I USC Viterbi

School of Engineering

EE 457 Unit 6b

Data Hazards

I USC Viterbi

Data Hazards

* Consider the data dependencies in
the following sequence

chool of Engincering

$1, $3
$2, $5
$6, $2
$2, $2
100 ($2)

— The last four are all dependent on SUB
register $2 AND $12,
* But because of pipelining the OR $13,
instructions and, or, add could ADD $14,
before the sub SW $15,
writes its new result
* Thisis called a more
specifically a RAW (
) Hazard

— If the RAW hazards is not handled,
incorrect program execution may
result

USC Viterbi

School of Engineering

An Opening Example
$2= old old old old old new new new new
CC1 CC2 CC3 CC4 CC5 CC6 CC7 CC8 ccC9

SUB $2,$1,$3 | |M R; Il@ I DM Reg* __________ Newh$e2r:vail.
AND $12, $2, $5 IM Reg TM Reg

;o -

OR $13, $6, $2 IM jRegM T DM ﬁ {Regi
ADD $14, $2, $2 R 5 V- DM Hf FReg!
here

SW $15, 100($2)

ALU DM Reg

Do these instrucs. get the new value?
(Note: Usually a reg. is written at end of clock)

* Can the compiler solve this problem w/o hardware help?

. USC Viterbi

School of Engineering

An Opening Example

* The compiler’s solution is to insert nop (
instructions

* The effect is to push the dependency later in time

SUB
nop
nop
nop
AND
OR

ADD
SW

$2, $1, $3 | SUBS2,$1,$3 IEH}E

(Why 32?)
nop
$12, $2, $5
$13, $6, $2
$14, $2, $2
$15, 100($2)

nop

nop

AND $12, $2, $5

] USCVit,e.,r,bi _
Control for Data Hazards

¢ Two hardware solutions

* Stall Strategy:

— Detect the hazard and stall the dependent instructions in the pipeline
until the

— Stalling is achieved by sending
and not updating the stalled stage registers

forward into the pipe

| USCVit?.,rbi _
Stalling Strategy

LW $t1,4($s0)

¢ Since we must be careful not to ADD $t5.5t1 $t4

read a register value
from the register file, we should o Toecoas T e T wer T we
detect hazards in the ID stage
and stall the instruction there! S
— If an instruction stalls, all C2 | Do
instructions behind it C3 i ADD | LW
— All instructions in front of it are ¢4 i ADD Lw
C5 i ADD LW
— Insert “bubbles” into the c6 i ADD
control signals to 0 so no incorrect
behavior takes place) i I I

Using Stalls to Handle
Dependencies (Data Hazards)

I (S Viterbi (7
Detecting Data Hazards

* Need to stall if an instruction in the last 3 stages is going to
write a register the currently decoding instruction wants to read
(i.e. READ-AFTER-WRITE)

* How would we know if an instruction in the pipe is going to
write a register than an instruction in ID wants to read?

— By comparing register ID values!!

Cases for Detecting Data Dependecies

1a. ID/EX. and ID/EX.WriteRegister == IF/ID.ReadRegisterl

1b. ID/EX. and ID/EX.WriteRegister == IF/ID.ReadRegister2

2a. EX/MEM. and EX/MEM.WriteRegister == IF/ID.ReadRegisterl
2b. EX/MEM. and EX/MEM.WriteRegister == IF/ID.ReadRegister2
3a. MEM/WB. and MEM/WB.WriteRegister == IF/ID.ReadRegisterl
3b. MEM/WB. and MEM/WB.WriteRegister == IF/ID.ReadRegister2

I USCV1terb1 _
Hazard Detection Unit I/O

* Only stall if a Write register in one of the last 3 stages matches one of the read
registers in the ID stage

PCWrite e WB.RegWrite
ImEmmmmmTT T TIIICICICICIC] Hazard e
1 h) X Mem.RegWrite
: IRWrite : DetUec_t'lon = EX.RegWrite EX/MEM
: : —)—l_/m = ID/EX o]
1 i ID.ReadRegA £ MEM/WB
1 1 ID.ReadRegB 1 stall = E =
: Con | b= =
H IF/ID ! trol =
I
1 Read +
Sh.
I
i 5 |Reg.1# Left
! 2
1 < , | Read a
2 5 |Reg. 2# 2 z
2 Read| [g a0
Addr. 2 Write data 1 0 Zero ;
O - Reg. # a > o e
& fstrue. 2 Read S E Res. Addr.
S Write data 2 0
I-Cache % ™ Data a a c Read c q
< . Data L
m Register File ¢ 2 =
g = L Write o
Sign Data
%6 _Extend - 0 D-Cache
1
EX.WriteReg| +
Mem.Wri

g
WB.WriteReg

| USC\fit¢¥bi .
HDU Operation

Hazard Detection

EX Hazard ID/EX RegWrite and
((ID/EX.WriteRegister = IF/ID.ReadRegisterl) or
(ID/EX.WriteRegister = IF/ID.ReadRegister2))

MEM Hazard EX/MEM RegWrite and
((EX/MEM.WriteRegister = IF/ID.ReadRegister1) or
(EX/MEM.WriteRegister = IF/ID.ReadRegister2))

WB Hazard MEM/WB RegWrite and
((MEM/WB.WriteRegister = IF/ID.ReadRegisterl) or
(MEM/WB.WriteRegister = IF/ID.ReadRegister2))

_USCViterbi
HDU Implementation

* How long do we stall

hool of Engineering

— If the hazard exists in the EX stage, we need to insert ___ bubbles

(wait) before restarting the pipeline

— If the hazard exists in the WB stage we only need to insert __ bubble

(wait cycle)

* Sosince the delay is time dependent does the HDU require a

counter or state machine?

— The producer instruction will keep
eventually clear. The HDU works by simply checking if hazard
exists in the forward stages and inserts a bubble into the ID/EX stage

register

and

— If an EX hazard exists it will take 3 cycles to clear and thus the HDU will
detect an EX hazard in one clock, a MEM hazard in the next, and a WB
hazard in the third inserting a bubble for each of these cycle =3

bubbles

| USCVitqbi .
HDU Logic

* Detection logic requires __-bit
comparators along with some AND and OR
gates

* Upon detection, HDU inserts a bubble into the
ID/EX stage register

— Bubble = HW generated NOP = Turn all control
signals to zeros

Scho

I US(CViterbi _
HDU Implementation

¢ What if two hazards exist at the same time

— Again, any hazard should cause a bubble

— The producing instructions will continue to move forward and

ol of Engincering

eventually clear Fetch | Decode | Exec. | Mem. | WB

ct | sus

SUB @ 51, $3 c2 | anp | suB

AND @ (’ \) $5 c3 | OR | AND | suB

OR $8, (§:%<; §_6 c4

ADD $9, 184) l\$%} cs

SLT $1, $6, §7 o
c7
cs
co

I USC Viterbi

School of Engineering

Register Forwarding/Bypassing

REDUCING DATA HAZARDS

USC Viterbi

School of Engineering

Key Idea

While $2 is not written until WB stage, the subtraction result is available at the end of the ___ stage
(beginning of the stage) and can be to dependent instructions

[
1resl]

'
]

SUB $2, $1, $3

IM =

AND $12, $2, $5

lreal || auul DM Reo
IM ~EF};:_ DM Reg

OR $13, $6, $2 IM H

ADD $14, $2, $2

Register file can be
designed such that the

value being written can _E 1
immediately be forwarded |M M Reg DM Reg
to read ports (R)

SW $15, 100($2)

USC Viterbi

School of Engineering

Register File Internal Forwarding

* Internal Forwarding:
— Value read = Value being written

Read Reg #1 Read Reg #1

—

S x
L 0 0 B g0 0 .
> $1 1 gl $1 1
Read data 1 Read data 1
write __| Write Read data 1
data data ead data
$31 31 $31 31
% %
(M (M
>0 = 0
— 1 —1 Read data 2
Read data 2 —
. . Read data 2
Resistonrie Register File
without with Internal
Internal 31 ing 31
Forwarding \})
Read Reg #2 ——— Read Reg #2 ———1

USC Viterbi

School of Engineering

Forwarding Unit

s Read
5 Reg. 1 #
5l " Read Read ? _%
B 5 Reg.2# gata 1 d o
2 Z 2 g 0
D g
o —>| Write O ALUSelA)
c Reg. # p -_——
-% Wit Read o n
rnie 2
=] —>| data 2 [}
= Data . Read = 4
I= Register Fil Data
egister rile 7 =
g S Write H
; a - Data £
Sign dnuseis | ALl]JSrc 3
Extend - D-Cache 5
32 Forwarding E
rs [Unit 2
> s
rt 4 2%]
. o | |22
WriteReg#
Mux Control Source Explanation
ALUSelA & ALUSelB = 00 ID/EX The first (if ALUSelA) and/or second (ALUSelB) ALU input comes from the normal ID/EX stage
register
ALUSelA & ALUSelB =01 EX/MEM The first (if ALUSelA) and/or second (ALUSelB) ALU input comes from the prior ALU result in
the EX/MEM stage reg.
ALUSelA & ALUSelB = 10 MEM/WB The first (if ALUSelA) and/or second (ALUSelB) ALU input comes from the data memory or

earlier ALU result

I USC Viterbi

Forwarding Unit Addition

* Remove the old HDU in the ID stage

* Add a new Forwarding Unit (FU) in the EX
stage
— Like HDU it services dependent instructions

— Compares write register ID’s in later stages to read
register ID’s in earlier stages

I USC Viterbi

Forwarding Unit vs. HDU

* Since the HDU stalled instructions in the ID stage it
needed to compare 2 source ID’s with 3 destination
ID’s

* Because we let instructions fetch stale register values
and just replace them in the EX (or MEM) stage, the
forwarding Unit compares 2 source ID’s with 2
destination ID’s

 HDU had 6 comparators while the FU requires 4

. USC Viterbi

ReadRegl Forwarding

e ALUSelA mux

If (MEM.RegWrite
and (MEM W”teReg I= —) If both, MEM and WB stage
and ()) . contain an instruction
~~ .] producing the value needed
then ALUSE'A =01 _-7'] bytheEXstage, stage
7 should prevail since it has
(WB.RegWrite o LD Bctice

and (WB.WriteReg =) .-~
and (WB.WriteReg =
then ALUSelA =10

Else // RegFile value is latest
ALUSelA =00

. USC Viterbi

ReadReg2 Forwarding

School of Engineering

* ALUSelB mux
If (MEM.RegWrite

and (MEMWf’tEReg I= 0) If both, MEM and WB stage
H — contain an instruction
a nd (MEM erteReg - EX)) DR ~o producing the value needed
— .7 | by the EX stage, Mem stage
then ALUSQ'B - 01 ,/” should prevail since it has
Else if (WB Reg Write // the latest producer

and (WB.WriteReg != 0) e
and (WB.WriteReg = EX.

then ALUSelB = 10
Else // RegFile value is latest
ALUSelB =00

USC Viterbi

School of Engineering

EX Priority Example Different Forward Sources
@ SUB $4,$2,$1 eADD $2,$2,$1 “ e AND $8,$2,%4 @OR $4,%$2,%$5

USC Viterbi

School of Engineering

ADD $2)$1J$3

ADD $2,$2,$1 ADD $2,$2,%$1

s Read ', |Read
5 Reg. 1 # 75 Reg. 1 #
5 " |, |Read Read O 2 2 ", |Read Read g 2
@ % |Reg.2# gata 1 [; 5 S % *|Reg.2# data 1 [; E
S
g ; S o o] ; S o
o —> Write : ALUSelA () () > —>| Wit g ALUSelA (o)
c Reg. # o ey S Reg. # . [P S
= ! Read S ! & 7]) Read S 1 Addr. ¢
s | Write data 2 e ! I @ | Write data 2 ¢ ! o
= Data >—>‘ 1 l = = Data ! Read =
= ; . c 2 1 . . c 1 Data
Register File 3 x : = = z Register File 3 : i ; 5
- a - I e TN a - 1 Data :
(ESIQnd \ IaLuseis I ALUSTC 3 £ ESIgnd + lausets 1 ALUSIC 3
- N H < xtent 4 + D-Cache 5
16 N Exend J 32 Forwarding : 16 N Exend J 32 Forwarding :
rs Il Unit 2 rs Unit E
=] s 3 s
n i3 s n 23 8
d 52 d 52
. m@;‘;: g% Eﬁ?:ﬁ::;, . w:’::;ﬁ £° x:g:gg;
Instruction Explanation (Assume init value of $2 =
0x03 and $1 = 0x01) Instruction
1 ADD $2,$2,$1 New $2 should equal 0x04 Who should help instruction T | fom Who should help instruction
3? Instruc. 2or 1 3?
2 ADD $2,%$2,%1 New $2 should equal 0x05 2 OR ¢
3 ADD $2,%$2,%1 New $2 should equal 0x06 3 AND $8 {
4 SUB $4,$2,%1

USC Viterbi

School of Engineering

Don’t Declare Success Yet Understanding the Problem
9 AND $12,$2,$1 @ LW $2, 100($4)

USC Viterbi

School of Engineering

$2= old old old old old new new new new

s Read CC1 CC2 CC3 CC4 CC5 CC6 CC7 CC8 cC9
Reg. 1 # o — — — -
5 LW $2, 100($1) : l = New $2 avail.
oo Read Read 0 ’ IM ‘Reg T DM Reg; here
_‘% 5 Reg.2# gata 1 d ; 7 R L L .
Write 3 e | M M -5
o ALUSelA h I '
q 7] {[] 1 AND §12, $2, 85 IM 1| "{Rea| L /AU 1 1| OM]y -Reg
§ Write d’z;?g S Ty L L o
£ | Data g Read 1 o ~ - .
= Register File Data £ I :
g g | wrie OR $13, $6, $2 H MRegl | 1 DM I Reg'
Eitignd . |ALUSeIB ALJSE pad é - e = — = ==
en - =
» J_’[Forarang] D-Cache ; ADD $14. 2. 2 New $2 needed here M :L = H] [DM =
n Ly 3 z T (earlier than it is eg|| T €g:
. e | |22 e produced) T B
SW $15, 100($2) IM H J: Reg I DM Reg!
Instruction A — == - -
Is the new value of register
1 | ‘) $2 a\;‘ailal;I;ch:r for;va.r(iing You cannot forward data “back” in time. In these time
2 AND $12§ $2;$1 when Heecsity space diagrams, forwarding must be “forward” in time
3 suB $8,$2,34

* What can we do to solve this problem?

I USC Viterbi

Back to the HDU Back to the HDU

Could also use MemToReg = 1 or

USC Viterbi

School of Engineering

EX.RegWrite even RegDst=0
. Re-lintrodu.ce the HDU to handle the case of a W $2,100($1) = r—— Sin;lggified 2 7
LW immediately followed by a dependent AND $12, $2, $5 : i s v £ L2 2]
. . IRWrite | instruc.) L
instruction OR $13, 56, 52 1 H = E_x.MemReaf
ADD $14, $2, $2 : 1 Stall ﬁ (i.e. LW)
e EX Hazard: SW $15,100($2) ! Control
H —
If (ID/EX.RegWrite and ID/EX.MemRead = 1 and H " / Seaol1 Y
. 1 eg.
(ID/EX.WriteRegRt = IF/ID.ReadRegl] 5 9
Fetc | Decod | Exec. | Mem. wB 1 r Read Read 0
or h e ! : % "|Reg.2# gata 1 s 1
ID/EX.WriteRegRt = IF/ID.ReadReg2)) o1 | 1w 2| E e g €
Then Ol 8 L= Reg. # 0 iy
stall the Pipeli il Rl Ml 2 Wit g [t :
peline | Data ata ’_’(1 H
c3 | OR | AND LW)) g 2 i
Register File 1 =
0 : 1 3
o c4 Sign 2 TaLusels : 3
Note: We use MemRead = 1 to indicate the Extend i = Ase 3
instruction in ID/EX is an LW. We could also C5 16 :2 —»[F°"ﬁ""12:"”9] §
we___ ; 3 — 35
or even Cc6 por Regwrite s | [5 & Regurite
o7 WriteReg# | | & Wri(eReg;i

. USC Viterbi

School of Engineering

USC Viterbi

School of Engineering

One More Consideration Dealing with Memory Dependency

H SUB $2, $1, $3 EX.RegWrite
* Consider the sequence shown to SW $2,40($6) ‘o mTTIoT Hazard g
. i H— Detection | (o]
the right | e] Unit 8 m—f
1 RegDst
5 Fetch | Decode | Exec. Mem. wB : 1 Stall = (ie. LV%) § 1. We should take the output of the
b |S there d dependency H] Control LU R forwarding mux as our write data
C1 SuUB : AN 2. In this way sub can forward its
1 data using our forwarding HW in
c2 | sw | suB : " v 22;‘11 . Sh. i the EX stage
c3 i sw | sus I 5 ‘ Let
i N 2
. Read 0 d =
* Do we have the forwarding paths ca | it i sw | sus : B0/ —Reg 2 gy P 1 g z
O 2 d Q!
. ; - - c] <
to handle this dependency? c5 | w2 | i i | sw | sus oLl 2 | el |—{wee, 3 ol o
eg. o by)
. a 4 S a g]
— Atfirst glance Q wie sl o c fes ®
Fetch | Decode | Exec. | Mem. wB | Data ata -}{ 1 1 Read £
; y g 2 1 U 2 Data
o SUB Register File = ! a Write o z
! 1 ?
- - I | Data £
2 W B (Sign g Iacuseis 1 3
— Butwecan ¢z | s v o\ Eend /7 Ly] muse D-Cache 2
. Forwardin 3
and use our c3 i sw SUB . J-{ T j 0 H
c4 | i i sw_| sus n 7 —u 3. 2
rd Regwrite & § § °
c5 i+2 i+1 i SwW SuB WriteReg | & Weaog

— 5 terhi ¢
Calculating Stall Cycles

* To find the number of bubbles (stall cycles) that the HDU will need to insert:

— #stall cycles = Stage Depth — Stage Depth
INST1 $2, x, X # Producer
INST2 x, $2, x # Consumer
- . ___ INST2 __ INST1 —
- = (Y] = (] = < = [To) = © . ~
® 2 o 2 ® 2 ® 2 ® 2 ® 2 ®
o)) & o) & =) o, o) i =) 2 =) @ =)
& VI 8 3 & 8 & g g 8 &
%] & » & n I » & n & »n 3 &
PS-CS = =
__bubbles / stall cycles must be inserted
— = [a\] = [sp} = < = Te) f © P N~
(] ® 2 o 2 © 2 o 2 o 2 ©
> @ =) & o) 2 =) & o) 2 o) i o)
5 > IS > hu D pu 2 s S pu o <
7] & 7} & 7] & » < » & »n 3 7]
PS-CS = - PS'&‘;;C:‘SQ
__bubbles (i.e. forwarding can solve the
dependency! Consuming
Stage =5

I USC Viterbi

School of Engineering

Forwarding Unit Complexity

* Consider how many muxes and pathways must be added to support
forwarding in the worst case? For n stages, forward logic complexity =

[FETCH] [DECODE] [ALU] [MEM1] [MEM2] [MUL/DIV1] [MUL/DIVZ]

- = o = ™ . < o 15) = © . ~

Q [[[Q Q [

shls (gl (Sl S)e (&2 (&g (5

o 2 it ot it = i D p = S > g

n & n < n < () < n & %) < (%)

—_FWD __FWD —_FWD —_FWD
Paths Paths Paths Path

— - eV} a-, [sp) 3 <t - a-, c
o 2 o 2 o 2 o 2 2 o
o 2 o 4 o 0) o °)
8 = it 2 i D S > 2 s
n I 17} o n o %] o o 2]

FWD FWD
Paths Paths

