
6a.1

EE 457 Unit 6a

Basic Pipelining Techniques

6a.2

Pipelining Introduction

• Consider a drink bottling plant

– Filling the bottle = 3 sec.

– Placing the cap = 3 sec.

– Labeling = 3 sec.

• Would you want…

– Machine 1 = Does all three (9 secs.), outputs the bottle, repeats…

– Machine 2 = Divided into three parts (one for each step) passing

bottles between them

• Machine _____ offers ability to __________

Filler + Capper + Label
(3 + 3 + 3)

Filler
(3 sec)

Place
Cap

(3 sec)

Labeler
(3 sec)

6a.3

Summing Elements

• Consider adding an array of 4-bit numbers:

– Z[i] = A[i] + B[i]

– Delay: 10ns Mem. Access (read or write), 10 ns each FA

– Clock cycle time = _____________________________________

X Y

S

CiCo FA 5 ns
X Y

S

CiCo FA

X Y

S

CiCo FA

X Y

S

CiCo FA

BMEM

a
d

d
r

d
a
ta

AMEM

a
d

d
r

d
a
ta

i
i

A[3:0]
B[3:0]

A0 B0A1 B1A2 B2A3 B3

ZMEM

a
d

d
r

d
a
ta

i

Z[3:0]

0

Z0Z1Z2Z3

6a.4

Pipelined Adder

If we assume that

the pipeline

registers are ideal

(0ns additional

delay) we can clock

the pipe every __

ns. Speedup =

AMEM
addr

data

i

A[3:0] B[3:0]

Z[3:0]
Z0Z1Z2Z3

BMEM
addr

data

i

A3 B3 A2 B2 A1 B1 A0 B0

X Y

S
CiFA

S0C1

Co
0

C2 S1

X Y

S
CiFA

Co

X Y

S
CiFA

Co

C3 S2

X Y

S
CiFA

Co

C4 S3 S2
ZMEM
addr

data

i

A3 B3 A2 B2 A1 B1 A0 B0

S1/S2

S2/S3

S3/S4

S4/S5

S5/S6

Pipeline Register
(Stage Latch)

10ns

10ns

6a.5

More Pipelining Examples

• Car Assembly Line

• Wash/Dry/Fold

– Would you buy a combo washer + dryer unit that

does both operations in the same tank??

• Freshman/Sophomore/Junior/Senior

6a.6

Balancing Pipeline Stages

Clock period must equal the LONGEST delay from

register to register

• Fig. 1: If total logic delay is 20ns => 50MHz

– Throughput: 1 instruc. / 20 ns

• Fig. 2: Unbalanced stage delays limit the

clock speed to the slowest stage (worst case)

– Throughput: 1 instruc. / 10 ns => 100MHz

• Fig. 3: Better to split into more, balanced

stages

– Throughput: 1 instruc. / 5 ns => 200MHz

• Fig. 4: Are more stages better

– Ideally: 2x stages => 2x throughput

– Throughput: 1 instruc. / 2.5 ns => 400MHz

– Each register adds extra delay so at some

point deeper pipelines don't pay off

Processor Logic
(Fetch + Decode + Execute)

R
e
g

is
te

r

F
e
tc

h

D
e
c
o
d
e

R
e
g

is
te

r

E
x
e
c
.

1

E
x
e
c
.

2

R
e
g

is
te

r

R
e
g

is
te

r

F
e
tc

h

D
e
c
o
d
e

R
e
g

is
te

r

Exec

5 ns 5 ns 10 ns

20 ns

5 ns 5 ns 5 ns 5 ns

F
1

2.5 ns

F
2

D
1

D
2

E
1
a

E
1
b

E
2
a

E
2
b

F
ig

.
1

F
ig

.
2

F
ig

.
3

F
ig

.
4

6a.7

Processors & Pipelines

• Overlaps execution of multiple instructions

• Natural breakdown into stages

– Fetch, Decode, Execute, Memory, Write-Back

• Fetch an instruction, while decoding another, while

executing another

ExecuteDecodeFetch

CLK 1 CLK 2 CLK 3

Inst 1

Inst 2

Inst 3

Inst 4

CLK 4

ExecuteDecodeFetch

DecodeFetch

Fetch

Fetch Decode Exec.

Inst. 1Clk 1

Clk 2 Inst. 1

Clk 3 Inst. 1

Inst. 2

Inst. 2

Clk 4 Inst. 2

Inst. 3

Inst. 3

Clk 5 Inst. 3

Inst. 4

Inst. 4Inst. 5

Pipelining (Instruction View) Pipelining (Stage View)

6a.8

Need for Registers

• Provides separation between combinational functions

– Without registers, fast signals could “catch-up” to data values in the

next operation stage

– With registers, inputs are “stable”

6a.9

To Register or Latch?

• What should we use for pipeline stages

– Registers [edge-sensitive] …or…

– Latches [level-sensitive]

• Latches may allow data to _________________

• Answer: __________________

S1

R
e

g
is

te
r o

r L
a

tc
h

S2 S3

R
e

g
is

te
r o

r L
a

tc
h

6a.10

But Can We Latch?

• We can latch if we run the latches on opposite phases of the

clock or have a so-called _________________

– Because each latch runs on the opposite phase data can only move

one step before being stopped by a latch that is in hold (off) mode

• You may learn more about this in EE577a or EE560 (a

technique known as Slack Borrowing & Time Stealing)

S1b

L
a

tc
h S2a S2b

L
a

tc
h

L
a

tc
h S3a S3b

L
a

tc
h

Φ

~Φ

6a.11

Pipelining Introduction

• Implementation technique that _________execution of multiple instructions

at once

• Improves ___________ rather a single-instruction execution latency

• ______________ stage determines clock cycle time [e.g. a 30 min. wash cycle

but 1 hour dry time means _________ per load]

• Assuming k stages and perfectly balanced stages:

– Speedup of pipelined vs. nonpipelined =

• A 5-stage pipelined CPU may not realize this speedup 5x b/c…

– The stages may not be perfectly balanced

– The overhead of filling up the pipe initially

– The overhead (setup time and clock-to-Q) delay of the stage registers

– Inability to keep the pipe full due to branches & data hazards

6a.12

Single-Cycle CPU Datapath

I-Cache

0

1

P
C

+

Addr.

Instruc.

Register File

Read
Reg. 1 #

Read
Reg. 2 #

Write
Reg. #

Write
Data

Read
data 1

Read
data 2

Sign
Extend

A
L

U Res.

Zero

0

1

Sh.
Left

2

+

D-Cache

Addr.

Read
Data

Write
Data

A

B

4

0

1

16 32

5

5

0

1

RegDst

ALUSrc

5

MemtoReg

MemWrite

MemRead

ALU control

PCSrc

RegWrite Branch

INST[5:0]

[25:21]

[20:16]

[15:11]

[1
5

:0
]

ALUOp[1:0]

Fetch (IF) Decode (ID) Exec. (EX) Mem WB

6a.13

Non-Pipelined Execution
Total TimeReg.

Write

Data

Mem

ALU Op.Reg.

Read

Fetch

(I-MEM)

Instruction

40 ns5 ns10 ns10 ns5 ns10 nsLoad

Store

R-Type

Branch

Jump

Fetch Reg ALU Data Reg

40 ns

Fetch Reg ALU Data Reg

40 ns
LW $5,100($2)

LW $7,40($6)

time

Fetch …

3 Instructions = 3*40 ns

LW $8,24($6)

40 ns

6a.14

Pipelined Execution

• Notice that even though the register access only takes 5 ns it is allocated a

10 ns slot in the pipeline

• Total time for these 3 pipelined instructions =

– 70 ns = ___ ns for 1st instruc + _____ for the remaining instructions to complete

• The speedup looks like it is only 120 ns / 70 ns = 1.7x

• But consider 1003 instructions: ____________________________

– The overhead of filling the pipeline is ___________ over steady-state execution when

the pipeline is full

Fetch Reg ALU Data Reg

10 ns

Fetch Reg ALU Data Reg

LW $5,100($2)

LW $7,40($6)

time

Fetch Reg ALU Data Reg

20 ns 30 ns 40 ns 50 ns 60 ns 70 ns

… Fetch Reg ALU Data Reg

LW $8,24($6)

80 ns

6a.15

Pipelined Timing

• Execute n instructions using a k

stage datapath

– i.e. Multicycle CPU w/ k steps

or single cycle CPU w/ clock

cycle k times slower

• w/o pipelining: ___________

• w/ pipelining: ____________

– ___ cycles for 1st instruc. + ____
cycles for n-1 instrucs.

– Assumes we keep the pipeline
full

WB

10ns

Mem.

10ns

Exec.

10ns

Decode

10ns

Fetch

10ns

ADDC1

ADDSUBC2

ADDSUBLWC3

ADDSUBLWSWC4

ADDSUBLWSWANDC5

SUBLWSWANDORC6

LWSWANDORXORC7

SWANDORXORC8

ANDORXORC9

ORXORC10

XORC11

P
ip

e
lin

e
 F

illin
g

P
ip

e
lin

e
 E

m
p
tyin

g
P

ip
e
lin

e
 F

u
ll

7 Instrucs. = 11 clocks

6a.16

Designing the Pipelined Datapath

• To pipeline a datapath in five stages means five

instructions will be executing (“in-flight”) during any

single clock cycle

• Resources cannot be ___________ between stages

because there may always be an instruction wanting

to use the resource

– This is known as a _________________ HAZARD

– Each stage needs its own resources

– The single-cycle CPU datapath also matches this concept of

no shared resources

– We can simply divide the single-cycle CPU into stages

6a.17

Structural Hazard Example

• Example structural hazard: A single SHARED cache

(_________________) rather than separate

instruction & data caches

– Structural hazard any time an instruction needs to perform

a data access (i.e. lw or sw) since we always want to fetch

a new instruction each clock cycle

Cache

ALU
Reg.
File

PC

LW

i+3

i+2 i+1

Hazard!

6a.18

Information Flow in a Pipeline

• Data or control information should flow only in the

forward direction in a linear pipeline

– Non-linear pipelines where information is fed back into a

previous stage occurs in more complex pipelines such as

floating point dividers

• The CPU pipeline is like a buffet line or cafeteria

where people can not try to revisit a a previous

serving station without disrupting the smooth flow of

the line

Buffet Line

???

6a.19

Register File

• Don’t we have a non-linear flow when we write a value back

to the register file?

– An instruction in WB is re-using the register file in the ID stage

– Actually we are utilizing different ________of the register file

• ID stage ___________ register values

• WB stage __________ register value

– Like a buffet line with _________ at one station

IM Reg ALU IM Reg

Buffet Line

???

6a.20

Another Structural Hazard

• Example structural hazard: A single SHARED cache

(instruction + data) rather than separate instruction

& data caches

– Structural hazard any time an instruction needs to perform

a data access (i.e. lw or sw) since we always want to fetch

a new instruction each clock cycle

Cache

ALU
Reg.
File

PC

LW

i+3

i+2 i+1

Hazard!

6a.21

Register File

• Only an issue if WB to same register as being read

• Register file can be designed to do “internal forwarding”

where the data being written is immediately ______ out as

the ___________________

IM Reg ALU DM Reg

IM Reg ALU DM Reg

IM Reg ALU DM Reg

IM Reg ALU DM Reg

LW $5,100($2)

ADD $3,$4,$5

Write $5

Read $5

CC1 CC2 CC3 CC4 CC5 CC6 CC7 CC8

6a.22

Pipelining the Fetch Phase

• Note that to keep the pipeline full we

have to fetch a new instruction every

clock cycle

• Thus we have to perform

PC = PC + 4 every clock cycle

• Thus there shall be no pipelining

registers in the datapath responsible

for PC = PC +4

• Support for branch/jump warrants a

lengthy discussion which we will

perform later

Fetch

I-Cache

0

1 P
C

+

Addr.

Instruc.

S
ta

g
e
 R

e
g
is

te
r

A

B

4

6a.23

PIPELINE CONTROL

6a.24

Basic 5 Stage Pipeline
• Compute the size of each pipeline register (find the max. info needed for any

instruction in each stage)

• To simplify, just consider LW/SW (Ignore control signals)

Fetch Decode Exec. Mem WB

I-Cache

0

1 P
C

+

Addr.

Instruc.

In
s
tr

u
c
ti
o
n
 R

e
g
is

te
r

Register File

Read
Reg. 1 #

Read
Reg. 2 #

Write
Reg. #

Write
Data

Read
data 1

Read
data 2

Sign
Extend

P
ip

e
lin

e
 S

ta
g
e
 R

e
g
is

te
r

A
L

U Res.

Zero

0

1

Sh.
Left

2

+

P
ip

e
lin

e
 S

ta
g
e
 R

e
g
is

te
r

D-Cache

Addr.

Read
Data

Write
Data

P
ip

e
lin

e
 S

ta
g
e
 R

e
g
is

te
r

A

B

4

0

1

16 32

5

5

5

rs

rt

rt/rd

Op = 35 rs=1 rt=10 immed.=40LW $10,40($1)

SW $15,100($2) Op = 43 rs=2 rt=15 immed.=100

Instruc = 32

6a.25

Basic 5 Stage Pipeline
• There is a bug in the load instruction implementation

• Which register is written with the data read from memory?

• We need to preserve the ______________ number by carrying it through the

pipeline with us

• In general this is true for all signals needed later in the pipe

LW $10,40($1)

SW $15,100($2)

Fetch Decode Exec. Mem WB

I-Cache

0

1 P
C

+

Addr.

Instruc.

In
s
tr

u
c
ti
o
n
 R

e
g
is

te
r

Register File

Read
Reg. 1 #

Read
Reg. 2 #

Write
Reg. #

Write
Data

Read
data 1

Read
data 2

Sign
Extend

P
ip

e
lin

e
 S

ta
g
e
 R

e
g
is

te
r

A
L

U Res.

Zero

0

1

Sh.
Left

2

+

P
ip

e
lin

e
 S

ta
g
e
 R

e
g
is

te
r

D-Cache

Addr.

Read
Data

Write
Data

P
ip

e
lin

e
 S

ta
g
e
 R

e
g
is

te
r

A

B

4

0

1

16 32

5

5

0

1

6a.26

Pipeline Packing List

• Just as when you go on a trip you have to pack everything you

need _________________ since you cannot come back to

your closet, so in pipelines you have to take all the control and

data you will need with you down the pipeline until you use it

6a.27

Pipeline Control Overview

• We will just consider basic (simple) pipeline control and deal with problems

related to branch and data hazards later

• It is assumed that the PC and pipeline register update on each clock cycle so no

separate write enable signals are needed for these registers

Fetch Decode Exec. Mem WB

I-Cache

0

1 P
C

+

Addr.

Instruc.

In
s
tr

u
c
ti
o
n
 R

e
g
is

te
r

Register File

Read
Reg. 1 #

Read
Reg. 2 #

Write
Reg. #

Write
Data

Read
data 1

Read
data 2

Sign
Extend

P
ip

e
lin

e
 S

ta
g
e
 R

e
g
is

te
r

A
L

U Res.

Zero

0

1

Sh.
Left

2

+

P
ip

e
lin

e
 S

ta
g
e
 R

e
g
is

te
r

D-Cache

Addr.

Read
Data

Write
Data

P
ip

e
lin

e
 S

ta
g
e
 R

e
g
is

te
r

A

B

4

0

1

16 32

5

5

0

1

6a.28

Control Signal Generation
• Recall from the Single-Cycle CPU

discussion that there is no state machine

control, but a simple translator

(combinational logic) to translate the 6-

bit opcode into these 9 control signals

• Since the datapaths of the single-cycle

and pipelined CPU are essentially the

same, so is the control

• The main difference is that the control

signals are generated in one clock cycle

and used in a subsequent cycle (later

pipeline stage)

• We can produce all our signals in the

________ and use the pipeline registers

to store and pass them to the

_______________ stage

I-Cache

P
C

Addr.

Instruc.

Register File

Read
Reg. 1 #

Read
Reg. 2 #

Write
Reg. #

Write
Data

Read
data 1

Read
data 2

Sign
Extend

16

5

5

0

1

RegDst

5

RegWrite

ALUSrc
RegDst

MemtoReg
ALUOp[1:0]

[3
1

:2
6

]

[25:21]

[20:16]

[15:11]

[1
5

:0
]

[2
5

:0
]

Control

6a.29

Control Signals per Stage

• How many control signals are needed in each

stage

Memto-

Reg

Reg

Write

Mem

Write

Mem

Read

BranchFunc[5:0]ALU

Op[1:0]

ALU

Src

Reg

Dst

Instruction

01000…1001R-format

11010X0010LW

X0100X001XSW

X0000X010XBeq

6a.30

Basic 5 Stage Pipeline
• Control is generated in the decode stage and passed along to consuming

stages through stage registers

Fetch Decode Exec. Mem WB

I-Cache

0

1 P
C

+

Addr.

Instruc.

In
s
tr

u
c
ti
o
n
 R

e
g
is

te
r

Register File

Read
Reg. 1 #

Read
Reg. 2 #

Write
Reg. #

Write
Data

Read
data 1

Read
data 2

Sign
Extend

P
ip

e
lin

e
 S

ta
g
e
 R

e
g
is

te
r

A
L

U Res.

Zero

0

1

Sh.
Left

2

+

P
ip

e
lin

e
 S

ta
g
e
 R

e
g
is

te
r

D-Cache

Addr.

Read
Data

Write
Data

P
ip

e
lin

e
 S

ta
g
e
 R

e
g
is

te
r

A

B

4

0

1

16 32

5

5

0

1

Control

E
x

M
e
m

W
B

M
e
m

W
B

W
B

ALUSrc,RegDst,
ALUOp, (Func)

Branch, MemRead,
MemWrite

RegWrite,
MemToReg

6a.31

Stage Control

• Instruction Fetch: The control signals to read instruction memory and to write

the PC are always asserted, so there is nothing special to control in this pipeline

stage

• ID/RF: As in the previous stage the same thing happens at every clock cycle so

there are no optional control lines to set

• Execution: The signals to be set are RegDst, ALUop/Func, and ALUSrc. The

signals determine whether the result of the instruction written into the register

specified by bits 20-16 (for a load) or 15-11 for an R-format), specify the ALU

operation, and determine whether the second operand of the ALU will be a

register or a sign-extended immediate

• Memory Stage: The control lines set in this stage are Branch, MemRead, and

MemWrite. These signals are set for the BEQ, LW, and SW instructions

respectively

• WriteBack: the two control lines are RegWrite , which writes the chosen register,

and MemToReg, which decides between the ALU result or memory value as the

write data

6a.32

Exercise:
• On copies of this sheet, show this sequence executing on the pipeline:

1. LW $10,40($1) 2. SUB $11,$2,$3 3. AND $12,$4,$5

4. OR $13,$6,$7 5. ADD $14,$8,$9

Fetch Decode Exec. Mem WB

I-Cache

0

1 P
C

+

Addr.

Instruc.

In
s
tr

u
c
ti
o

n
 R

e
g

is
te

r

Register File

Read
Reg. 1 #

Read
Reg. 2 #

Write
Reg. #

Write
Data

Read
data 1

Read
data 2

Sign
Extend

P
ip

e
li
n

e
 S

ta
g

e
 R

e
g

is
te

r

A
L

U Res.

Zero

0

1

Sh.
Lef t

2

+

P
ip

e
li
n

e
 S

ta
g

e
 R

e
g

is
te

r

D-Cache

Addr.

Read
Data

Write
Data

P
ip

e
li
n

e
 S

ta
g

e
 R

e
g

is
te

r

A

B

4

0

1

16 32

5

5

0

1

Control

E
x

M
e
m

W
B

M
e
m

W
B

W
B

ALUSrc,RegDst,
ALUOp, (Func)

Branch, MemRead,
MemWrite

RegWrite,
MemToReg

6a.33

Review

• Although an instruction can begin at each clock cycle, an individual

instruction still takes five clock cycles

• Note that it takes four clock cycle before the five-stage pipeline is

operating at full efficiency

• Register write-back is controlled by the WB stage even though the register

file is located in the ID stage; the correct write register ID is carried down

the pipeline with the instruction data

• When a stage is inactive, the values of the control lines are deasserted

(shown as 0's) to prevent anything harmful from occurring

• No state machine is needed; sequencing of the control signals follows

simply from the pipeline itself (i.e. control signals are produced initially

but delayed by the stage registers until the correct stage / clock cycle for

application of that signal)

6a.34

ADDITIONAL REFERENCE

6a.35

LW $t1,4($s0): Fetch

Fetch LW and
increment PC

Fetch Decode Exec. Mem WB

I-Cache

0

1 P
C

+

Addr.

Instruc.

In
s
tr

u
c
ti
o
n
 R

e
g
is

te
r

Register File

Read
Reg. 1 #

Read
Reg. 2 #

Write
Reg. #

Write
Data

Read
data 1

Read
data 2

Sign
Extend

P
ip

e
lin

e
 S

ta
g
e
 R

e
g
is

te
r

A
L

U Res.

Zero

0

1

Sh.
Left

2

+

P
ip

e
lin

e
 S

ta
g
e
 R

e
g
is

te
r

D-Cache

Addr.

Read
Data

Write
Data

P
ip

e
lin

e
 S

ta
g
e
 R

e
g
is

te
r

A

B

4

0

1

16 32

5

5

6a.36

LW $t1,4($s0): Decode

Fetch Decode Exec. Mem WB

I-Cache

0

1 P
C

+

Addr.

Instruc.

L
W

 $
t1

,4
($

s
0
)

m
a
c
h

in
e
 c

o
d

e
Register File

Read
Reg. 1 #

Read
Reg. 2 #

Write
Reg. #

Write
Data

Read
data 1

Read
data 2

Sign
Extend

P
ip

e
lin

e
 S

ta
g
e
 R

e
g
is

te
r

A
L

U Res.

Zero

0

1

Sh.
Left

2

+

P
ip

e
lin

e
 S

ta
g
e
 R

e
g
is

te
r

D-Cache

Addr.

Read
Data

Write
Data

P
ip

e
lin

e
 S

ta
g
e
 R

e
g
is

te
r

A

B

4

0

1

16 32

5

5

Decode instruction
and fetch operands

$s0 #

$t1 #

6a.37

LW $t1,4($s0): Execute

Fetch Decode Exec. Mem WB

I-Cache

0

1 P
C

+

Addr.

Instruc.

In
s
tr

u
c
ti
o
n
 R

e
g
is

te
r

Register File

Read
Reg. 1 #

Read
Reg. 2 #

Write
Reg. #

Write
Data

Read
data 1

Read
data 2

Sign
Extend $

t1
 #

 /
 O

ff
s
e
t=

0
x
0
0
0
0
0
0
0
4
 /
 $

s
0
 v

a
lu

e

A
L

U Res.

Zero

0

1

Sh.
Left

2

+

P
ip

e
lin

e
 S

ta
g
e
 R

e
g
is

te
r

D-Cache

Addr.

Read
Data

Write
Data

P
ip

e
lin

e
 S

ta
g
e
 R

e
g
is

te
r

A

B

4

0

1

16 32

5

5

Add offset 4 to
$s0 value

6a.38

LW $t1,4($s0): Memory

Fetch Decode Exec. Mem WB

I-Cache

0

1 P
C

+

Addr.

Instruc.

In
s
tr

u
c
ti
o
n
 R

e
g
is

te
r

Register File

Read
Reg. 1 #

Read
Reg. 2 #

Write
Reg. #

Write
Data

Read
data 1

Read
data 2

Sign
Extend

P
ip

e
lin

e
 S

ta
g
e
 R

e
g
is

te
r

A
L

U Res.

Zero

0

1

Sh.
Left

2
+

$
t1

 #
 /

 A
d

d
re

s
s

D-Cache

Addr.

Read
Data

Write
Data

P
ip

e
lin

e
 S

ta
g
e
 R

e
g
is

te
r

A

B

4

0

1

16 32

5

5

Read word
from memory

6a.39

LW $t1,4($s0): Writeback

Fetch Decode Exec. Mem WB

I-Cache

0

1 P
C

+

Addr.

Instruc.

In
s
tr

u
c
ti
o
n
 R

e
g
is

te
r

Register File

Read
Reg. 1 #

Read
Reg. 2 #

Write
Reg. #

Write
Data

Read
data 1

Read
data 2

Sign
Extend

P
ip

e
lin

e
 S

ta
g
e
 R

e
g
is

te
r

A
L

U Res.

Zero

0

1

Sh.
Left

2

+

P
ip

e
lin

e
 S

ta
g
e
 R

e
g
is

te
r

D-Cache

Addr.

Read
Data

Write
Data

$
t1

 #
 /

 D
a
ta

 r
e
a
d

 f
ro

m
 m

e
m

o
ry

A

B

4

0

1

16 32

5

5

Write
word to

$t1

6a.40

LW $t1,4($s0)

Fetch LW

Fetch Decode Exec. Mem WB

I-Cache

0

1 P
C

+

Addr.

Instruc.

In
s
tr

u
c
ti
o
n
 R

e
g
is

te
r

Register File

Read
Reg. 1 #

Read
Reg. 2 #

Write
Reg. #

Write
Data

Read
data 1

Read
data 2

Sign
Extend

P
ip

e
lin

e
 S

ta
g
e
 R

e
g
is

te
r

A
L

U Res.

Zero

0

1

Sh.
Left

2

+

P
ip

e
lin

e
 S

ta
g
e
 R

e
g
is

te
r

D-Cache

Addr.

Read
Data

Write
Data

P
ip

e
lin

e
 S

ta
g
e
 R

e
g
is

te
r

A

B

4

0

1

16 32

5

5

Decode instruction
and fetch operands

Add offset 4 to
$s0

Read word
from memory

Write
word to

$t1

6a.41

ADD $t4,$t5,$t6: Fetch

Fetch ADD and
increment PC

Fetch Decode Exec. Mem WB

I-Cache

0

1 P
C

+

Addr.

Instruc.

In
s
tr

u
c
ti
o
n
 R

e
g
is

te
r

Register File

Read
Reg. 1 #

Read
Reg. 2 #

Write
Reg. #

Write
Data

Read
data 1

Read
data 2

Sign
Extend

P
ip

e
lin

e
 S

ta
g
e
 R

e
g
is

te
r

A
L

U Res.

Zero

0

1

Sh.
Left

2

+

P
ip

e
lin

e
 S

ta
g
e
 R

e
g
is

te
r

D-Cache

Addr.

Read
Data

Write
Data

P
ip

e
lin

e
 S

ta
g
e
 R

e
g
is

te
r

A

B

4

0

1

16 32

5

5

6a.42

ADD $t4,$t5,$t6: Decode

Fetch Decode Exec. Mem WB

I-Cache

0

1 P
C

+

Addr.

Instruc.

A
D

D
 $

t4
,$

t5
,$

t6
 m

a
c
h

in
e
 c

o
d

e

Register File

Read
Reg. 1 #

Read
Reg. 2 #

Write
Reg. #

Write
Data

Read
data 1

Read
data 2

Sign
Extend

P
ip

e
lin

e
 S

ta
g
e
 R

e
g
is

te
r

A
L

U Res.

Zero

0

1

Sh.
Left

2
+

P
ip

e
lin

e
 S

ta
g
e
 R

e
g
is

te
r

D-Cache

Addr.

Read
Data

Write
Data

P
ip

e
lin

e
 S

ta
g
e
 R

e
g
is

te
r

A

B

4

0

1

16 32

5

5

Decode instruction
and fetch operands

$t5 #

$t4 #

$t6 #

6a.43

ADD $t4,$t5,$t6: Execute

Fetch Decode Exec. Mem WB

I-Cache

0

1 P
C

+

Addr.

Instruc.

In
s
tr

u
c
ti
o
n
 R

e
g
is

te
r

Register File

Read
Reg. 1 #

Read
Reg. 2 #

Write
Reg. #

Write
Data

Read
data 1

Read
data 2

Sign
Extend

$
t4

 #
 /

 $
t6

 v
a
lu

e
 /

 $
t5

 v
a
lu

e

A
L

U Res.

Zero

0

1

Sh.
Left

2

+

P
ip

e
lin

e
 S

ta
g
e
 R

e
g
is

te
r

D-Cache

Addr.

Read
Data

Write
Data

P
ip

e
lin

e
 S

ta
g
e
 R

e
g
is

te
r

A

B

4

0

1

16 32

5

5

Add $t5 + $t6

6a.44

ADD $t4,$t5,$t6: Memory

Fetch Decode Exec. Mem WB

I-Cache

0

1 P
C

+

Addr.

Instruc.

In
s
tr

u
c
ti
o
n
 R

e
g
is

te
r

Register File

Read
Reg. 1 #

Read
Reg. 2 #

Write
Reg. #

Write
Data

Read
data 1

Read
data 2

Sign
Extend

P
ip

e
lin

e
 S

ta
g
e
 R

e
g
is

te
r

A
L

U Res.

Zero

0

1

Sh.
Left

2

+

$
t4

 #
 /

 S
u

m
 o

f
$
t5

 +
 $

t6

D-Cache

Addr.

Read
Data

Write
Data

P
ip

e
lin

e
 S

ta
g
e
 R

e
g
is

te
r

A

B

4

0

1

16 32

5

5

Just pass
sum through

6a.45

ADD $t4,$t5,$t6: Writeback

Fetch Decode Exec. Mem WB

I-Cache

0

1 P
C

+

Addr.

Instruc.

In
s
tr

u
c
ti
o
n
 R

e
g
is

te
r

Register File

Read
Reg. 1 #

Read
Reg. 2 #

Write
Reg. #

Write
Data

Read
data 1

Read
data 2

Sign
Extend

P
ip

e
lin

e
 S

ta
g
e
 R

e
g
is

te
r

A
L

U Res.

Zero

0

1

Sh.
Left

2

+

P
ip

e
lin

e
 S

ta
g
e
 R

e
g
is

te
r

D-Cache

Addr.

Read
Data

Write
Data

$
t4

 #
 /

 S
u

m
 o

f
$
t5

 +
 $

t6

A

B

4

0

1

16 32

5

5

Write
sum to

$t4

6a.46

ADD $t4,$t5,$t6

Fetch
ADD

Fetch Decode Exec. Mem WB

I-Cache

0

1 P
C

+

Addr.

Instruc.

In
s
tr

u
c
ti
o
n
 R

e
g
is

te
r

Register File

Read
Reg. 1 #

Read
Reg. 2 #

Write
Reg. #

Write
Data

Read
data 1

Read
data 2

Sign
Extend

P
ip

e
lin

e
 S

ta
g
e
 R

e
g
is

te
r

A
L

U Res.

Zero

0

1

Sh.
Left

2
+

P
ip

e
lin

e
 S

ta
g
e
 R

e
g
is

te
r

D-Cache

Addr.

Read
Data

Write
Data

P
ip

e
lin

e
 S

ta
g
e
 R

e
g
is

te
r

A

B

4

0

1

16 32

5

5

Decode instruction
and fetch operands

Add $t5 + $t6 Just pass
sum through

Write
sum to

$t4

6a.47

OLD PIPELINING

6a.48

Basic 5 Stage Pipeline
• Control is generated in the decode stage and passed along to consuming

stages through stage registers

Fetch Decode Exec. Mem WB

I-Cache

0

1 P
C

+

Addr.

Instruc.

In
s
tr

u
c
ti
o
n
 R

e
g
is

te
r

Register File

Read
Reg. 1 #

Read
Reg. 2 #

Write
Reg. #

Write
Data

Read
data 1

Read
data 2

Sign
Extend

P
ip

e
lin

e
 S

ta
g
e
 R

e
g
is

te
r

A
L

U Res.

Zero

0

1

Sh.
Left

2

+

P
ip

e
lin

e
 S

ta
g
e
 R

e
g
is

te
r

D-Cache

Addr.

Read
Data

Write
Data

P
ip

e
lin

e
 S

ta
g
e
 R

e
g
is

te
r

A

B

4

0

1

16 32

5

5

0

1

6a.49

Basic 5 Stage Pipeline
• Control is generated in the decode stage and passed along to consuming

stages through stage registers

Fetch Decode Exec. Mem WB

I-Cache

0

1 P
C

+

Addr.

Instruc.

In
s
tr

u
c
ti
o
n
 R

e
g
is

te
r

Register File

Read
Reg. 1 #

Read
Reg. 2 #

Write
Reg. #

Write
Data

Read
data 1

Read
data 2

Sign
Extend

P
ip

e
lin

e
 S

ta
g
e
 R

e
g
is

te
r

A
L

U Res.

Zero

0

1

Sh.
Left

2

+

P
ip

e
lin

e
 S

ta
g
e
 R

e
g
is

te
r

D-Cache

Addr.

Read
Data

Write
Data

P
ip

e
lin

e
 S

ta
g
e
 R

e
g
is

te
r

A

B

4

0

1

16 32

5

5

0

1

Control

E
x

M
e
m

W
B

M
e
m

W
B

W
B

ALUSrc,RegDst,
ALUOp, (Func)

Branch, MemRead,
MemWrite

RegWrite,
MemToReg

