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Control Hazards
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Overview

* Branching requires knowing 2 values:

— Branch outcome: Should | branch or not
(i.e.is S1 == S3)?
e Only 2 option (yes or no)

40: BEQ $1,$3,28
44: AND $12,$2,$5
 Use T =Taken and NT = Not taken to describe these 48: OR 813,866,852

2 outcomes 52: ADD $14,$2,$2

B . ,
Branch target: Where should | branch® 72: LW $4,50($7)

e Requires computation of new PC value
(i.,e. PC=PC+d)

* Where in the pipeline do | know these values?

— Branch outcome: End of EX stage (zero bit from
ALU)

— Branch target: End of EX stage (PC+d)

— End of EX stage...Too late to do anything with it
(wait until MEM stage)
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Branch Outcome and Target
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Branch Penalty
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Control Hazards

e Control (branch) hazards are
named such because they deal with
issues related to program control
instructions (branch, jump,
subroutine call, etc.)

 There is some delay in determining
a branch or jump instruction and
thus incorrect instructions may
already be in the pipeline

40 :
44
48 :
52:

72 :

BEQ
AND
OR

LW

$1,$3,28

$12,$2,8$5
$13,56,52
$14,$2,82

$4,50(87)




CC1

An Opening Example

40: BEQ $1,$3,28

IM

44: AND $12,$2,$5

48: OR $13,%6,%$2

52: ADD $14,$2,%$2

72: LW $4,52(7)

pﬁeq:true

CC2 CC3
Reg| || LU
IM H Hireg]]

3 instructions
enter the pipeline
by CC4
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* How can we solve this problem?
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BEQ outcome
known in MEM
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Option 1: Stalling

e Option 1: Start stalling the pipeline as soon as you detect that it is a branch and
keep stalling until you know the outcome

CC1

CC2

40: BEQ $1,$3,28

IM

oo

44: AND $12,$2,$5

48: OR $13,%6,%$2

52: ADD $14,$2,%$2

72: LW $4,52(7)

—_—

IM

CC3

CC4

CC5

pﬁEQﬂrue

O
slala
88

DM

‘|Reg§

.
-

."‘JI__'J‘,

CC6

CcC7 CC8 CC9

Disadvantage:
* Penalty of 3 clocks for every
branch and
* HW is not simplified
* Still need logic to stall
* Still need to flush the following
instruc.

DM Regé
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Option 2: Flushing

* Option 2: Pipeline assumes sequential execution by default. Optimistically assume
sequential execution. Since the incorrectly fetched instructions are still in stages
[IF, ID, EX] that do not alter processor state (write a register or memory) they can
be safely flushed. Let us add support for this flushing...

CC1 CC2 CC3 CC4 CC5 CC6 CC7 CC8 CC9

p&EQ=true

Still have a 3 clock penalty when the
branch outcome is true

40: BEQ $1,$3,28| |\ Reg|| | JALUH D I Regi
A

M
44: AND $12,$2,$5 IM —_L%;;:_:E
48: OR $13,$6,$2 IM *L’:F;;:@’
52: ADD $14,$2,$2 IM ~®7

72: LW $4,52(7) IM

DM Regé

G
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Option 2: Flushing
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* Option 2: Pipeline assumes sequential execution by default. Optimistically assume
sequential execution. Since the incorrectly fetched instructions are still in stages
[IF, ID, EX] that do no alter processor state (write a register or memory) they can be
safely flushed. Let us add support for this flushing...

CC1

40: BEQ $1,$3,28

IM

44: AND $12,$2,$5

48: OR $13,%6,%$2

52: ADD $14,$2,%$2
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No penalty when the branch outcome
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Late Branch Determination
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Flushing Strategy

* To flush we merely override the pipeline control signals to
insert O’s similar to the stall logic

— Stall logic can be re-used and triggered by a successful branch (Branch
AND ALUZero =1)

— Stalling only dealt with ID and subsequent stages, not IF stage

— Successful branch requires that the instruction in IF be discarded, but
on the next cycle how will the DECODE stage know that the bits in the
IF register are not a real instruction but a flushed/invalid instruction

* When a branch outcome is true we will...
— Zero out the control signals in the ID,EX,MEM stages

— Set a control bit in the IF/ID stage register that will tell the DECODE
stage on the next clock cycle that the instruction is INVALID
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Late B h Det Inati
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Early Branch Determination

* The stage distance between fetch and branch outcome and
target computation determines how many instructions are
flushed (i.e. the branch penalty)

— Again, branch penalty is the number of instructions/clock cycles that
are wasted when a branch is taken

* |If we can determine the branch outcome and target
computation earlier, we can reduce this penalty

* Observation: All necessary information for both branch
outcome and target computation are available (late) in the
decode stage

— Move comparison and PC+disp. operations to the DECODE stage

— Requires moving forwarding logic since branch instructions may need
data from later in the pipe.
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Early Branch Determination
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Early Determination w/ Predict NT

Fetch | Decode | Exec. Mem. WB
(IF) (ID) (EX) | (ME)
BEQ Sa0,5al,L1 (NT) €L | BEQ
12: ADD $s1,$t1,5t2 c2 | aoo [NBEQH
SUB $t3,$t0’$50 C3 | su | ADD | BEQ
OR SSO $t6 $t7 C4 | oR SuB | ADD | BEQ
BNE SsO,$51,|_2 (T) zz BNE ﬁ SUB | ADD | BEQ
OR SUB | ADD
L1: AND $t3,5t6,$t7 _ e
ADD | £
W St5,0($51) €8 | suB | ADD | Hop BNE | OR
LW SSZ'O(SSS) c9 OR SUB | ADD | o, BNE
C10 | BNE OR SUB | ADD |00

Using early determination & predict NT keeps the
pipeline full when we are correct and has a single
instruction penalty for our 5-stage pipeline
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Branch Delay Slots

* Problem: After a branch we fetch instructions

that we are not sure should be executed s Y
e Idea: Find an instruction(s) that should e
always be executed (independent of whether } a = 0;
branch is T or NT), move them to directly after else {
the branch, and have HW just let them be bl T
executed (not flushed) no matter what the
( . ) X
branch outcome is
* Branch delay slot(s) = # of instructions that Consider the code
the HW will execute after a branch and not above. What lines of
flush code are guaranteed
to execute regardless
— Assuming early branch determination (i.e. in of whether the if or

decode), only need 1 delay slot else execute?
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Branch Delay Slot Example

sub $s3,$s4,$s5
add $s0,$s1,$s2
beq $s3,$t8, ELSE
delay slot instruc.

/Il if code

b END

/Il else code
END:

/| after code

Assume a single
instruction delay slot
(as with our updated
early determination

pipeline)

“Before” Code

sub $s3,$s4,$s5
add $s0,$s1,$s2

o>

Delay Slot
T
\ 4 v NT
Taken Not Taken
Path Code Path Code
|
“After” Code

Flowchart perspective of the
delay slot

sub $s3,$s4,$s5
beq $s3,$t8, ELSE
add $s0,$s1,$s2

Move an ALWAYS
executed instruction
(the “add” from above)
down into the delay
slot and let it execute
no matter what

What if sub was instead: Iw $s3,0($s4)? Would that change the performance?

Yes
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Implementing Branch Delay Slots

HW will define the number of
branch delay slots (usually a small
number...1 or 2)

Compiler will be responsible for
arranging instructions to fill the
delay slots

— Must find instructions that the branch
does NOT DEPEND on

— If no instructions can be rearranged,
can always insert NOP instructions and
just waste those cycles

sub $s3,$s4,$s5
add $s0,$s1,$s2
beq $s3,$t8, NEXT
delay slot instruc.

Cannot move ‘sub’ into
delay slot because beq
needs the $s3 value
generated by it

sub $s3,$s4,$s5
add $t8,$s1,$s2
beq $s3,$t8, NEXT
nop

If no instruction can be
found a ‘nop’ can be
iInserted by the compiler
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Early Determination w/ Delay Slot

Fetch | Decode | Exec. | Mem. | WB
(IF) (ID) (EX) (ME)
XOR $Sl,$$1,$$1 Cl | xor
_L2: ADD $s1,5t1,5t2 c2 | aop | xoR
Avays SUB $t3,5t0,5s6 © | orR | ADD | XOR
together | OR SSO,$t6,$t7 C4 | BNE OR ADD | XOR
_ BNE SSO,$51,L2 (T, T) C5 | suB | BNE OR | ADD | XOR
L1- AND $t3,$t6,$t7 Cé | ADD | sSuB | BNE OR | ADD
C7 | oR | ADD | SUB | BNE OR
i\\:\vl itg’g(isé) C8 | BNE OR ADD | SUB | BNE
>4 ( > ) co | SUB | BNE OR | ADD | SsuB
Cl10 | AND | SUB | BNE OR | ADD

By scheduling the delay slot with an earlier
instruction we incur no stalls/bubbles and don’t
have to “predict” the branch
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How Good is the Compiler?

e Source: Hennessey and Patterson, “Computer Architecture — A Quantitative Approach”, 2nd
Ed. Pg. 169

 How many delay slots should be use?

— While delay slots seem to improve performance, the benefit depends on the compiler’s ability to fill
them with useful instructions

— One of more NOP’s in the delay slots but increase the instruction count

# of Delay Compiler Fills Loss of Loss of Assume Compiler filling Loss of cycles Instruction
Slots #Useful + #NOPs Cycles if Cyclesif not | 60%Taken +40% Not Taken prob. (Expectation) increasing
taken taken Loss of Cycles factor
0 3 0 3*0.6 + 0*0.4=1.8 100% 1.8 1
1 Use + 0 NOP 65%
1 1.55 1.35
0 Use + 1 NOP 35%
2 Use + 0 NOP 40%
2 1 Use + 1 NOP 25% 1.55 1.95
0 Use + 2 NOP 35%
3 Use+ 0 NOP 12%
2 Use+1 NOP 28%
3 1.83 2.83
1 Use + 2 NOP 25%
0 Use + 3 NOP 35%




Other Delay Slots?

* Recall that a LW followed by a dependent instruction
requires our HDU logic to insert 1 bubble (stall for 1
cycle)

 The MIPS ISA could “declare” a delay slot...

e ...This means the compiler shall not schedule a
dependent instruction into the delay slot after a LW

— If necessary compiler can follow the LW with a ‘nop’

* If the ISA declares a LW delay slot do we need the
HDU?



Example

* Compile the following
code shippet on
CompilerExplorer
(https://godbolt.org/)
with:

— MIPS gcc 13.1.0 or higher

— -00 flag then -01, then -
03

— Then try to increase N to
100

#include <iostream>
#include <string>

using namespace std;
#define N 100
int dat[N];
int main()
{
for(int i=0; i < N; i++){
dat[i] = 1i;
}
}



https://godbolt.org/

BACKUP
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Late Branch Determination w/ HDU fix
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