruc.

// if code

b END

// else code

END:

// after code

Assume a single
instruction delay slot
(as with our updated
early determination

pipeline)

Move an ALWAYS
executed instruction

(the “add” from above)
down into the delay

slot and let it execute
no matter what

“Before” Code

sub $s3,$s4,$s5
add $s0,$s1,$s2

Not Taken
Path Code

BEQ

Taken
Path Code

“After” Code

T

NT

Delay Slot

Flowchart perspective of the
delay slot

What if sub was instead: lw $s3,0($s4)? Would that change the performance?
Yes

6c.19

Implementing Branch Delay Slots

• HW will define the number of

branch delay slots (usually a small

number…1 or 2)

• Compiler will be responsible for

arranging instructions to fill the

delay slots

– Must find instructions that the branch

does NOT DEPEND on

– If no instructions can be rearranged,

can always insert ______ instructions

and just waste those cycles

sub $s3,$s4,$s5
add $s0,$s1,$s2
beq $s3,$t8, NEXT
delay slot instruc.

…

Cannot move ‘sub’ into
delay slot because beq

needs the $s3 value
generated by it

sub $s3,$s4,$s5
add $t8,$s1,$s2
beq $s3,$t8, NEXT

…

If no instruction can be
found a ‘____’ can be

inserted by the compiler

6c.20

Early Determination w/ Delay Slot

WBMem.
(ME)

Exec.
(EX)

Decode
(ID)

Fetch
(IF)

XORC1

C2

C3

C4

C5

C6

C7

C8

C9

C10

XOR $s1,$s1,$s1

L2: ADD $s1,$t1,$t2

SUB $t3,$t0,$s6

OR $s0,$t6,$t7

BNE $s0,$s1,L2 (T,NT)

L1: AND $t3,$t6,$t7

SW $t5,0($s1)

LW $s2,0($s5)

By scheduling the delay slot with an earlier
instruction we incur no stalls/bubbles and don’t

have to “predict” the branch

6c.21

How Good is the Compiler?

• Source: Hennessey and Patterson, “Computer Architecture – A Quantitative Approach”, 2nd

Ed. Pg. 169

• How many delay slots should be use?

– While delay slots seem to improve performance, the benefit depends on the compiler’s ability to fill

them with useful instructions

– One of more NOP’s in the delay slots but increase the instruction count

Instruction

increasing

factor

Loss of cycles

(Expectation)

Compiler filling

prob.

Assume

60%Taken + 40% Not Taken

Loss of Cycles

Loss of

Cycles if not

taken

Loss of

Cycles if

taken

Compiler Fills

#Useful + #NOPs

of Delay

Slots

11.8100%3*0.6 + 0*0.4=1.8030

1.351.55
65%1 Use + 0 NOP

1
35%0 Use + 1 NOP

1.951.55

40%2 Use + 0 NOP

2 25%1 Use + 1 NOP

35%0 Use + 2 NOP

2.831.83

12%3 Use + 0 NOP

3
28%2 Use + 1 NOP

25%1 Use + 2 NOP

35%0 Use + 3 NOP

6c.22

Other Delay Slots?

• Recall that a LW followed by a dependent instruction

requires our HDU logic to insert 1 bubble (stall for 1

cycle)

• The MIPS ISA could “declare” a delay slot…

• …This means the compiler ___________ schedule a

dependent instruction into the delay slot after a LW

– If necessary compiler can follow the LW with a ‘nop’

• If the ISA declares a LW delay slot do we need the

HDU?

6c.23

Example

• Compile the following

code snippet on

CompilerExplorer

(https://godbolt.org/)

with:

– MIPS gcc 13.1.0 or higher

– -O0 flag then -O1, then -

O3

– Then try to increase N to

100

#include <iostream>

#include <string>

using namespace std;

#define N 100

int dat[N];

int main()

{

for(int i=0; i < N; i++){

dat[i] = i;

}

}

6c.24

BACKUP

6c.25

Late Branch Determination w/ HDU fix

In
s
tr

u
c
ti
o
n
 R

e
g
is

te
r

Register File

Read
Reg. 1 #

Read
Reg. 2 #

Write
Reg. #

Write
Data

Read
data 1

Read
data 2

Sign
Extend

P
ip

e
lin

e
 S

ta
g
e
 R

e
g
is

te
r

A
L

U Res.

Zero

0

1

Sh.
Left

2

+

P
ip

e
lin

e
 S

ta
g
e
 R

e
g
is

te
r

D
-C

a
c
h

e

P
ip

e
lin

e
 S

ta
g
e
 R

e
g
is

te
r

0

1

16 32

5

5

0

1

rs

rt

rs

rt

rd

0

1

2

0

1

2

Forwarding
Unit

ALUSrc
ALUSelB

ALUSelA

Regwrite &
WriteReg# Regwrite,

WriteReg#

D
a

ta
 M

e
m

.
o

r
A

L
U

 r
e

s
u

lt

P
ri

o
r

A
L

U

R
e

s
u

lt

I-
C

a
c
h

e

P
C

.

PCWrite
IRWrite HDU

Control E
x

M
e
m

W
B

Stall

M
e
m

W
B

W
B

0

10

0

10

0

1

+4

IF.Flush

M
e

m
T

o
R

e
g

Branch

M
e

m
R

e
a

d
 &

M

e
m

W
rite

FLUSH

Reset

