EE 457 Unit 6¢

Control Hazards

N (S Viterbi ‘®
Overview

* Branching requires knowing 2 values:

— Branch outcome: Should | branch or not
(i.e.is S1 == S3)?
e Only 2 option (yes or no)

40: BEQ $1,$3,28
44: AND $12,$2,$5
 Use T =Taken and NT = Not taken to describe these 48: OR 813,866,852

2 outcomes 52: ADD $14,$2,$2

B . ,
Branch target: Where should | branch® 72: LW $4,50($7)

e Requires computation of new PC value
(i.,e. PC=PC+d)

* Where in the pipeline do | know these values?

— Branch outcome: End of EX stage (zero bit from
ALU)

— Branch target: End of EX stage (PC+d)

— End of EX stage...Too late to do anything with it
(wait until MEM stage)

N (S Viterbi (>
Branch Outcome and Target

@ o
> ol
»{ 1
PCWrite _ E FLUSH ‘
IRWrite HDU ; . I -
B 0 > 1 =
5 | 2
=] >0 =
s @
4 Control - .-I_> Branch Target Branch §
* (PC +) -
P
'S Read + E
Sh.
5 Reg.1# -
2
rt Read 0 q _
v ; /[Read ;ﬂ . J
1 /5 "|Reg.2# gata 1 o > 1 = 2 N
> O f’ - > Write ALUSelA g Zero o
gt @ Reg. # o > Q
Q = Read O (o Branch]
B [o S > . cC Outcome p)
o Write data 2 C >0 >0 -
"| Data 5 |¢—> 1 | (Taken or Not) c
(o)) . o—> 1 = 1
Register File = - SN,
g £ : s]
o | g E
/ > ALUSelB ALUSTC >
Reset _ =
= 16 Forwarding >0 ;
Unit i g
> R S :
> : A A > <_<'§ g
> Regwrite & se .
g WriteReg# T & Regwrite,
WriteReg#
@
L

N (S Viterbi (_*
Branch Penalty

\ 4 4
» 0
K — FLUSH "
PCWrite — 2 HDU n;: ° | o ‘
> % 0—»{1 g
I = | » 0 £
- : 2
Control - .-|—> Branch Target Branch §
(PC +d) %'
9 Read sh + &
) Tak ion i
\/ d n , Read d ® o v
% *|Reg.2# : > = = ()
O > ! : 0
» O S - > \éverite# ..° ALUSelA > Zero p .«.
o 8} O g. - p — Branch S
- | Write data 2 = »(0 »l0 C Outcome /
”| Data *—> 1 | (Taken or Not) g
o @ > 2 1 8 : 1
Register File = S =N
s | > a) 3
/o Sign - ALUSelB ALUSTC 2
7"\ Extend ;
Branch Penalty: Number of instructions we need to delete
(aka "flush") after a taken branch i
 Number of wasted ("dead") cycles after a taken branch

Control Hazards

e Control (branch) hazards are
named such because they deal with
issues related to program control
instructions (branch, jump,
subroutine call, etc.)

 There is some delay in determining
a branch or jump instruction and
thus incorrect instructions may
already be in the pipeline

40 :
44
48 :
52:

72 :

BEQ
AND
OR

LW

$1,$3,28

$12,$2,8$5
$13,56,52
$14,$2,82

$4,50(87)

CC1

An Opening Example

40: BEQ $1,$3,28

IM

44: AND $12,$2,$5

48: OR $13,%6,%$2

52: ADD $14,$2,%$2

72: LW $4,52(7)

pﬁeq:true

CC2 CC3
Reg| || LU
IM H Hireg]]

3 instructions
enter the pipeline
by CC4

/ine_

CC4

-

IM

CC5

."‘JI__'J‘,

U
L& |

E

ALU

IM

CC6

m
)
L Q9

E

ALU

* How can we solve this problem?

."‘JI__'J‘,

U R
@
L;D_‘J

CcC7

USC Viterbi 9

School of Engineering

CC8

BEQ outcome
known in MEM
stage (CC4)

‘|Reg§

ALU

‘|Reg§

DM

CC9

Reg!

USC Viterbi (7

School of Engineering

Option 1: Stalling

e Option 1: Start stalling the pipeline as soon as you detect that it is a branch and
keep stalling until you know the outcome

CC1

CC2

40: BEQ $1,$3,28

IM

oo

44: AND $12,$2,$5

48: OR $13,%6,%$2

52: ADD $14,$2,%$2

72: LW $4,52(7)

—_—

IM

CC3

CC4

CC5

pﬁEQﬂrue

O
slala
88

DM

‘|Reg§

.
-

."‘JI__'J‘,

CC6

CcC7 CC8 CC9

Disadvantage:
* Penalty of 3 clocks for every
branch and
* HW is not simplified
* Still need logic to stall
* Still need to flush the following
instruc.

DM Regé

G
L)

USC Viterbi

School of Engineering

Option 2: Flushing

* Option 2: Pipeline assumes sequential execution by default. Optimistically assume
sequential execution. Since the incorrectly fetched instructions are still in stages
[IF, ID, EX] that do not alter processor state (write a register or memory) they can
be safely flushed. Let us add support for this flushing...

CC1 CC2 CC3 CC4 CC5 CC6 CC7 CC8 CC9

p&EQ=true

Still have a 3 clock penalty when the
branch outcome is true

40: BEQ $1,$3,28| |\ Reg|| | JALUH D I Regi
A

M
44: AND $12,$2,$5 IM —_L%;;:_:E
48: OR $13,$6,$2 IM *L’:F;;:@’
52: ADD $14,$2,$2 IM ~®7

72: LW $4,52(7) IM

DM Regé

G
L)

Option 2: Flushing

USC Viterbi 2

School of Engineering

* Option 2: Pipeline assumes sequential execution by default. Optimistically assume
sequential execution. Since the incorrectly fetched instructions are still in stages
[IF, ID, EX] that do no alter processor state (write a register or memory) they can be
safely flushed. Let us add support for this flushing...

CC1

40: BEQ $1,$3,28

IM

44: AND $12,$2,$5

48: OR $13,%6,%$2

52: ADD $14,$2,%$2

CC2

_———

Reg

-

IM

CC3

ALU

L

J: Reg

—

IM

CC4

CC5

pﬁEQ:false

IS

[

[

M
LU
Reg

IM

AN

CC6

Regq.

04}

@1

CcC7

CC8 CC9

No penalty when the branch outcome

is false

‘|Reg§

DM

Reg!

i, TS(“Viterbi

School of Engineering

Late Branch Determination

o ©
> o]
> 1
. — FLUSH
PCwWrite
TRWrite HDU g ® I - ‘
— ¢ m
g 0 1 =
= I > 0 =
x o—) |20
Control L I—} Branch 5
4L ‘ :
o Read] + g
ea sh. _=
5 Reg. 1# Left : %
2 S =
\ 4 q _.rt , . |Read Read ‘ﬂ ; 52 % v
= % |Re%-2# datal[" Ig > 1 5 =)
o | K _ @ 2 . g ole
» O S - > B) ALUSelA - Zero «)
Tl o 8 @) Reg # x > ..
X _ Read - E Res. o
»| Write data 2 > (1) I » 0 . ° @
Data %)\ P —>l1 / = (:LU) F__) 1
Register File = = S _/
L2 i > > A
Q ALUSelB ALUSIC
Reset
e Forwarding (0
Unit g
IF.Flush is a reminder to the DECODE Regwrite & | |5 & .
. . . . WriteReg# & Regwrite,
stage that incoming instruction should 5 WriteReg#

Data Mem. or ALU result

be flushed (is not a valid instruction)

i, TS(“Viterbi)

Flushing Strategy

* To flush we merely override the pipeline control signals to
insert O’s similar to the stall logic

— Stall logic can be re-used and triggered by a successful branch (Branch
AND ALUZero =1)

— Stalling only dealt with ID and subsequent stages, not IF stage

— Successful branch requires that the instruction in IF be discarded, but
on the next cycle how will the DECODE stage know that the bits in the
IF register are not a real instruction but a flushed/invalid instruction

* When a branch outcome is true we will...
— Zero out the control signals in the ID,EX,MEM stages

— Set a control bit in the IF/ID stage register that will tell the DECODE
stage on the next clock cycle that the instruction is INVALID

i, TS(“Viterbi 2

School of Engineering
Late B h Det Inati
o O
>0 PC+d
» 1 (branch target)
PCWrite HDU — FLUSH Taken branch =
RWrite | Stall = [DO ”;3 ® | [DO UPDATE PC]
> » 0
¢ I 0
PA\UPDATE PC] O 1
Stall N\ g 3 P
IF.Flush = 0 = | >0 £ —
& < 0—1) TS
A 77) _ =
> + =) —— = :
|= { N [1]
rs QY m Q
}—'—ﬁ:%
©OF B
\ 4 o o a y
2 i\ S h
(D) 9 N D:
| O f) (&) d)
gl [3°] o =
% © &
()
N =
@
% 0 a N~ 35
1]
)
ALUSelB ALUSIC <4(
What if HDU declares a STALL at the Forwarding 5
same time a Branch is taken? Unit > 0 é
> : 2 3 > 1 3. g
When we stall, PCWrite = 0 and won’t > Regurite & g 2 e
update PC and we will lose the Branch > WriteReg# = \;e/e;gi,verite;;t
/ ritere
Target PC (PC=PC+disp) ® ’
®

i, TS(“Viterbi 3

School of Engineering
Late B h Det Inati
hd ? >0 PC+d
/ | » 1 (branch target)
PCWrite HDU — FLUSH Taken branch =
Rwrite .| Stall = [DO ”;3 ® | [DO UPDATE PC]
> >0
P\UPDATE PC] B 0—»l1 g
RS [} —
IF.Flush — 0 =] I » 0 £ —
& > 0 1 s }
. R T 3
+ '7@ — - — ‘ —— %
©OF B
\/ d [0} 2 4(7) y
) 2 S R
O +— q
()] « 0 N ne
< 2 @)
» O & A 5
o ® O ©
< ® =
()
l 7 £
‘@) 7 {iR i = 8 _ _/
Y/ 2 1 " °
Sign Q ALUSelB ALUSTC <3(
Forwarding] »(0 ;
. » [}
{ Fix the HDU’s PCWrite by OR’ing with R Unit _ =
the Flush signal so that PCWrite will - 3 44 1 23 B
be ‘1’ whenever a branch is taken. > Fxgtwgtei S¢ Regwrite,
L°e0 . WriteReg#
L
@

Early Branch Determination

* The stage distance between fetch and branch outcome and
target computation determines how many instructions are
flushed (i.e. the branch penalty)

— Again, branch penalty is the number of instructions/clock cycles that
are wasted when a branch is taken

* |If we can determine the branch outcome and target
computation earlier, we can reduce this penalty

* Observation: All necessary information for both branch
outcome and target computation are available (late) in the
decode stage

— Move comparison and PC+disp. operations to the DECODE stage

— Requires moving forwarding logic since branch instructions may need
data from later in the pipe.

USC Viterbi (2
Early Branch Determination

® FLUSH * Add a comparator to the Decode stage and
- move the forwarding into this stage
EX.RegWrite * We now forward from the end of one stage
- all EX.RegDst E to the end of a previous stage
PCWrite | HDU =
2 > A oo & =
s g 3 4 £ =
= IF.Flush = 2 —
E 2
\ 4
| g W N /o o NN ;
4 _/ 3
Sh %
® Read Left 2 = -
=
5 |Reg.-1# Read >0) 23
data 1 — g 8 —
- "| , |Read i % Gl % v
—¢ 7" Reg. 2 # ": 2 _ 2 N
o = > 3 o)) 0
. \ i = @ e
O % 1 > Write Read ALUSelA 0 o =
™ @)
@®© Reg. # O ® O
o (_I) ®) data 2 »0 o g E%
- | Write 11 o o i
"| Data ** 2 (‘,)49 £ S| B
> QO
: e > 5 1
Register File h = & O & -
= - — 1 >
8 T » A i
g | @, =)
/7 "\ Extend -
Reset °
16 ~— 32 e :
<€ orwarding B 2
rt i Unit] . 5
- s E S| sok g 2 0
Y) =53l al g£3 |=3 ¢
> scflgl 25zl |58 3
rd i TsE|2| ED= =X =
> re=zlg| 2xz| |* s

i, TS(“Viterbi

School of Engineering

Early Determination w/ Predict NT

Fetch | Decode | Exec. Mem. WB
(IF) (ID) (EX) | (ME)
BEQ Sa0,5al,L1 (NT) €L | BEQ
12: ADD $s1,$t1,5t2 c2 | aoo [NBEQH
SUB $t3,$t0’$50 C3 | su | ADD | BEQ
OR SSO $t6 $t7 C4 | oR SuB | ADD | BEQ
BNE SsO,$51,|_2 (T) zz BNE ﬁ SUB | ADD | BEQ
OR SUB | ADD
L1: AND $t3,5t6,$t7 _ e
ADD | £
W St5,0($51) €8 | suB | ADD | Hop BNE | OR
LW SSZ'O(SSS) c9 OR SUB | ADD | o, BNE
C10 | BNE OR SUB | ADD |00

Using early determination & predict NT keeps the
pipeline full when we are correct and has a single
instruction penalty for our 5-stage pipeline

USCViterbi @

School of Engine

Branch Delay Slots

* Problem: After a branch we fetch instructions

that we are not sure should be executed s Y
e Idea: Find an instruction(s) that should e
always be executed (independent of whether } a = 0;
branch is T or NT), move them to directly after else {
the branch, and have HW just let them be bl T
executed (not flushed) no matter what the
(.) X
branch outcome is
* Branch delay slot(s) = # of instructions that Consider the code
the HW will execute after a branch and not above. What lines of
flush code are guaranteed
to execute regardless
— Assuming early branch determination (i.e. in of whether the if or

decode), only need 1 delay slot else execute?

USC Viterbi

School of Engineering

Branch Delay Slot Example

sub $s3,$s4,$s5
add $s0,$s1,$s2
beq $s3,$t8, ELSE
delay slot instruc.

/Il if code

b END

/Il else code
END:

/| after code

Assume a single
instruction delay slot
(as with our updated
early determination

pipeline)

“Before” Code

sub $s3,$s4,$s5
add $s0,$s1,$s2

o>

Delay Slot
T
\ 4 v NT
Taken Not Taken
Path Code Path Code
|
“After” Code

Flowchart perspective of the
delay slot

sub $s3,$s4,$s5
beq $s3,$t8, ELSE
add $s0,$s1,$s2

Move an ALWAYS
executed instruction
(the “add” from above)
down into the delay
slot and let it execute
no matter what

What if sub was instead: Iw $s3,0($s4)? Would that change the performance?

Yes

i, TS(“Viterbi

School of Engineering

Implementing Branch Delay Slots

HW will define the number of
branch delay slots (usually a small
number...1 or 2)

Compiler will be responsible for
arranging instructions to fill the
delay slots

— Must find instructions that the branch
does NOT DEPEND on

— If no instructions can be rearranged,
can always insert NOP instructions and
just waste those cycles

sub $s3,$s4,$s5
add $s0,$s1,$s2
beq $s3,$t8, NEXT
delay slot instruc.

Cannot move ‘sub’ into
delay slot because beq
needs the $s3 value
generated by it

sub $s3,$s4,$s5
add $t8,$s1,$s2
beq $s3,$t8, NEXT
nop

If no instruction can be
found a ‘nop’ can be
iInserted by the compiler

i, TS(“Viterbi

School of Engineering

Early Determination w/ Delay Slot

Fetch | Decode | Exec. | Mem. | WB
(IF) (ID) (EX) (ME)
XOR $Sl,$$1,$$1 Cl | xor
_L2: ADD $s1,5t1,5t2 c2 | aop | xoR
Avays SUB $t3,5t0,5s6 © | orR | ADD | XOR
together | OR SSO,$t6,$t7 C4 | BNE OR ADD | XOR
_ BNE SSO,$51,L2 (T, T) C5 | suB | BNE OR | ADD | XOR
L1- AND $t3,$t6,$t7 Cé | ADD | sSuB | BNE OR | ADD
C7 | oR | ADD | SUB | BNE OR
i\\:\vl itg’g(isé) C8 | BNE OR ADD | SUB | BNE
>4 (>) co | SUB | BNE OR | ADD | SsuB
Cl10 | AND | SUB | BNE OR | ADD

By scheduling the delay slot with an earlier
instruction we incur no stalls/bubbles and don’t
have to “predict” the branch

i, TS(“Viterbi -«

School of Engineering

How Good is the Compiler?

e Source: Hennessey and Patterson, “Computer Architecture — A Quantitative Approach”, 2nd
Ed. Pg. 169

 How many delay slots should be use?

— While delay slots seem to improve performance, the benefit depends on the compiler’s ability to fill
them with useful instructions

— One of more NOP’s in the delay slots but increase the instruction count

of Delay Compiler Fills Loss of Loss of Assume Compiler filling Loss of cycles Instruction
Slots #Useful + #NOPs Cycles if Cyclesif not | 60%Taken +40% Not Taken prob. (Expectation) increasing
taken taken Loss of Cycles factor
0 3 0 3*0.6 + 0*0.4=1.8 100% 1.8 1
1 Use + 0 NOP 65%
1 1.55 1.35
0 Use + 1 NOP 35%
2 Use + 0 NOP 40%
2 1 Use + 1 NOP 25% 1.55 1.95
0 Use + 2 NOP 35%
3 Use+ 0 NOP 12%
2 Use+1 NOP 28%
3 1.83 2.83
1 Use + 2 NOP 25%
0 Use + 3 NOP 35%

Other Delay Slots?

* Recall that a LW followed by a dependent instruction
requires our HDU logic to insert 1 bubble (stall for 1
cycle)

 The MIPS ISA could “declare” a delay slot...

e ...This means the compiler shall not schedule a
dependent instruction into the delay slot after a LW

— If necessary compiler can follow the LW with a ‘nop’

* If the ISA declares a LW delay slot do we need the
HDU?

Example

* Compile the following
code shippet on
CompilerExplorer
(https://godbolt.org/)
with:

— MIPS gcc 13.1.0 or higher

— -00 flag then -01, then -
03

— Then try to increase N to
100

#include <iostream>
#include <string>

using namespace std;
#define N 100
int dat[N];
int main()
{
for(int i=0; i < N; i++){
dat[i] = 1i;
}
}

https://godbolt.org/

BACKUP

i, TS(“Viterbi -«

School of Engineering

Late Branch Determination w/ HDU fix

® o
i o
»{ 1
PCWrite : E FLUSH ‘
IRWrite ; ® | R
B 0 > 1 =
5 2
= I » 0 1S
x 0 1 20
Control L I—} Branch =
4 + X 3
I'S| R d + §
ca Sh. .=
5 Reg.1# - 1
rt Read 0 q =2 J9
\ 2 d / Read > ir B J
7 - /e Reg.2# (ata1l § > 1 Z o PN
2 A Writ & "2 > 5 A »Eg— 0
O 3] p| VVrIe o ALUSGIA ero : =
gl" @ S Reg. # o > S
L—') Read E Res. 2
»| Write data 2 >0] >0 g . "
Data] |¢—>(1 o = .
(O] @ > 2 1 / - % =
. : = > | gang D T
Register File = : S s U 3
. -| > ' D uLg
#—> - ALUSelB ALUSrC <3(
Reset _ =
= 16 Forwarding >0 ;
Unit v > %
f : A A > 1 ; % §
: Regwrite & 538 .
- WriteReg# £ Regwrite,
WriteReg#
L
®

	Slide 1: EE 457 Unit 6c
	Slide 2: Overview
	Slide 3: Branch Outcome and Target
	Slide 4: Branch Penalty
	Slide 5: Control Hazards
	Slide 6: An Opening Example
	Slide 7: Option 1: Stalling
	Slide 8: Option 2: Flushing
	Slide 9: Option 2: Flushing
	Slide 10: Late Branch Determination
	Slide 11: Flushing Strategy
	Slide 12: Late Branch Determination
	Slide 13: Late Branch Determination
	Slide 14: Early Branch Determination
	Slide 15: Early Branch Determination
	Slide 16: Early Determination w/ Predict NT
	Slide 17: Branch Delay Slots
	Slide 18: Branch Delay Slot Example
	Slide 19: Implementing Branch Delay Slots
	Slide 20: Early Determination w/ Delay Slot
	Slide 21: How Good is the Compiler?
	Slide 22: Other Delay Slots?
	Slide 23: Example
	Slide 24: Backup
	Slide 25: Late Branch Determination w/ HDU fix

