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Data Hazards

• Consider the data dependencies in 
the following sequence 
– The last four are all dependent on 

register $2

• But because of pipelining the 
instructions and, or, add could read 
$2 before the sub writes its result

• This is called a data hazard, more 
specifically a RAW (Read-After-
Write) Hazard
– If the RAW hazards is not handled, 

incorrect program execution may 
result

SUB   $2, $1, $3

AND  $12, $2, $5

OR   $13, $6, $2

ADD  $14, $2, $2

SW   $15, 100($2)
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An Opening Example

• Can the compiler solve this problem w/o hardware help?

CC1 CC2 CC3 CC4 CC5 CC6 CC7 CC8 CC9

IM Reg ALU DM Reg

IM Reg ALU DM Reg

IM Reg ALU DM Reg

IM Reg ALU DM Reg

IM Reg ALU DM Reg

SUB $2, $1, $3

AND $12, $2, $5

OR $13, $6, $2

ADD $14, $2, $2

SW $15, 100($2)

New $2 avail. 
here

New $2 needed 
here

Do these instrucs. get the new value?
(Note: Usually a reg. is written at end of clock)

$2= old          old old old old new        new new new
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An Opening Example

• The compiler’s solution is to insert nop (no operation) 
instructions

• The effect is to push the dependency later in time

SUB   $2, $1, $3

nop

nop     (Why 3?)

nop

AND  $12, $2, $5

OR   $13, $6, $2

ADD  $14, $2, $2

SW   $15, 100($2)

IM Reg ALU DM Reg

IM Reg ALU DM Reg

IM Reg ALU DM Reg

IM Reg ALU DM Reg

IM Reg ALU DM Reg

SUB $2, $1, $3

nop

nop

nop

AND $12, $2, $5

…
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Control for Data Hazards

• Two hardware solutions
– Stalls

– Forwarding/bypassing

• Stall Strategy:
– Detect the hazard and stall the dependent instructions in the pipeline 

until the hazard is resolved

– Stalling is achieved by sending bubbles (nops) forward into the pipe 
and not updating the stalled stage registers
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Stalling Strategy

• Since we must be careful not to 
read a “stale” register value 
from the register file, we should 
detect hazards in the ID stage 
and stall the instruction there!
– If an instruction stalls, all 

instructions behind it stall

– All instructions in front of it are 
free to continue down the pipe

– Insert “bubbles” into the 
subsequent stages (set all control 
signals to 0 so no incorrect 
behavior takes place)

Fetch Decode Exec. Mem. WB

C1 LW

C2 ADD LW

C3 i ADD LW

C4 i ADD LW

C5 i ADD LW

C6 i ADD

C7 i+1 i ADD

C8 i+2 i+1 i ADD

Using Stalls to Handle 

Dependencies (Data Hazards)

nop

nop nop

nop nop

nop

nop

nop

nop

LW  $t1,4($s0)

ADD $t5,$t1,$t4
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Detecting Data Hazards

• Need to stall if an instruction in the last 3 stages is going to 
write a register the currently decoding instruction wants to read 
(i.e. READ-AFTER-WRITE)

• How would we know if an instruction in the pipe is going to 
write a register than an instruction in ID wants to read?
– By comparing register ID values!!

Cases for Detecting Data Dependecies
1a. ID/EX.RegWrite and   ID/EX.WriteRegister == IF/ID.ReadRegister1
1b. ID/EX.RegWrite and   ID/EX.WriteRegister == IF/ID.ReadRegister2
2a. EX/MEM.RegWrite and  EX/MEM.WriteRegister == IF/ID.ReadRegister1
2b. EX/MEM.RegWrite and  EX/MEM.WriteRegister == IF/ID.ReadRegister2
3a. MEM/WB.RegWrite and  MEM/WB.WriteRegister == IF/ID.ReadRegister1
3b. MEM/WB.RegWrite and  MEM/WB.WriteRegister == IF/ID.ReadRegister2
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Hazard Detection Unit I/O
• Only stall if a Write register in one of the last 3 stages matches one of the read 

registers in the ID stage
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HDU Operation

Hazard Detection

EX Hazard ID/EX RegWrite and
((ID/EX.WriteRegister = IF/ID.ReadRegister1) or
(ID/EX.WriteRegister = IF/ID.ReadRegister2))

MEM Hazard EX/MEM RegWrite and
((EX/MEM.WriteRegister = IF/ID.ReadRegister1) or
(EX/MEM.WriteRegister = IF/ID.ReadRegister2))

WB Hazard MEM/WB RegWrite and
((MEM/WB.WriteRegister = IF/ID.ReadRegister1) or
(MEM/WB.WriteRegister = IF/ID.ReadRegister2))
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HDU Implementation

• How long do we stall
– If the hazard exists in the EX stage, we need to insert 3 bubbles (wait 3 

cycle) before restarting the pipeline

– If the hazard exists in the WB stage we only need to insert 1 bubble 
(wait 1 cycle)

• So since the delay is time dependent does the HDU require a 
counter or state machine? 
– No!  The producer instruction will keep moving forward and eventually 

clear The HDU works by simply checking if ANY hazard exists in the 
forward stages and inserts a bubble into the ID/EX stage register

– If an EX hazard exists it will take 3 cycle to clear and thus the HDU will 
detect an EX hazard in one clock, a MEM hazard in the next, and a WB 
hazard in the third inserting a bubble for each of these cycle = 3 
bubbles)
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HDU Logic

• Detection logic requires six (6) 5-bit 
comparators along with some AND and OR 
gates

• Upon detection, HDU inserts a bubble into the 
ID/EX stage register

– Bubble = HW generated NOP = Turn all control 
signals to zeros
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HDU Implementation

• What if two hazards exist at the same time
– Again, any hazard should cause a bubble

– The producing instructions will continue to move forward and 
eventually clear

SUB   $2, $1, $3

AND   $4, $2, $5

OR    $8, $2, $6

ADD   $9, $4, $2

SLT   $1, $6, $7

Fetch Decode Exec. Mem. WB

C1 SUB

C2 AND SUB

C3 OR AND SUB

C4 OR AND SUB

C5 OR AND SUB

C6 OR AND

C7 ADD OR AND

C8 SLT ADD OR AND

C9 SLT ADD OR AND

nop

nop nop

nop nop

nop

nop

nop

nop

nop



13

REDUCING DATA HAZARDS

Register Forwarding/Bypassing
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Key Idea

While $2 is not written until WB stage, the subtraction result is available at the end of the EX stage 
(beginning of the MEM stage) and can be passed off directly to dependent instructions

IM Reg ALU DM Reg

IM Reg ALU DM Reg

IM Reg ALU DM Reg

IM Reg ALU DM Reg

IM Reg ALU DM Reg

SUB $2, $1, $3

AND $12, $2, $5

OR $13, $6, $2

ADD $14, $2, $2

SW $15, 100($2)

New $2 truly 
avail. here

Register file can be 
designed such that the 
value being written can 

immediately be forwarded 
to read ports
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Register File Internal Forwarding

• Internal Forwarding: 

– Value read = Value being written
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Forwarding Unit
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Forwarding Unit Addition

• Remove the old HDU in the ID stage

• Add a new Forwarding Unit (FU) in the EX 
stage

– Like HDU it services dependent instructions

– Compares write register ID’s in later stages to read 
register ID’s in earlier stages
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Forwarding Unit vs. HDU

• Since the HDU stalled instructions in the ID stage it 
needed to compare 2 source ID’s with 3 destination 
ID’s

• Because we let instructions fetch stale register values 
and just replace them in the EX (or MEM) stage, the 
forwarding Unit compares 2 source ID’s with 2 
destination ID’s

• HDU had 6 comparators while the FU requires 4
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ReadReg1 Forwarding

• ALUSelA mux

If (MEM.RegWrite
and (MEM.WriteReg != 0)
and (MEM.WriteReg = EX.ReadReg1))

then ALUSelA = 01

Else if (WB.RegWrite
and (WB.WriteReg != 0)
and (WB.WriteReg = EX.ReadReg1)]

then ALUSelA = 10

Else  // RegFile value is latest

ALUSelA = 00

If both, MEM and WB stage 
contain an instruction 

producing the value needed 
by the EX stage, Mem stage 
should prevail since it has 

the latest producer
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ReadReg2 Forwarding

• ALUSelB mux

If (MEM.RegWrite
and (MEM.WriteReg != 0)
and (MEM.WriteReg = EX.ReadReg2))

then ALUSelB = 01

Else if (WB.RegWrite
and (WB.WriteReg != 0)
and (WB.WriteReg = EX.ReadReg2)]

then ALUSelB = 10

Else  // RegFile value is latest

ALUSelB = 00

If both, MEM and WB stage 
contain an instruction 

producing the value needed 
by the EX stage, Mem stage 
should prevail since it has 

the latest producer
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EX Priority Example
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Different Forward Sources
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Don’t Declare Success Yet
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Understanding the Problem

• What can we do to solve this problem?  Stall!!

CC1 CC2 CC3 CC4 CC5 CC6 CC7 CC8 CC9

IM Reg ALU DM Reg

IM Reg ALU DM Reg

IM Reg ALU DM Reg

IM Reg ALU DM Reg

IM Reg ALU DM Reg

LW  $2, 100($1)

AND $12, $2, $5

OR $13, $6, $2

ADD $14, $2, $2

SW $15, 100($2)

New $2 avail. 
here

New $2 needed here 
(earlier than it is 

produced)

You cannot forward data “back” in time.  In these time 
space diagrams, forwarding must be “forward” in time

$2= old          old old old old new        new new new
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Back to the HDU

• Re-introduce the HDU to handle the case of a 
LW immediately followed by a dependent 
instruction

• EX Hazard:

If (ID/EX.RegWrite and ID/EX.MemRead = 1 and 
(ID/EX.WriteRegRt = IF/ID.ReadReg1
or 
ID/EX.WriteRegRt = IF/ID.ReadReg2))

Then

Stall the Pipeline

Fetc

h

Decod

e

Exec. Mem. WB

C1 LW

C2 AND LW

C3 OR AND LW

C4 OR AND LW

C5 ADD OR AND LW

C6 SW ADD OR AND

C7 … SW ADD OR AND

LW   $2, 100($1)
AND $12, $2, $5
OR   $13, $6, $2
ADD $14, $2, $2
SW   $15, 100($2)

Note: We use MemRead = 1 to indicate the 
instruction in ID/EX is an LW.  We could also 
use MemToReg = 1 or even RegDst=0
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Back to the HDU
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One More Consideration

• Consider the sequence shown to 
the right

• Is there a dependency?
– Yes, SW needs the new value of $2 to write to 

memory

• Do we have the forwarding paths 
to handle this dependency?
– At first glance no, because it may seem we 

need to forward from WB back to MEM

– But we can actually forward earlier from 
MEM back to EX and use our current 
forwarding muxes

Fetch Decode Exec. Mem. WB

C1 SUB

C2 SW SUB

C3 i SW SUB

C4 i+1 i SW SUB

C5 i+2 i+1 i SW SUB

SUB $2, $1, $3
SW   $2, 40($6)

Fetch Decode Exec. Mem. WB

C1 SUB

C2 SW SUB

C3 i SW SUB

C4 i+1 i SW SUB

C5 i+2 i+1 i SW SUB
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Dealing with Memory Dependency
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Calculating Stall Cycles

• To find the number of bubbles (stall cycles) that the HDU will need to insert:

– # stall cycles = Producing Stage  Depth – Consuming Stage Depth
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Forwarding Unit Complexity

• Consider how many muxes and pathways must be added to support 
forwarding in the worst case?  For n stages, forward logic complexity = O(n2)
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IMAGES
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An Opening Example (nops)

CC1 CC2 CC3 CC4 CC5 CC6 CC7 CC8 CC9

IM Reg ALU DM Reg

IM Reg ALU DM Reg

IM Reg ALU DM Reg

IM Reg ALU DM Reg

IM Reg ALU DM Reg

SUB $2, $1, $3

nop

nop

nop

AND $12, $2, $5

…
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An Opening Example

• ds
CC1 CC2 CC3 CC4 CC5 CC6 CC7 CC8 CC9

IM Reg ALU DM Reg

IM Reg ALU DM Reg

IM Reg ALU DM Reg

IM Reg ALU DM Reg

IM Reg ALU DM Reg

SUB $2, $1, $3

AND $12, $2, $5

OR $13, $6, $2

ADD $14, $2, $2

SW $15, 100($2)
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Hazards

• EX Hazard

– HDU:  Hazard occurs if data dependence 
between ID and EX stages

– FU: Between EX and MEM stage

• MEM Hazard

– HDU:  Hazard occurs if data dependence 
between ID and MEM stages

– FU: Between EX and WB stages

• Idea:  Hazard is named based on who 
produces the data the dependent instruction 
needs

Book may refer to 
this as an EX hazard 
since data being 
forwarded from the 
MEM stage was 
produced in the EX 
stage (but, due to 
our datapath, is not 
forwarded until it 
reaches the MEM 
stage).
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Hazard Definitions

• MEM Hazard

If [MEM.RegWrite
and (MEM.WriteReg != 0)
and (MEM.WriteReg = EX.ReadReg1)]

Then EX1 = True

If (EX1 = True) then ALUSelA = 01

If [MEM.RegWrite
and (MEM.WriteReg != 0)
and (MEM.WriteReg = EX.ReadReg2)]

Then EX2 = True

If (EX2 = True) then ALUSelB = 01
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Hazard Definitions

• MEM Hazard

[MEM/WB.RegWrite
and (MEM/WB.WriteReg != 0)
and (MEM/WB.WriteReg = EX.ReadReg1)]

and (EX1 != True)]

Then ALUSelA = 10

If [MEM/WB.RegWrite
and (MEM/WB.WriteReg != 0)
and (MEM/WB.WriteReg = ID/EX.ReadReg2)
and (EX2 != True)]

Then ALUSelB = 10

An EX Hazard should prevail 
over a MEM hazard since the 
EX hazard has the latest data



37

Hazards

• EX Hazard

– HDU:  Hazard occurs if data dependence between ID and 
EX stages

– FU: Between EX and MEM stage

• MEM Hazard

– HDU:  Hazard occurs if data dependence between ID and 
MEM stages

– FU: Between EX and WB stages

• Idea:  Hazard is named based on who ________ the 
data the dependent instruction needs
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