
1

EE 457 Unit 6b

Data Hazards

2

Data Hazards

• Consider the data dependencies in
the following sequence
– The last four are all dependent on

register $2

• But because of pipelining the
instructions and, or, add could read
$2 before the sub writes its result

• This is called a data hazard, more
specifically a RAW (Read-After-
Write) Hazard
– If the RAW hazards is not handled,

incorrect program execution may
result

SUB $2, $1, $3

AND $12, $2, $5

OR $13, $6, $2

ADD $14, $2, $2

SW $15, 100($2)

3

An Opening Example

• Can the compiler solve this problem w/o hardware help?

CC1 CC2 CC3 CC4 CC5 CC6 CC7 CC8 CC9

IM Reg ALU DM Reg

IM Reg ALU DM Reg

IM Reg ALU DM Reg

IM Reg ALU DM Reg

IM Reg ALU DM Reg

SUB $2, $1, $3

AND $12, $2, $5

OR $13, $6, $2

ADD $14, $2, $2

SW $15, 100($2)

New $2 avail.
here

New $2 needed
here

Do these instrucs. get the new value?
(Note: Usually a reg. is written at end of clock)

$2= old old old old old new new new new

4

An Opening Example

• The compiler’s solution is to insert nop (no operation)
instructions

• The effect is to push the dependency later in time

SUB $2, $1, $3

nop

nop (Why 3?)

nop

AND $12, $2, $5

OR $13, $6, $2

ADD $14, $2, $2

SW $15, 100($2)

IM Reg ALU DM Reg

IM Reg ALU DM Reg

IM Reg ALU DM Reg

IM Reg ALU DM Reg

IM Reg ALU DM Reg

SUB $2, $1, $3

nop

nop

nop

AND $12, $2, $5

…

5

Control for Data Hazards

• Two hardware solutions
– Stalls

– Forwarding/bypassing

• Stall Strategy:
– Detect the hazard and stall the dependent instructions in the pipeline

until the hazard is resolved

– Stalling is achieved by sending bubbles (nops) forward into the pipe
and not updating the stalled stage registers

6

Stalling Strategy

• Since we must be careful not to
read a “stale” register value
from the register file, we should
detect hazards in the ID stage
and stall the instruction there!
– If an instruction stalls, all

instructions behind it stall

– All instructions in front of it are
free to continue down the pipe

– Insert “bubbles” into the
subsequent stages (set all control
signals to 0 so no incorrect
behavior takes place)

Fetch Decode Exec. Mem. WB

C1 LW

C2 ADD LW

C3 i ADD LW

C4 i ADD LW

C5 i ADD LW

C6 i ADD

C7 i+1 i ADD

C8 i+2 i+1 i ADD

Using Stalls to Handle

Dependencies (Data Hazards)

nop

nop nop

nop nop

nop

nop

nop

nop

LW $t1,4($s0)

ADD $t5,$t1,$t4

7

Detecting Data Hazards

• Need to stall if an instruction in the last 3 stages is going to
write a register the currently decoding instruction wants to read
(i.e. READ-AFTER-WRITE)

• How would we know if an instruction in the pipe is going to
write a register than an instruction in ID wants to read?
– By comparing register ID values!!

Cases for Detecting Data Dependecies
1a. ID/EX.RegWrite and ID/EX.WriteRegister == IF/ID.ReadRegister1
1b. ID/EX.RegWrite and ID/EX.WriteRegister == IF/ID.ReadRegister2
2a. EX/MEM.RegWrite and EX/MEM.WriteRegister == IF/ID.ReadRegister1
2b. EX/MEM.RegWrite and EX/MEM.WriteRegister == IF/ID.ReadRegister2
3a. MEM/WB.RegWrite and MEM/WB.WriteRegister == IF/ID.ReadRegister1
3b. MEM/WB.RegWrite and MEM/WB.WriteRegister == IF/ID.ReadRegister2

8

Hazard Detection Unit I/O
• Only stall if a Write register in one of the last 3 stages matches one of the read

registers in the ID stage

IF/ID

I-Cache

P
C

Addr.

Instruc.

In
s
tr

u
c
ti
o

n
 R

e
g
is

te
r

Register File

Read

Reg. 1 #

Read

Reg. 2 #

Write

Reg. #

Write

Data

Read

data 1

Read

data 2

Sign

Extend

P
ip

e
lin

e
 S

ta
g
e

 R
e
g
is

te
r

A
L

U Res.

Zero

0

1

Sh.

Left

2

+

P
ip

e
lin

e
 S

ta
g
e

 R
e
g
is

te
r

D-Cache

Addr.

Read

Data

Write

Data

P
ip

e
lin

e
 S

ta
g
e

 R
e
g
is

te
r

0

1

16
32

5

5

0

1

Con

trol E
x

M
e
m

W
B

M
e
m

W
B

W
B

ID/EX

EX/MEM

MEM/WB

Hazard

Detection

Unit

EX.RegWrite
Mem.RegWrite

WB.RegWrite

EX.WriteReg

Mem.WriteReg

WB.WriteReg

ID.ReadRegA

ID.ReadRegB

PCWrite

IRWrite

Stall

9

HDU Operation

Hazard Detection

EX Hazard ID/EX RegWrite and
((ID/EX.WriteRegister = IF/ID.ReadRegister1) or
(ID/EX.WriteRegister = IF/ID.ReadRegister2))

MEM Hazard EX/MEM RegWrite and
((EX/MEM.WriteRegister = IF/ID.ReadRegister1) or
(EX/MEM.WriteRegister = IF/ID.ReadRegister2))

WB Hazard MEM/WB RegWrite and
((MEM/WB.WriteRegister = IF/ID.ReadRegister1) or
(MEM/WB.WriteRegister = IF/ID.ReadRegister2))

10

HDU Implementation

• How long do we stall
– If the hazard exists in the EX stage, we need to insert 3 bubbles (wait 3

cycle) before restarting the pipeline

– If the hazard exists in the WB stage we only need to insert 1 bubble
(wait 1 cycle)

• So since the delay is time dependent does the HDU require a
counter or state machine?
– No! The producer instruction will keep moving forward and eventually

clear The HDU works by simply checking if ANY hazard exists in the
forward stages and inserts a bubble into the ID/EX stage register

– If an EX hazard exists it will take 3 cycle to clear and thus the HDU will
detect an EX hazard in one clock, a MEM hazard in the next, and a WB
hazard in the third inserting a bubble for each of these cycle = 3
bubbles)

11

HDU Logic

• Detection logic requires six (6) 5-bit
comparators along with some AND and OR
gates

• Upon detection, HDU inserts a bubble into the
ID/EX stage register

– Bubble = HW generated NOP = Turn all control
signals to zeros

12

HDU Implementation

• What if two hazards exist at the same time
– Again, any hazard should cause a bubble

– The producing instructions will continue to move forward and
eventually clear

SUB $2, $1, $3

AND $4, $2, $5

OR $8, $2, $6

ADD $9, $4, $2

SLT $1, $6, $7

Fetch Decode Exec. Mem. WB

C1 SUB

C2 AND SUB

C3 OR AND SUB

C4 OR AND SUB

C5 OR AND SUB

C6 OR AND

C7 ADD OR AND

C8 SLT ADD OR AND

C9 SLT ADD OR AND

nop

nop nop

nop nop

nop

nop

nop

nop

nop

13

REDUCING DATA HAZARDS

Register Forwarding/Bypassing

14

Key Idea

While $2 is not written until WB stage, the subtraction result is available at the end of the EX stage
(beginning of the MEM stage) and can be passed off directly to dependent instructions

IM Reg ALU DM Reg

IM Reg ALU DM Reg

IM Reg ALU DM Reg

IM Reg ALU DM Reg

IM Reg ALU DM Reg

SUB $2, $1, $3

AND $12, $2, $5

OR $13, $6, $2

ADD $14, $2, $2

SW $15, 100($2)

New $2 truly
avail. here

Register file can be
designed such that the
value being written can

immediately be forwarded
to read ports

15

Register File Internal Forwarding

• Internal Forwarding:

– Value read = Value being written

0

1

$0

31

$1

$31

0

1

31

Read data 1

Read data 2

Write

data

0

1

$0

31

$1

$31

0

1

31

Read data 1

Read data 2

Write

data
0

1
Write

data

1

0

Write

data

Read Reg #1

Read Reg #2

Read Reg #1

Read Reg #2

=Write

reg #

=Write

reg #

Read data 1

Read data 2

Register File
without
Internal

Forwarding

Register File
with Internal
Forwarding

16

Forwarding Unit
In

s
tr

u
c
ti
o

n
 R

e
g
is

te
r

Register File

Read

Reg. 1 #

Read

Reg. 2 #

Write

Reg. #

Write

Data

Read

data 1

Read

data 2

Sign

Extend

P
ip

e
lin

e
 S

ta
g
e

 R
e
g
is

te
r

A
L

U Res.

Zero

0

1

Sh.

Left

2

+

P
ip

e
lin

e
 S

ta
g
e

 R
e
g
is

te
r

D-Cache

Addr.

Read

Data

Write

Data

P
ip

e
lin

e
 S

ta
g
e

 R
e
g
is

te
r

0

1

16 32

5

5

0

1

rs

rt

rs

rt

rd

0

1

2

0

1

2

Forwarding

Unit

ALUSrc
ALUSelB

ALUSelA

Mux Control Source Explanation

ALUSelA & ALUSelB = 00 ID/EX The first (if ALUSelA) and/or second (ALUSelB) ALU input comes from the normal ID/EX stage
register

ALUSelA & ALUSelB = 01 EX/MEM The first (if ALUSelA) and/or second (ALUSelB) ALU input comes from the prior ALU result in
the EX/MEM stage reg.

ALUSelA & ALUSelB = 10 MEM/WB The first (if ALUSelA) and/or second (ALUSelB) ALU input comes from the data memory or
earlier ALU result

Regwrite &

WriteReg# Regwrite,

WriteReg#

D
a
ta

 M
e
m

.
o

r
A

L
U

 r
e
s
u

lt

P
ri

o
r

A
L

U

R
e
s
u

lt

17

Forwarding Unit Addition

• Remove the old HDU in the ID stage

• Add a new Forwarding Unit (FU) in the EX
stage

– Like HDU it services dependent instructions

– Compares write register ID’s in later stages to read
register ID’s in earlier stages

18

Forwarding Unit vs. HDU

• Since the HDU stalled instructions in the ID stage it
needed to compare 2 source ID’s with 3 destination
ID’s

• Because we let instructions fetch stale register values
and just replace them in the EX (or MEM) stage, the
forwarding Unit compares 2 source ID’s with 2
destination ID’s

• HDU had 6 comparators while the FU requires 4

19

ReadReg1 Forwarding

• ALUSelA mux

If (MEM.RegWrite
and (MEM.WriteReg != 0)
and (MEM.WriteReg = EX.ReadReg1))

then ALUSelA = 01

Else if (WB.RegWrite
and (WB.WriteReg != 0)
and (WB.WriteReg = EX.ReadReg1)]

then ALUSelA = 10

Else // RegFile value is latest

ALUSelA = 00

If both, MEM and WB stage
contain an instruction

producing the value needed
by the EX stage, Mem stage
should prevail since it has

the latest producer

20

ReadReg2 Forwarding

• ALUSelB mux

If (MEM.RegWrite
and (MEM.WriteReg != 0)
and (MEM.WriteReg = EX.ReadReg2))

then ALUSelB = 01

Else if (WB.RegWrite
and (WB.WriteReg != 0)
and (WB.WriteReg = EX.ReadReg2)]

then ALUSelB = 10

Else // RegFile value is latest

ALUSelB = 00

If both, MEM and WB stage
contain an instruction

producing the value needed
by the EX stage, Mem stage
should prevail since it has

the latest producer

21

EX Priority Example
In

s
tr

u
c
ti
o

n
 R

e
g
is

te
r

Register File

Read

Reg. 1 #

Read

Reg. 2 #

Write

Reg. #

Write

Data

Read

data 1

Read

data 2

Sign

Extend

P
ip

e
lin

e
 S

ta
g
e

 R
e
g
is

te
r

A
L

U Res.

Zero

0

1

Sh.

Left

2

+

P
ip

e
lin

e
 S

ta
g
e

 R
e
g
is

te
r

D-Cache

Addr.

Read

Data

Write

Data

P
ip

e
lin

e
 S

ta
g
e

 R
e
g
is

te
r

0

1

16 32

5

5

0

1

rs

rt

rs

rt

rd

0

1

2

0

1

2

Forwarding

Unit

ALUSrc
ALUSelB

ALUSelA

Instruction Explanation (Assume init value of $2 =
0x03 and $1 = 0x01)

1 ADD $2,$2,$1 New $2 should equal 0x04

2 ADD $2,$2,$1 New $2 should equal 0x05

3 ADD $2,$2,$1 New $2 should equal 0x06

4 SUB $4,$2,$1 …

Regwrite &

WriteReg# Regwrite,

WriteReg#

D
a
ta

 M
e
m

.
o

r
A

L
U

 r
e
s
u

lt

P
ri

o
r

A
L

U

R
e
s
u

lt

4 3 2 1

Who should help instruction
3? Instruc. 2 or 1

Instruc 2 (the latest producer)

SUB $4,$2,$1 ADD $2,$2,$1

ADD $2,$2,$1 ADD $2,$2,$1

22

Different Forward Sources
In

s
tr

u
c
ti
o

n
 R

e
g
is

te
r

Register File

Read

Reg. 1 #

Read

Reg. 2 #

Write

Reg. #

Write

Data

Read

data 1

Read

data 2

Sign

Extend

P
ip

e
lin

e
 S

ta
g
e

 R
e
g
is

te
r

A
L

U Res.

Zero

0

1

Sh.

Left

2

+

P
ip

e
lin

e
 S

ta
g
e

 R
e

g
is

te
r

D-Cache

Addr.

Read

Data

Write

Data

P
ip

e
lin

e
 S

ta
g
e

 R
e
g
is

te
r

0

1

16 32

5

5

0

1

rs

rt

rs

rt

rd

0

1

2

0

1

2

Forwarding

Unit

ALUSrc
ALUSelB

ALUSelA

Instruction

1 ADD $2,$1,$3

2 OR $4,$2,$5

3 AND $8,$2,$4

Regwrite &

WriteReg# Regwrite,

WriteReg#

D
a
ta

 M
e
m

.
o

r
A

L
U

 r
e
s
u

lt

P
ri

o
r

A
L

U

R
e
s
u

lt

3 2 1

Who should help instruction 3?
Both Instruc 1 (for $2) and

Instruc 2 (for $4)
(the latest producer of each

dependent register)

AND $8,$2,$4 OR $4,$2,$5 ADD $2,$1,$3

23

Don’t Declare Success Yet
In

s
tr

u
c
ti
o

n
 R

e
g
is

te
r

Register File

Read

Reg. 1 #

Read

Reg. 2 #

Write

Reg. #

Write

Data

Read

data 1

Read

data 2

Sign

Extend

P
ip

e
lin

e
 S

ta
g
e

 R
e
g
is

te
r

A
L

U Res.

Zero

0

1

Sh.

Left

2

+

P
ip

e
lin

e
 S

ta
g
e

 R
e
g
is

te
r

D-Cache

Addr.

Read

Data

Write

Data

P
ip

e
lin

e
 S

ta
g
e

 R
e
g
is

te
r

0

1

16 32

5

5

0

1

rs

rt

rs

rt

rd

0

1

2

0

1

2

Forwarding

Unit

ALUSrc
ALUSelB

ALUSelA

Instruction

1 LW $2, 100($4)

2 AND $12,$2,$1

3 SUB $8,$2,$4

Regwrite &

WriteReg# Regwrite,

WriteReg#

D
a
ta

 M
e
m

.
o

r
A

L
U

 r
e
s
u

lt

P
ri

o
r

A
L

U

R
e
s
u

lt

2 1

Is the new value of register
$2 available for forwarding

when ‘AND’ needs it?
NO!!

LW $2, 100($4)AND $12,$2,$1

24

Understanding the Problem

• What can we do to solve this problem? Stall!!

CC1 CC2 CC3 CC4 CC5 CC6 CC7 CC8 CC9

IM Reg ALU DM Reg

IM Reg ALU DM Reg

IM Reg ALU DM Reg

IM Reg ALU DM Reg

IM Reg ALU DM Reg

LW $2, 100($1)

AND $12, $2, $5

OR $13, $6, $2

ADD $14, $2, $2

SW $15, 100($2)

New $2 avail.
here

New $2 needed here
(earlier than it is

produced)

You cannot forward data “back” in time. In these time
space diagrams, forwarding must be “forward” in time

$2= old old old old old new new new new

25

Back to the HDU

• Re-introduce the HDU to handle the case of a
LW immediately followed by a dependent
instruction

• EX Hazard:

If (ID/EX.RegWrite and ID/EX.MemRead = 1 and
(ID/EX.WriteRegRt = IF/ID.ReadReg1
or
ID/EX.WriteRegRt = IF/ID.ReadReg2))

Then

Stall the Pipeline

Fetc

h

Decod

e

Exec. Mem. WB

C1 LW

C2 AND LW

C3 OR AND LW

C4 OR AND LW

C5 ADD OR AND LW

C6 SW ADD OR AND

C7 … SW ADD OR AND

LW $2, 100($1)
AND $12, $2, $5
OR $13, $6, $2
ADD $14, $2, $2
SW $15, 100($2)

Note: We use MemRead = 1 to indicate the
instruction in ID/EX is an LW. We could also
use MemToReg = 1 or even RegDst=0

26

Back to the HDU
In

s
tr

u
c
ti
o

n
 R

e
g
is

te
r

Register File

Read

Reg. 1 #

Read

Reg. 2 #

Write

Reg. #

Write

Data

Read

data 1

Read

data 2

Sign

Extend

P
ip

e
lin

e
 S

ta
g
e

 R
e
g
is

te
r

A
L

U Res.

Zero

0

1

Sh.

Left

2
+

P
ip

e
lin

e
 S

ta
g
e

 R
e
g
is

te
r

D-Cache

Addr.

Read

Data

Write

Data

P
ip

e
lin

e
 S

ta
g
e

 R
e
g
is

te
r

0

1

16 32

5

5

0

1

rs

rt

rs

rt

rd

0

1

2

0

1

2

Forwarding

Unit

ALUSrc
ALUSelB

ALUSelA

Regwrite &

WriteReg# Regwrite,

WriteReg#

D
a
ta

 M
e
m

.
o

r
A

L
U

 r
e
s
u

lt

P
ri

o
r

A
L

U

R
e
s
u

lt

I-
C

a
c

h
e

P
C

.

PCWrite

IRWrite

Simplified

HDU
(LW + dependent

instruc.)

Control

E
x

M
e
m

W
B

EX.RegWrite

Stall
EX.MemRead

(i.e. LW)

M
e
m

W
B

W
B

Could also use MemToReg = 1 or
even RegDst=0

27

One More Consideration

• Consider the sequence shown to
the right

• Is there a dependency?
– Yes, SW needs the new value of $2 to write to

memory

• Do we have the forwarding paths
to handle this dependency?
– At first glance no, because it may seem we

need to forward from WB back to MEM

– But we can actually forward earlier from
MEM back to EX and use our current
forwarding muxes

Fetch Decode Exec. Mem. WB

C1 SUB

C2 SW SUB

C3 i SW SUB

C4 i+1 i SW SUB

C5 i+2 i+1 i SW SUB

SUB $2, $1, $3
SW $2, 40($6)

Fetch Decode Exec. Mem. WB

C1 SUB

C2 SW SUB

C3 i SW SUB

C4 i+1 i SW SUB

C5 i+2 i+1 i SW SUB

28

Dealing with Memory Dependency
In

s
tr

u
c
ti
o

n
 R

e
g
is

te
r

Register File

Read

Reg. 1 #

Read

Reg. 2 #

Write

Reg. #

Write

Data

Read

data 1

Read

data 2

Sign

Extend

P
ip

e
lin

e
 S

ta
g
e

 R
e
g
is

te
r

A
L

U Res.

Zero

0

1

Sh.

Left

2
+

P
ip

e
lin

e
 S

ta
g
e

 R
e
g
is

te
r

D-Cache

Addr.

Read

Data

Write

Data

P
ip

e
lin

e
 S

ta
g
e

 R
e
g
is

te
r

0

1

16 32

5

5

0

1

rs

rt

rs

rt

rd

0

1

2

0

1

2

Forwarding

Unit

ALUSrc
ALUSelB

ALUSelA

Regwrite &

WriteReg# Regwrite,

WriteReg#

D
a
ta

 M
e
m

.
o

r
A

L
U

 r
e
s
u

lt

P
ri

o
r

A
L

U

R
e
s
u

lt

I-
C

a
c

h
e

P
C

.

PCWrite

IRWrite

Hazard

Detection

Unit

Control

E
x

M
e
m

W
B

EX.RegWrite

Stall
EX.RegDst

(i.e. LW)

M
e
m

W
B

W
B

2 1 SUB $2, $1, $3SW $2,40($6)

1. We should take the output of the
forwarding mux as our write data

2. In this way sub can forward its
data using our forwarding HW in
the EX stage

29

Calculating Stall Cycles

• To find the number of bubbles (stall cycles) that the HDU will need to insert:

– # stall cycles = Producing Stage Depth – Consuming Stage Depth

R
e
g

is
te

r

S
ta

g
e

 1

S
ta

g
e

 2

S
ta

g
e

 3

R
e
g

is
te

r

R
e
g

is
te

r

S
ta

g
e

 4

S
ta

g
e

 5

R
e
g

is
te

r

R
e
g

is
te

r

S
ta

g
e

 6

S
ta

g
e

 7

R
e
g

is
te

r

INST1 $2, x, x # Producer
INST2 x, $2, x # Consumer

Consuming

Stage = 4

Producing

Stage = 6
PS-CS = 6 – 4 =

2 bubbles / stall cycles must be inserted

R
e
g

is
te

r

S
ta

g
e

 1

S
ta

g
e

 2

S
ta

g
e

 3

R
e
g

is
te

r

R
e
g

is
te

r

S
ta

g
e

 4

S
ta

g
e

 5

R
e
g

is
te

r

R
e
g

is
te

r

S
ta

g
e

 6

S
ta

g
e

 7

R
e
g

is
te

r

Producing

Stage = 5
PS-CS = 5 – 5 =

0 bubbles (i.e. forwarding can solve the

dependency! Consuming

Stage = 5

INST1INST2

30

Forwarding Unit Complexity

• Consider how many muxes and pathways must be added to support
forwarding in the worst case? For n stages, forward logic complexity = O(n2)

R
e
g

is
te

r

S
ta

g
e

 1

S
ta

g
e

 2

S
ta

g
e

 3

R
e
g

is
te

r

R
e
g

is
te

r

S
ta

g
e
 4

S
ta

g
e

 5

R
e
g

is
te

r

R
e
g

is
te

r

S
ta

g
e

 6

S
ta

g
e

 7

R
e
g

is
te

r

ALU MEM1 MEM2 MUL/DIV1 MUL/DIV2DECODEFETCH

4 FWD

Paths

3 FWD

Paths

2 FWD

Paths

1 FWD Path

R
e
g

is
te

r

S
ta

g
e

 1

S
ta

g
e

 2

S
ta

g
e

 3

R
e
g

is
te

r

R
e
g

is
te

r

R
e

g
is

te
r

S
ta

g
e

 n

...

n-3 FWD

Paths

n-2 FWD

Paths

S
ta

g
e

 4

R
e
g

is
te

r

31

IMAGES

32

An Opening Example (nops)

CC1 CC2 CC3 CC4 CC5 CC6 CC7 CC8 CC9

IM Reg ALU DM Reg

IM Reg ALU DM Reg

IM Reg ALU DM Reg

IM Reg ALU DM Reg

IM Reg ALU DM Reg

SUB $2, $1, $3

nop

nop

nop

AND $12, $2, $5

…

33

An Opening Example

• ds
CC1 CC2 CC3 CC4 CC5 CC6 CC7 CC8 CC9

IM Reg ALU DM Reg

IM Reg ALU DM Reg

IM Reg ALU DM Reg

IM Reg ALU DM Reg

IM Reg ALU DM Reg

SUB $2, $1, $3

AND $12, $2, $5

OR $13, $6, $2

ADD $14, $2, $2

SW $15, 100($2)

34

Hazards

• EX Hazard

– HDU: Hazard occurs if data dependence
between ID and EX stages

– FU: Between EX and MEM stage

• MEM Hazard

– HDU: Hazard occurs if data dependence
between ID and MEM stages

– FU: Between EX and WB stages

• Idea: Hazard is named based on who
produces the data the dependent instruction
needs

Book may refer to
this as an EX hazard
since data being
forwarded from the
MEM stage was
produced in the EX
stage (but, due to
our datapath, is not
forwarded until it
reaches the MEM
stage).

35

Hazard Definitions

• MEM Hazard

If [MEM.RegWrite
and (MEM.WriteReg != 0)
and (MEM.WriteReg = EX.ReadReg1)]

Then EX1 = True

If (EX1 = True) then ALUSelA = 01

If [MEM.RegWrite
and (MEM.WriteReg != 0)
and (MEM.WriteReg = EX.ReadReg2)]

Then EX2 = True

If (EX2 = True) then ALUSelB = 01

36

Hazard Definitions

• MEM Hazard

[MEM/WB.RegWrite
and (MEM/WB.WriteReg != 0)
and (MEM/WB.WriteReg = EX.ReadReg1)]

and (EX1 != True)]

Then ALUSelA = 10

If [MEM/WB.RegWrite
and (MEM/WB.WriteReg != 0)
and (MEM/WB.WriteReg = ID/EX.ReadReg2)
and (EX2 != True)]

Then ALUSelB = 10

An EX Hazard should prevail
over a MEM hazard since the
EX hazard has the latest data

37

Hazards

• EX Hazard

– HDU: Hazard occurs if data dependence between ID and
EX stages

– FU: Between EX and MEM stage

• MEM Hazard

– HDU: Hazard occurs if data dependence between ID and
MEM stages

– FU: Between EX and WB stages

• Idea: Hazard is named based on who ________ the
data the dependent instruction needs

	Slide 1: EE 457 Unit 6b
	Slide 2: Data Hazards
	Slide 3: An Opening Example
	Slide 4: An Opening Example
	Slide 5: Control for Data Hazards
	Slide 6: Stalling Strategy
	Slide 7: Detecting Data Hazards
	Slide 8: Hazard Detection Unit I/O
	Slide 9: HDU Operation
	Slide 10: HDU Implementation
	Slide 11: HDU Logic
	Slide 12: HDU Implementation
	Slide 13: Reducing Data Hazards
	Slide 14: Key Idea
	Slide 15: Register File Internal Forwarding
	Slide 16: Forwarding Unit
	Slide 17: Forwarding Unit Addition
	Slide 18: Forwarding Unit vs. HDU
	Slide 19: ReadReg1 Forwarding
	Slide 20: ReadReg2 Forwarding
	Slide 21: EX Priority Example
	Slide 22: Different Forward Sources
	Slide 23: Don’t Declare Success Yet
	Slide 24: Understanding the Problem
	Slide 25: Back to the HDU
	Slide 26: Back to the HDU
	Slide 27: One More Consideration
	Slide 28: Dealing with Memory Dependency
	Slide 29: Calculating Stall Cycles
	Slide 30: Forwarding Unit Complexity
	Slide 31: Images
	Slide 32: An Opening Example (nops)
	Slide 33: An Opening Example
	Slide 34: Hazards
	Slide 35: Hazard Definitions
	Slide 36: Hazard Definitions
	Slide 37: Hazards

