
1

EE 457 Unit 6a

Basic Pipelining Techniques

2

Pipelining Introduction

• Consider a drink bottling plant
– Filling the bottle = 3 sec.

– Placing the cap = 3 sec.

– Labeling = 3 sec.

• Would you want…
– Machine 1 = Does all three (9 secs.), outputs the bottle, repeats…

– Machine 2 = Divided into three parts (one for each step) passing
bottles between them

• Machine 2 offers ability to overlap steps

Filler + Capper + Label

(3 + 3 + 3)

Filler

(3 sec)

Place

Cap

(3 sec)

Labeler

(3 sec)

3

Summing Elements

• Consider adding an array of 4-bit numbers:
– Z[i] = A[i] + B[i]

– Delay: 10ns Mem. Access (read or write), 10 ns each FA

– Clock cycle time = 10 (read) + (10 + 10 + 10 + 10) + 10 (write)

X Y

S

CiCo FA 5 ns
X Y

S

CiCo FA

X Y

S

CiCo FA

X Y

S

CiCo FA

BMEM

a
d

d
r

d
a
ta

AMEM

a
d

d
r

d
a
ta

i
i

A[3:0]
B[3:0]

A0 B0A1 B1A2 B2A3 B3

ZMEM

a
d

d
r

d
a
ta

i

Z[3:0]

0

Z0Z1Z2Z3

4

Pipelined Adder

If we assume that
the pipeline
registers are ideal
(0ns additional
delay) we can clock
the pipe every 10
ns. Speedup = 6!

AMEM
addr

data

i

A[3:0] B[3:0]

Z[3:0]
Z0Z1Z2Z3

BMEM
addr

data

i

A3 B3 A2 B2 A1 B1 A0 B0

X Y

S
Ci

FA

S0C1

Co
0

C2 S1

X Y

S
Ci

FA

Co

X Y

S
Ci

FA

Co

C3 S2

X Y

S
Ci

FA

Co

C4 S3 S2
ZMEM
addr

data

i

A3 B3 A2 B2 A1 B1 A0 B0

S1/S2

S2/S3

S3/S4

S4/S5

S5/S6

Pipeline Register

(Stage Latch)

10ns

10ns

10ns

10ns

10ns

10ns

5

More Pipelining Examples

• Car Assembly Line

• Wash/Dry/Fold

– Would you buy a combo washer + dryer unit that
does both operations in the same tank??

• Freshman/Sophomore/Junior/Senior

6

Balancing Pipeline Stages

Clock period must equal the LONGEST delay from
register to register

• Fig. 1: If total logic delay is 20ns => 50MHz

– Throughput: 1 instruc. / 20 ns

• Fig. 2: Unbalanced stage delays limit the
clock speed to the slowest stage (worst case)

– Throughput: 1 instruc. / 10 ns => 100MHz

• Fig. 3: Better to split into more, balanced
stages

– Throughput: 1 instruc. / 5 ns => 200MHz

• Fig. 4: Are more stages better

– Ideally: 2x stages => 2x throughput

– Throughput: 1 instruc. / 2.5 ns => 400MHz

– Each register adds extra delay so at some
point deeper pipelines don't pay off

Processor Logic
(Fetch + Decode + Execute)

R
e
g

is
te

r

F
e

tc
h

D
e

c
o

d
e

R
e
g

is
te

r

E
x
e

c
.
1

E
x
e

c
.
2

R
e
g

is
te

r

R
e
g

is
te

r

F
e

tc
h

D
e

c
o

d
e

R
e
g

is
te

r

Exec

5 ns 5 ns 10 ns

20 ns

5 ns 5 ns 5 ns 5 ns

F
1

2.5 ns

F
2

D
1

D
2

E
1
a

E
1
b

E
2
a

E
2
b

F
ig

.
1

F
ig

.
2

F
ig

.
3

F
ig

.
4

7

Processors & Pipelines

• Overlaps execution of multiple instructions

• Natural breakdown into stages
– Fetch, Decode, Execute, Memory, Write-Back

• Fetch an instruction, while decoding another, while
executing another

ExecuteDecodeFetch

CLK 1 CLK 2 CLK 3

Inst 1

Inst 2

Inst 3

Inst 4

CLK 4

ExecuteDecodeFetch

DecodeFetch

Fetch

Fetch Decode Exec.

Inst. 1Clk 1

Clk 2 Inst. 1

Clk 3 Inst. 1

Inst. 2

Inst. 2

Clk 4 Inst. 2

Inst. 3

Inst. 3

Clk 5 Inst. 3

Inst. 4

Inst. 4Inst. 5

Pipelining (Instruction View) Pipelining (Stage View)

8

Need for Registers
• Provides separation between combinational functions

– Without registers, fast signals could “catch-up” to data values in the
next operation stage

– With registers, inputs are “stable”

9

To Register or Latch?

• Should we use pipeline (stage)

– Registers [edge-sensitive] …or…

– Latches [level-sensitive]

• Latches may allow data to pass through multiple
stages in a single clock cycle

• Answer: Registers in this class!!

S1
R

e
g

is
te

r o
r L

a
tc

h
S2 S3

R
e
g

is
te

r o
r L

a
tc

h

10

But Can We Latch?

• We can latch if we run the latches on opposite phases of the
clock or have a so-called 2-phase clock
– Because each latch runs on the opposite phase data can only move

one step before being stopped by a latch that is in hold (off) mode

• You may learn more about this in EE577a or EE560 (a
technique known as Slack Borrowing & Time Stealing)

S1b

L
a
tc

h S2a S2b
L

a
tc

h

L
a
tc

h S3a S3b

L
a

tc
h

Φ

~Φ

11

Pipelining Introduction

• Implementation technique that overlaps execution of multiple
instructions at once

• Improves throughput rather a single-instruction execution latency

• Slowest pipeline stage determines clock cycle time [e.g. a 30 min. wash
cycle but 1 hour dry time means 1 hours per load]

• Assuming k stages and perfectly balanced stages:

– Time before starting next instruc.Pipelined =
Time before starting next instruc.Non-Pipelined / # of Stages

• A 5-stage pipelined CPU may not realize this speedup 5x b/c…

– The stages may not be perfectly balanced

– The overhead of filling up the pipe initially

– The overhead (setup time and clock-to-Q) delay of the stage registers

– Inability to keep the pipe full due to branches & data hazards

12

Single-Cycle CPU Datapath

I-Cache

0

1

P
C

+

Addr.

Instruc.

Register File

Read

Reg. 1 #

Read

Reg. 2 #

Write

Reg. #

Write

Data

Read

data 1

Read

data 2

Sign

Extend

A
L

U Res.

Zero

0

1

Sh.

Left

2

+

D-Cache

Addr.

Read

Data

Write

Data

A

B

4

0

1

16 32

5

5

0

1

RegDst

ALUSrc

5

MemtoReg

MemWrite

MemRead

ALU control

PCSrc

RegWrite Branch

INST[5:0]

[25:21]

[20:16]

[15:11]

[1
5
:0

]

ALUOp[1:0]

Fetch (IF) Decode (ID) Exec. (EX) Mem WB

13

Non-Pipelined Execution
Instruction Fetch

(I-MEM)
Reg.
Read

ALU Op. Data
Mem

Reg.
Write

Total Time

Load 10 ns 5 ns 10 ns 10 ns 5 ns 40 ns

Store 10 ns 5 ns 10 ns 10 ns 35 ns

R-Type 10 ns 5 ns 10 ns 5 ns 30 ns

Branch 10 ns 5 ns 10 ns 25 ns

Jump 10 ns 5 ns 10 ns

Fetch Reg ALU Data Reg

40 ns

Fetch Reg ALU Data Reg

40 ns
LW $5,100($2)

LW $7,40($6)

time

Fetch …

3 Instructions = 3*40 ns

LW $8,24($6)

40 ns

14

Pipelined Execution

• Notice that even though the register access only takes 5 ns it is allocated a
10 ns slot in the pipeline

• Total time for these 3 pipelined instructions =
– 70 ns = 50 ns for 1st instruc + 2*10ns for the remaining instructions to complete

• The speedup looks like it is only 120 ns / 70 ns = 1.7x

• But consider 1003 instructions: 1000*40 / 10070 = 3.98 => 4x
– The overhead of filling the pipeline is amortized over steady-state execution when the

pipeline is full

Fetch Reg ALU Data Reg

10 ns

Fetch Reg ALU Data Reg

LW $5,100($2)

LW $7,40($6)

time

Fetch Reg ALU Data Reg

20 ns 30 ns 40 ns 50 ns 60 ns 70 ns

… Fetch Reg ALU Data Reg

LW $8,24($6)

80 ns

15

Pipelined Timing

• Execute n instructions using a k
stage datapath

– i.e. Multicycle CPU w/ k steps
or single cycle CPU w/ clock
cycle k times slower

• w/o pipelining: n*k cycles

– n instrucs. * k CPI

• w/ pipelining: k+n-1 cycles
– k cycle for 1st instruc. + (n-1)

cycles for n-1 instrucs.

– Assumes we keep the pipeline
full

Fetch

10ns

Decode

10ns

Exec.

10ns

Mem.

10ns

WB

10ns

C1 ADD

C2 SUB ADD

C3 LW SUB ADD

C4 SW LW SUB ADD

C5 AND SW LW SUB ADD

C6 OR AND SW LW SUB

C7 XOR OR AND SW LW

C8 XOR OR AND SW

C9 XOR OR AND

C10 XOR OR

C11 XOR

P
ip

e
lin

e
 F

illin
g

P
ip

e
lin

e
 E

m
p
ty

in
g

P
ip

e
lin

e
 F

u
ll

7 Instrucs. = 11 clocks (5 + 7 – 1)

16

Designing the Pipelined Datapath

• To pipeline a datapath in five stages means five
instructions will be executing (“in-flight”) during any
single clock cycle

• Resources cannot be shared between stages because
there may always be an instruction wanting to use
the resource.

– This is known as a STRUCTURAL HAZARD

– Each stage needs its own resources

– The single-cycle CPU datapath also matches this concept of
no shared resources

– We can simply divide the single-cycle CPU into stages

17

Structural Hazard Example

• Example structural hazard: A single SHARED cache
(instruction + data) rather than separate instruction
& data caches
– Structural hazard any time an instruction needs to perform

a data access (i.e. lw or sw) since we always want to fetch
a new instruction each clock cycle

Cache

ALU
Reg.

File

PC

LW

i+3

i+2 i+1

Hazard!

18

Information Flow in a Pipeline

• Data or control information should flow only in the
forward direction in a linear pipeline

– Non-linear pipelines where information is fed back into a
previous stage occurs in more complex pipelines such as
floating point dividers

• The CPU pipeline is like a buffet line or cafeteria
where people can not try to revisit a a previous
serving station without disrupting the smooth flow of
the line

Buffet Line

???

19

Register File

• Don’t we have a non-linear flow when we write a value back
to the register file?
– An instruction in WB is re-using the register file in the ID stage

– Actually we are utilizing different “halves” of the register file

• ID stage reads register values

• WB stage writes register value

– Like a buffet line with 2 dishes at one station

IM Reg ALU IM Reg

Buffet Line

???

20

Register File

• Only an issue if WB to same register as being read

• Register file can be designed to do “internal forwarding”
where the data being written is immediately passed out as
the read data

IM Reg ALU DM Reg

IM Reg ALU DM Reg

IM Reg ALU DM Reg

IM Reg ALU DM Reg

LW $5,100($2)

ADD $3,$4,$5

Write $5

Read $5

CC1 CC2 CC3 CC4 CC5 CC6 CC7 CC8

21

Pipelining the Fetch Phase

• Note that to keep the pipeline full we
have to fetch a new instruction every
clock cycle

• Thus we have to perform
PC = PC + 4 every clock cycle

• Thus there shall be no pipelining
registers in the datapath responsible
for PC = PC +4

• Support for branch/jump warrants a
lengthy discussion which we will
perform later

Fetch

I-Cache

0

1 P
C

+

Addr.

Instruc.

S
ta

g
e

 R
e
g
is

te
r

A

B

4

22

PIPELINE CONTROL

23

Basic 5 Stage Pipeline
• Compute the size of each pipeline register (find the max. info needed for any

instruction in each stage)

• To simplify, just consider LW/SW (Ignore control signals)

Fetch Decode Exec. Mem WB

I-Cache

0

1 P
C

+

Addr.

Instruc.

In
s
tr

u
c
ti
o

n
 R

e
g
is

te
r

Register File

Read

Reg. 1 #

Read

Reg. 2 #

Write

Reg. #

Write

Data

Read

data 1

Read

data 2

Sign

Extend

P
ip

e
lin

e
 S

ta
g
e

 R
e
g
is

te
r

A
L

U Res.

Zero

0

1

Sh.

Left

2

+

P
ip

e
lin

e
 S

ta
g
e

 R
e
g
is

te
r

D-Cache

Addr.

Read

Data

Write

Data

P
ip

e
lin

e
 S

ta
g
e

 R
e
g
is

te
r

A

B

4

0

1

16 32

5

5

5

rs

rt

rt/rd

Op = 35 rs=1 rt=10 immed.=40LW $10,40($1)

SW $15,100($2) Op = 43 rs=2 rt=15 immed.=100

Instruc = 32 LW: rs=32,off=32

SW: rs=32,off=32,rt=32

LW: addr=32

SW: addr=32,rt=32

L
W

:
d

a
ta

=
3

2

S
W

:
0

24

Basic 5 Stage Pipeline
• There is a bug in the load instruction implementation

• Which register is written with the data read from memory?

• We need to preserve the dest. register number by carrying it through the pipeline
with us

• In general this is true for all signals needed later in the pipe

LW $10,40($1)

SW $15,100($2)

Fetch Decode Exec. Mem WB

I-Cache

0

1 P
C

+

Addr.

Instruc.

In
s
tr

u
c
ti
o

n
 R

e
g
is

te
r

Register File

Read

Reg. 1 #

Read

Reg. 2 #

Write

Reg. #

Write

Data

Read

data 1

Read

data 2

Sign

Extend

P
ip

e
lin

e
 S

ta
g
e

 R
e
g
is

te
r

A
L

U Res.

Zero

0

1

Sh.

Left

2

+

P
ip

e
lin

e
 S

ta
g
e

 R
e
g
is

te
r

D-Cache

Addr.

Read

Data

Write

Data

P
ip

e
lin

e
 S

ta
g
e

 R
e
g
is

te
r

A

B

4

0

1

16 32

5

5

0

1 rt/rdrt/rd

25

Pipeline Packing List

• Just as when you go on a trip you have to pack everything you
need in advance since you cannot come back to your closet,
so in pipelines you have to take all the control and data you
will need with you down the pipeline until you use it

26

Pipeline Control Overview

• We will just consider basic (simple) pipeline control and deal with problems
related to branch and data hazards later

• It is assumed that the PC and pipeline register update on each clock cycle so no
separate write enable signals are needed for these registers

Fetch Decode Exec. Mem WB

I-Cache

0

1 P
C

+

Addr.

Instruc.

In
s
tr

u
c
ti
o

n
 R

e
g
is

te
r

Register File

Read

Reg. 1 #

Read

Reg. 2 #

Write

Reg. #

Write

Data

Read

data 1

Read

data 2

Sign

Extend

P
ip

e
lin

e
 S

ta
g
e

 R
e
g
is

te
r

A
L

U Res.

Zero

0

1

Sh.

Left

2

+

P
ip

e
lin

e
 S

ta
g
e

 R
e
g
is

te
r

D-Cache

Addr.

Read

Data

Write

Data

P
ip

e
lin

e
 S

ta
g
e

 R
e
g
is

te
r

A

B

4

0

1

16 32

5

5

0

1

27

Control Signal Generation
• Recall from the Single-Cycle CPU

discussion that there is no state machine
control, but a simple translator
(combinational logic) to translate the 6-
bit opcode into these 9 control signals

• Since the datapaths of the single-cycle
and pipelined CPU are essentially the
same, so is the control

• The main difference is that the control
signals are generated in one clock cycle
and used in a subsequent cycle (later
pipeline stage)

• We can produce all our signals in the ID
stage and use the pipeline registers to
store and pass them to the consuming
stage

I-Cache
P

C

Addr.

Instruc.

Register File

Read

Reg. 1 #

Read

Reg. 2 #

Write

Reg. #

Write

Data

Read

data 1

Read

data 2

Sign

Extend

16

5

5

0

1

RegDst

5

RegWrite

ALUSrc

RegDst

MemtoReg

ALUOp[1:0]

[3
1
:2

6
]

[25:21]

[20:16]

[15:11]

[1
5
:0

]

[2
5
:0

]

Control

28

Control Signals per Stage

• How many control signals are needed in each
stage

Execution Stage = 4 signals
(10 if you count function codes)

Mem stage = 3 signals WB Stage =
2 signals

Instruction Reg
Dst

ALU
Src

ALU
Op[1:0]

Func[5:0] Branch Mem
Read

Mem
Write

Reg
Write

Memto-
Reg

R-format 1 0 10 … 0 0 0 1 0

LW 0 1 00 X 0 1 0 1 1

SW X 1 00 X 0 0 1 0 X

Beq X 0 01 X 0 0 0 0 X

29

Basic 5 Stage Pipeline
• Control is generated in the decode stage and passed along to consuming

stages through stage registers

Fetch Decode Exec. Mem WB

I-Cache

0

1 P
C

+

Addr.

Instruc.

In
s
tr

u
c
ti
o

n
 R

e
g
is

te
r

Register File

Read

Reg. 1 #

Read

Reg. 2 #

Write

Reg. #

Write

Data

Read

data 1

Read

data 2

Sign

Extend

P
ip

e
lin

e
 S

ta
g
e

 R
e
g
is

te
r

A
L

U Res.

Zero

0

1

Sh.

Left

2

+

P
ip

e
lin

e
 S

ta
g
e

 R
e
g
is

te
r

D-Cache

Addr.

Read

Data

Write

Data

P
ip

e
lin

e
 S

ta
g
e

 R
e
g
is

te
r

A

B

4

0

1

16 32

5

5

0

1

Control

E
x

M
e
m

W
B

M
e
m

W
B

W
B

ALUSrc,RegDst,

ALUOp, (Func)
Branch, MemRead,

MemWrite

RegWrite,

MemToReg

30

Stage Control

• Instruction Fetch: The control signals to read instruction memory and to write
the PC are always asserted, so there is nothing special to control in this pipeline
stage

• ID/RF: As in the previous stage the same thing happens at every clock cycle so
there are no optional control lines to set

• Execution: The signals to be set are RegDst, ALUop/Func, and ALUSrc. The
signals determine whether the result of the instruction written into the register
specified by bits 20-16 (for a load) or 15-11 for an R-format), specify the ALU
operation, and determine whether the second operand of the ALU will be a
register or a sign-extended immediate

• Memory Stage: The control lines set in this stage are Branch, MemRead, and
MemWrite. These signals are set for the BEQ, LW, and SW instructions
respectively

• WriteBack: the two control lines are RegWrite , which writes the chosen register,
and MemToReg, which decides between the ALU result or memory value as the
write data

31

Exercise:
• On copies of this sheet, show this sequence executing on the pipeline:

1. LW $10,40($1) 2. SUB $11,$2,$3 3. AND $12,$4,$5
4. OR $13,$6,$7 5. ADD $14,$8,$9

Fetch Decode Exec. Mem WB

I-Cache

0

1 P
C

+

Addr.

Instruc.

In
s
tr

u
c
ti
o

n
 R

e
g

is
te

r

Register File

Read
Reg. 1 #

Read
Reg. 2 #

Write
Reg. #

Write
Data

Read
data 1

Read
data 2

Sign

Extend

P
ip

e
li
n

e
 S

ta
g

e
 R

e
g

is
te

r

A
L

U Res.

Zero

0

1

Sh.

Lef t

2

+

P
ip

e
li
n

e
 S

ta
g

e
 R

e
g

is
te

r

D-Cache

Addr.

Read
Data

Write
Data

P
ip

e
li
n

e
 S

ta
g

e
 R

e
g

is
te

r

A

B

4

0

1

16 32

5

5

0

1

Control

E
x

M
e
m

W
B

M
e
m

W
B

W
B

ALUSrc,RegDst,
ALUOp, (Func)

Branch, MemRead,
MemWrite

RegWrite,
MemToReg

32

Review

• Although an instruction can begin at each clock cycle, an individual
instruction still takes five clock cycles

• Note that it takes four clock cycle before the five-stage pipeline is
operating at full efficiency

• Register write-back is controlled by the WB stage even though the register
file is located in the ID stage; the correct write register ID is carried down
the pipeline with the instruction data

• When a stage is inactive, the values of the control lines are deasserted
(shown as 0's) to prevent anything harmful from occurring

• No state machine is needed; sequencing of the control signals follows
simply from the pipeline itself (i.e. control signals are produced initially
but delayed by the stage registers until the correct stage / clock cycle for
application of that signal)

33

ADDITIONAL REFERENCE

34

LW $t1,4($s0): Fetch

Fetch LW and

increment PC

Fetch Decode Exec. Mem WB

I-Cache

0

1 P
C

+

Addr.

Instruc.

In
s
tr

u
c
ti
o

n
 R

e
g
is

te
r

Register File

Read

Reg. 1 #

Read

Reg. 2 #

Write

Reg. #

Write

Data

Read

data 1

Read

data 2

Sign

Extend

P
ip

e
lin

e
 S

ta
g
e

 R
e
g
is

te
r

A
L

U Res.

Zero

0

1

Sh.

Left

2
+

P
ip

e
lin

e
 S

ta
g
e

 R
e
g
is

te
r

D-Cache

Addr.

Read

Data

Write

Data

P
ip

e
lin

e
 S

ta
g
e

 R
e
g
is

te
r

A

B

4

0

1

16 32

5

5

35

LW $t1,4($s0): Decode

Fetch Decode Exec. Mem WB

I-Cache

0

1 P
C

+

Addr.

Instruc.

L
W

 $
t1

,4
($

s
0
)

m
a

c
h

in
e

 c
o

d
e

Register File

Read

Reg. 1 #

Read

Reg. 2 #

Write

Reg. #

Write

Data

Read

data 1

Read

data 2

Sign

Extend

P
ip

e
lin

e
 S

ta
g
e

 R
e
g
is

te
r

A
L

U Res.

Zero

0

1

Sh.

Left

2
+

P
ip

e
lin

e
 S

ta
g
e

 R
e
g
is

te
r

D-Cache

Addr.

Read

Data

Write

Data

P
ip

e
lin

e
 S

ta
g
e

 R
e
g
is

te
r

A

B

4

0

1

16 32

5

5

Decode instruction

and fetch operands

$s0 #

$t1 #

36

LW $t1,4($s0): Execute

Fetch Decode Exec. Mem WB

I-Cache

0

1 P
C

+

Addr.

Instruc.

In
s
tr

u
c
ti
o

n
 R

e
g
is

te
r

Register File

Read

Reg. 1 #

Read

Reg. 2 #

Write

Reg. #

Write

Data

Read

data 1

Read

data 2

Sign

Extend $
t1

 #
 /
 O

ff
s

e
t=

0
x

0
0

0
0

0
0
0
4
 /

 $
s

0
 v

a
lu

e

A
L

U Res.

Zero

0

1

Sh.

Left

2
+

P
ip

e
lin

e
 S

ta
g
e

 R
e
g
is

te
r

D-Cache

Addr.

Read

Data

Write

Data

P
ip

e
lin

e
 S

ta
g
e

 R
e
g
is

te
r

A

B

4

0

1

16 32

5

5

Add offset 4 to

$s0 value

37

LW $t1,4($s0): Memory

Fetch Decode Exec. Mem WB

I-Cache

0

1 P
C

+

Addr.

Instruc.

In
s
tr

u
c
ti
o

n
 R

e
g
is

te
r

Register File

Read

Reg. 1 #

Read

Reg. 2 #

Write

Reg. #

Write

Data

Read

data 1

Read

data 2

Sign

Extend

P
ip

e
lin

e
 S

ta
g
e

 R
e
g
is

te
r

A
L

U Res.

Zero

0

1

Sh.

Left

2
+

$
t1

 #
 /
 A

d
d

re
s

s

D-Cache

Addr.

Read

Data

Write

Data

P
ip

e
lin

e
 S

ta
g
e

 R
e
g
is

te
r

A

B

4

0

1

16 32

5

5

Read word

from memory

38

LW $t1,4($s0): Writeback

Fetch Decode Exec. Mem WB

I-Cache

0

1 P
C

+

Addr.

Instruc.

In
s
tr

u
c
ti
o

n
 R

e
g
is

te
r

Register File

Read

Reg. 1 #

Read

Reg. 2 #

Write

Reg. #

Write

Data

Read

data 1

Read

data 2

Sign

Extend

P
ip

e
lin

e
 S

ta
g
e

 R
e
g
is

te
r

A
L

U Res.

Zero

0

1

Sh.

Left

2
+

P
ip

e
lin

e
 S

ta
g
e

 R
e
g
is

te
r

D-Cache

Addr.

Read

Data

Write

Data

$
t1

 #
 /
 D

a
ta

 r
e

a
d

 f
ro

m
 m

e
m

o
ry

A

B

4

0

1

16 32

5

5

Write

word to

$t1

39

LW $t1,4($s0)

Fetch LW

Fetch Decode Exec. Mem WB

I-Cache

0

1 P
C

+

Addr.

Instruc.

In
s
tr

u
c
ti
o

n
 R

e
g
is

te
r

Register File

Read

Reg. 1 #

Read

Reg. 2 #

Write

Reg. #

Write

Data

Read

data 1

Read

data 2

Sign

Extend

P
ip

e
lin

e
 S

ta
g
e

 R
e
g
is

te
r

A
L

U Res.

Zero

0

1

Sh.

Left

2
+

P
ip

e
lin

e
 S

ta
g
e

 R
e
g
is

te
r

D-Cache

Addr.

Read

Data

Write

Data

P
ip

e
lin

e
 S

ta
g
e

 R
e
g
is

te
r

A

B

4

0

1

16 32

5

5

Decode instruction

and fetch operands

Add offset 4 to

$s0

Read word

from memory

Write

word to

$t1

40

ADD $t4,$t5,$t6: Fetch

Fetch ADD and

increment PC

Fetch Decode Exec. Mem WB

I-Cache

0

1 P
C

+

Addr.

Instruc.

In
s
tr

u
c
ti
o

n
 R

e
g
is

te
r

Register File

Read

Reg. 1 #

Read

Reg. 2 #

Write

Reg. #

Write

Data

Read

data 1

Read

data 2

Sign

Extend

P
ip

e
lin

e
 S

ta
g
e

 R
e
g
is

te
r

A
L

U Res.

Zero

0

1

Sh.

Left

2
+

P
ip

e
lin

e
 S

ta
g
e

 R
e
g
is

te
r

D-Cache

Addr.

Read

Data

Write

Data

P
ip

e
lin

e
 S

ta
g
e

 R
e
g
is

te
r

A

B

4

0

1

16 32

5

5

41

ADD $t4,$t5,$t6: Decode

Fetch Decode Exec. Mem WB

I-Cache

0

1 P
C

+

Addr.

Instruc.

A
D

D
 $

t4
,$

t5
,$

t6
 m

a
c

h
in

e
 c

o
d

e

Register File

Read

Reg. 1 #

Read

Reg. 2 #

Write

Reg. #

Write

Data

Read

data 1

Read

data 2

Sign

Extend

P
ip

e
lin

e
 S

ta
g
e

 R
e
g
is

te
r

A
L

U Res.

Zero

0

1

Sh.

Left

2
+

P
ip

e
lin

e
 S

ta
g
e

 R
e
g
is

te
r

D-Cache

Addr.

Read

Data

Write

Data

P
ip

e
lin

e
 S

ta
g
e

 R
e
g
is

te
r

A

B

4

0

1

16 32

5

5

Decode instruction

and fetch operands

$t5 #

$t4 #

$t6 #

42

ADD $t4,$t5,$t6: Execute

Fetch Decode Exec. Mem WB

I-Cache

0

1 P
C

+

Addr.

Instruc.

In
s
tr

u
c
ti
o

n
 R

e
g
is

te
r

Register File

Read

Reg. 1 #

Read

Reg. 2 #

Write

Reg. #

Write

Data

Read

data 1

Read

data 2

Sign

Extend

$
t4

 #
 /
 $

t6
 v

a
lu

e
 /

 $
t5

 v
a

lu
e

A
L

U Res.

Zero

0

1

Sh.

Left

2
+

P
ip

e
lin

e
 S

ta
g
e

 R
e
g
is

te
r

D-Cache

Addr.

Read

Data

Write

Data

P
ip

e
lin

e
 S

ta
g
e

 R
e
g
is

te
r

A

B

4

0

1

16 32

5

5

Add $t5 + $t6

43

ADD $t4,$t5,$t6: Memory

Fetch Decode Exec. Mem WB

I-Cache

0

1 P
C

+

Addr.

Instruc.

In
s
tr

u
c
ti
o

n
 R

e
g
is

te
r

Register File

Read

Reg. 1 #

Read

Reg. 2 #

Write

Reg. #

Write

Data

Read

data 1

Read

data 2

Sign

Extend

P
ip

e
lin

e
 S

ta
g
e

 R
e
g
is

te
r

A
L

U Res.

Zero

0

1

Sh.

Left

2
+

$
t4

 #
 /
 S

u
m

 o
f

$
t5

 +
 $

t6

D-Cache

Addr.

Read

Data

Write

Data

P
ip

e
lin

e
 S

ta
g
e

 R
e
g
is

te
r

A

B

4

0

1

16 32

5

5

Just pass

sum through

44

ADD $t4,$t5,$t6: Writeback

Fetch Decode Exec. Mem WB

I-Cache

0

1 P
C

+

Addr.

Instruc.

In
s
tr

u
c
ti
o

n
 R

e
g
is

te
r

Register File

Read

Reg. 1 #

Read

Reg. 2 #

Write

Reg. #

Write

Data

Read

data 1

Read

data 2

Sign

Extend

P
ip

e
lin

e
 S

ta
g
e

 R
e
g
is

te
r

A
L

U Res.

Zero

0

1

Sh.

Left

2
+

P
ip

e
lin

e
 S

ta
g
e

 R
e
g
is

te
r

D-Cache

Addr.

Read

Data

Write

Data

$
t4

 #
 /
 S

u
m

 o
f

$
t5

 +
 $

t6

A

B

4

0

1

16 32

5

5

Write

sum to

$t4

45

ADD $t4,$t5,$t6

Fetch

ADD

Fetch Decode Exec. Mem WB

I-Cache

0

1 P
C

+

Addr.

Instruc.

In
s
tr

u
c
ti
o

n
 R

e
g
is

te
r

Register File

Read

Reg. 1 #

Read

Reg. 2 #

Write

Reg. #

Write

Data

Read

data 1

Read

data 2

Sign

Extend

P
ip

e
lin

e
 S

ta
g
e

 R
e
g
is

te
r

A
L

U Res.

Zero

0

1

Sh.

Left

2
+

P
ip

e
lin

e
 S

ta
g
e

 R
e
g
is

te
r

D-Cache

Addr.

Read

Data

Write

Data

P
ip

e
lin

e
 S

ta
g
e

 R
e
g
is

te
r

A

B

4

0

1

16 32

5

5

Decode instruction

and fetch operands

Add $t5 + $t6 Just pass

sum through

Write

sum to

$t4

46

OLD PIPELINING

47

Basic 5 Stage Pipeline
• Control is generated in the decode stage and passed along to consuming

stages through stage registers

Fetch Decode Exec. Mem WB

I-Cache

0

1 P
C

+

Addr.

Instruc.

In
s
tr

u
c
ti
o

n
 R

e
g
is

te
r

Register File

Read

Reg. 1 #

Read

Reg. 2 #

Write

Reg. #

Write

Data

Read

data 1

Read

data 2

Sign

Extend

P
ip

e
lin

e
 S

ta
g
e

 R
e
g
is

te
r

A
L

U Res.

Zero

0

1

Sh.

Left

2

+

P
ip

e
lin

e
 S

ta
g
e

 R
e
g
is

te
r

D-Cache

Addr.

Read

Data

Write

Data

P
ip

e
lin

e
 S

ta
g
e

 R
e
g
is

te
r

A

B

4

0

1

16 32

5

5

0

1

48

Basic 5 Stage Pipeline
• Control is generated in the decode stage and passed along to consuming

stages through stage registers

Fetch Decode Exec. Mem WB

I-Cache

0

1 P
C

+

Addr.

Instruc.

In
s
tr

u
c
ti
o

n
 R

e
g
is

te
r

Register File

Read

Reg. 1 #

Read

Reg. 2 #

Write

Reg. #

Write

Data

Read

data 1

Read

data 2

Sign

Extend

P
ip

e
lin

e
 S

ta
g
e

 R
e
g
is

te
r

A
L

U Res.

Zero

0

1

Sh.

Left

2

+

P
ip

e
lin

e
 S

ta
g
e

 R
e
g
is

te
r

D-Cache

Addr.

Read

Data

Write

Data

P
ip

e
lin

e
 S

ta
g
e

 R
e
g
is

te
r

A

B

4

0

1

16 32

5

5

0

1

Control

E
x

M
e
m

W
B

M
e
m

W
B

W
B

ALUSrc,RegDst,

ALUOp, (Func)
Branch, MemRead,

MemWrite

RegWrite,

MemToReg

	Slide 1: EE 457 Unit 6a
	Slide 2: Pipelining Introduction
	Slide 3: Summing Elements
	Slide 4: Pipelined Adder
	Slide 5: More Pipelining Examples
	Slide 6: Balancing Pipeline Stages
	Slide 7: Processors & Pipelines
	Slide 8: Need for Registers
	Slide 9: To Register or Latch?
	Slide 10: But Can We Latch?
	Slide 11: Pipelining Introduction
	Slide 12: Single-Cycle CPU Datapath
	Slide 13: Non-Pipelined Execution
	Slide 14: Pipelined Execution
	Slide 15: Pipelined Timing
	Slide 16: Designing the Pipelined Datapath
	Slide 17: Structural Hazard Example
	Slide 18: Information Flow in a Pipeline
	Slide 19: Register File
	Slide 20: Register File
	Slide 21: Pipelining the Fetch Phase
	Slide 22: Pipeline Control
	Slide 23: Basic 5 Stage Pipeline
	Slide 24: Basic 5 Stage Pipeline
	Slide 25: Pipeline Packing List
	Slide 26: Pipeline Control Overview
	Slide 27: Control Signal Generation
	Slide 28: Control Signals per Stage
	Slide 29: Basic 5 Stage Pipeline
	Slide 30: Stage Control
	Slide 31: Exercise:
	Slide 32: Review
	Slide 33: Additional Reference
	Slide 34: LW $t1,4($s0): Fetch
	Slide 35: LW $t1,4($s0): Decode
	Slide 36: LW $t1,4($s0): Execute
	Slide 37: LW $t1,4($s0): Memory
	Slide 38: LW $t1,4($s0): Writeback
	Slide 39: LW $t1,4($s0)
	Slide 40: ADD $t4,$t5,$t6: Fetch
	Slide 41: ADD $t4,$t5,$t6: Decode
	Slide 42: ADD $t4,$t5,$t6: Execute
	Slide 43: ADD $t4,$t5,$t6: Memory
	Slide 44: ADD $t4,$t5,$t6: Writeback
	Slide 45: ADD $t4,$t5,$t6
	Slide 46: Old Pipelining
	Slide 47: Basic 5 Stage Pipeline
	Slide 48: Basic 5 Stage Pipeline

