I USC Viterbi G

School of Engineering

EE 457 Unit 5

Single Cycle CPU
Datapath and Control

I USC Viterbi (2

CPU Organization Scope

* We will build a CPU to implement our subset of the MIPS ISA
— Memory Reference Instructions:
* Load Word (LW)
¢ Store Word (SW)
— Arithmetic and Logic Instructions:
* ADD, SUB, AND, OR, SLT
— Branch and Jump Instructions:
* Branch if equal (BEQ)
e Jump unconditional (J)
* These basic instructions exercise a majority of the necessary
datapath and control logic for a more complete
implementation

. USC Viterbi <,

CPU Implementations

* We will go through two implementations
— Single-cycle CPU (CPI = 1)
* Allinstructions execute in a single, long clock cycle
— Multi-cycle CPU (CPI =n)
* Instructions can take a different number of short clock cycles to execute
* Recall that a program execution time is:
(Instruction count) x (CPI) x (Clock cycle time)

— In single-cycle implementation cycle time must be set for longest
instruction thus requiring shorter instructions to wait

— Multi-cycle implementation breaks logic into sub-operations each
taking one short clock cycle; then each instruction takes only the
number of clocks (i.e. CPI) it needs

. USC Viterbi

Single-Cycle Datapath

* To start, let us think about what operations need to be
performed for the basic instructions

* Allinstructions go through the following steps:
— Fetch: Use

— Decode & Register/Operand Fetch: Determine instruction type and
fetch any register operands needed

to fetch instruction

* Once decoded, different instructions require different
operations

— ALU instructions: Perform Add, Sub, etc. and write result back to
register

— LW /SW: Calculate address () and perform memory access
— BEQ/ J: Update PC (possible based on)
* Let us start with fetching an instruction and work our way
through the necessary components 4

| USCVit,e.,r,bi @
Instruction Ordering

* |dentify which components each instruction type would use
and in what order: ALU-Type, LW, SW, BEQ

\V4
PC Addr. Data General Addr. Data » 260
Purpose ™" Res.
Registers c
I-Cache / I-MEM D-Cache / D-MEM
ALU-Type L sw BEQ
LW $5,40($7 .
(ADD $5,$6,57) ws 7) (SW $5,40($7) (BEQ $2,$3,disp)

I USC Viterbi

Modified Fetch Datapath

* Below is the fetch datapath modified to support branch
instructions

Branch PC
“Next” PC=PC +4
4
CLK

\V4

PC Addr. Data f——p
Current PC/ Instruction Word
Read Address

I-Cache / -MEM
PCSrc

] USC\,/ite,,rbi @
Fetch

* Address in PCis used to fetch instruction while it is also
incremented by 4 to point to the next instruction

* Remember, the PC doesn’t update until the end of the clock
cycle / beginning of next cycle

* Mux provides a path for branch target addresses

time

\/

Fetch
branch target clk I I
0x0040001c PC 400014) 0x400018 0x40001c
PC+4
Adder 4o0018) ox40001c |} ox400020
® 0x00400018 A opcode rs rt rd shamt func
8 dar. _,_4 000000 01001 01010 10000 [00000 | 100000 |
(=]
< Instruc.
S 0x012a8020
S I-Cache
ADD $16.$9.$10
PC 7

USC Viterbi

School of Engineering

Decode

* Opcode and func. field are decoded to produce other control signals

* Execution of an ALU instruction (ADD $3,51,52) requires reading 2 register
values and writing the result to a third

* REGWrite is an enable signal indicating the write data should be written to

the specified register
—> Control Signals

apoado

[a]
o
— 8
SH
S Read Read| | value of $1
(o] Reg. 1# datat
*r—r 5 8
=3 Read
= Read
o Reg.2# qymof—> Value of $2
Instruction Word —— § Write
2] Reg. # Register File is the collection of GPR’s. Our register
ADD $3.,$1,$2] a § Write file has 3 “ ” (ability to concurrently read or
= Data] write a register). To see why we need 3, consider
o E Register File an “ADD $3,5$1,52”. We need 2 to
—81|8 read two operands (i.e. $1+$2) and 1 for
=2 the result ($3)
=3]]
——5 § - CLK REGWrite 8
o

Result from add

I USC Viterbi

School of Engineering

Datapath for ALU instruction

e ALU takes inputs from register file and
performs the add, sub, and, or, slt, operations

* Result is written back to dest. register

1 Read
Reg. 1 #
2 ALUop
Inst d Read
nstruc. wor Reg. 2 #
3 Read| $1 value
ADD $3.$1.$2 Write data 1 Zero
Reg. #
Wi Read $2 value E Res. Sum
g data 2
Data
Register File
9

| USCVit?Fbi _
Memory Access Datapath

* Operands are read from register file while offset is sign extended
* ALU calculates

* Memory access is performed

o IfLW,
LW $4.0xfff8($1)
SW $3.0x1a($1)
1 Read 1
| Reg. 1# —»| Read
Reg. 1 #
Read 3 Read
Reg. 2 # — N€a
4 Read| $1value Reg.2# $1 value
' Write data 1 . Read
Reg. # Write data 1
Wi Read Adde Read Reg.# A
rite data 2 . Read dde
Data ata Read| Data Write e
Data Data Read
Register File Write Redister Fil Data[>
egister File
@ Data 9 $3 value Write
.—/— . Data
D-Cache Write Data
32 Oxffff fff8 D-Cache
00000011.0

USC Viterbi G0

School of Engineering

Branch Datapath

* BEQrequires...
— ALU for comparison (examine ‘zero’ output)
— Sign extension unit for branch offset

— Adder to add PC and offset
* Need a separate adder since ALU is used to perform comparison

PC+4 (incremented PC) —»f >
Q
o Sum Branch Target
2 Address to PC
Read &)
Reg. 1 #
byte offset Al Uop
Inst d Read
nstruc. wor Reg. 2 #
. Read $1 value
BEQ $1.$2offset Write — data 1
Reg. # Zero ZERO
Wi Read $2 value ™ Res. Sum
e data 2
Data
Register File
extended word offset 11

word offset Sign
Extend

USCViterbi &2

School of Engineering

Combining Datapaths

* Now we will take the datapaths for each instruction
type and try to combine them into one

* Anywhere we have multiple options for a certain
input we can use a mux to select the appropriate
value for the given instruction

* Select bits must be generated to control the mux

I USC Viterbi G

ALUSrc Mux

* Mux controlling second input to ALU
— ALU instruction provides Read Register 2 data to the 2" input of ALU
— LW/SW uses 2" input of ALU as an offset to form effective address

1 Read 1_,|Read
—_— Reg.1#
Reg. 1# < ADD
2 ALUop Read
gead A2 Read| $1value
eg. 2# e
3 o Read | $1value A wiite data 1 —
Write data 1 Reg. #
— Zero —
B $2value ~ R Wiite dl;e:g ?)ea?ad
i Read c e Sum Data Read
rite data 2 N . Data
Data Register File Wiite
Register File Data
32 Oxff 18 DCache

ALU Instruction

Mem. Instruction

Zero

E R
P es.

ALUSrc 13

. USC Viterbi .
MemtoReg Mux
* Mux controlling writeback value to register file

— ALU instructions use the result of the ALU
— LW uses the read data from data memory

Read
5 Reg. 1# MemtoReg
Read
7 Reg. 2 #
5 Read
Write data 1 Zero
5 Reg. # >
Wri Read E IRES:
— Write data 2 ©
Data 1
Register File
9 Write
Data
Lo sen)
D-Cache

USCViterbi &2

School of Engineering

PCSrc Mux

* Next instruction can either be at the next sequential address (PC+4) or the
branch target address (PC+offset)

4 —»| A
+ — ve 22“1 # Branch Target
B 5 9 Address
Read PCSrc
U Reg. 2 #
5 Read 0
Addr. Write data 1
&_) Instruc. —— 5 IRt
Addr.
Wri Read
__,| Write data 2
I-Cache Data aa Read .
Data
Register File
9 Write
Data
/ Sign
16 \ Extend 32 D-Cache
15

USC Viterbi

School of Engineering

RegDst Mux

» Different destination register ID fields for ALU and LW instructions

R-Type(ALU) [0 | rs | nt shamt] func |
31-26 25-21 20-16 15{11 10-6 5-0 Destination
Register Number

I-Type (LW) [350ra3) rs “ address offset |

31-26 25-21 20-16 15-0
0
1
4 —»|
i s Read
B /5 Reg. 1 #
rt Read
/ Reg. 2 #
Read 0
Addr. Write data 1
%_) Instruc. ™ Reg. #
rd) Read Addr.
Write
I-Cache | Data etz Read 1
RegDpt Data
Register Fil
egiste e Write
Data
/ Sign
16 \ Extend 32 D-Cache

USCYiterbi =
Single-Cycle CPU Datapath

USC Viterbi

School of Engineering

Single-Cycle CPU Datapath

i MemRead & MemWrite +
4 4 ALUOPp[1:0]
MemtoReg
RegDst
Control
RegWrit Branch ALUSre Branch
egWrite RegWrite
[25:21] Read [25:21] Read
A Reg. 1# /5 Reg. 1#
[20:16] Read MemRead [20:16] Read MemRead
Reg. 2 # A Reg. 2 #
Read 0 Read 0
p-> Addr. 0 Write data 1 p-> Addr. i
o Lol e I s 0 _Perte data 1
= Instruc. i1 €9- &) />l 1 Reg. #
a - I~ Res. Addr. a Instruc. ™ Res. Addr.
5 X Read c 5 . Read c
| Write data 2 0 Write 0
I-Cache Data Read 1 I-Cache | Data data 2 Read
RegDgt . . & Data RegD}t U Data L
5] Register File Wirite o Register File i
= T Data E T Data
18 (Sion 0 % 16 : 32
ALUSrc MemtoRe] Sign MemtoRe:
T _Extend /] D-Cache Extend ALUStc D-Cache 9
NSTE) ALU control X INST[5:0] !
ALUOP[1:0]) ALUOR[1 0] ALU control 4
MemWrite pL1- > MemWrite
17 18
USC Viterbi G USCViterbi G
School of Engineering School of Engineering
.
Jump Instruc. Implementation
, sh , Jump Address = {NewPC[31:28], INST[25:0],00}
¥ 7
26 \\Litz/ 28 f' 32 Next Instruc. Address
Jump
MemRead & MemWrite Branch Address
4 ALUOp[1:0]
MemtoReg
Control RegDst PCSre
z ALUSre Branch
2 e RegWrite
[25:21] Read
/5 Reg. 1 #
[20:16] Read MemRead
A Reg. 2 #
Read 0
&> Addr. i
570 [oflte, caa SINGLE CYCLE CONTROL
o Inst 1 Reg. #
o EliE: = Res. Addr.
5 a Read c
| Write D 0
I-Cache Data ata : Read c
RegDpt . . K Data
g Register File Write
T Son 30 ! Data R
/ () MemtoRe
7 ‘|’ _Extend / NSTI50 ALUStc D-Cache 9
ALUORH _0[5'] ALU control 4
PL1:0] Met8Write

I USC Viterbi G

School of Engineering

Control Unit Design for Single-Cycle CPU

Inputs (Instruction/Opcode)

* Control Unit: Maps instruction to ¥ 5
. utputs
control signals L orL "
* Traditional Control Unit F

— FSM: Produces control signals asserted at
different times

— Design NSL, SM, OFL
* Single-Cycle Control Unit

— Every cycle we perform the same steps:
Fetch, Decode, Execute

Traditional Control Unit

of FF’s in tightly-encoded state assignment:
5-8 states: , 9-16 states:

Inputs (Instruction/Opcode)

Outputs

— Signals are not necessarily time based but
instruction based => only combinational
logic

Single-Cycle Control Unit

] USC\/it¢;bi @
Control Unit

* Most control signals are a

. e 558 o
function of the opcode (Instruc3126)] — Branch
—> MemRe_ad
(i.e. LW/SW, R-Type, Control [1o
Func Unit | , Alusre
Branch, Jump) e [+ RogDst
(Instruc.[5:0]) — RegWrite
. . — | —> ALUControl[2:0]
* ALU Control is a function
of opcode AND function e R Code —_
. e — Branch
b|ts‘ —> MemRead
Control — m:gl’g’gfg
Unit |, Alusrc
—> RegDst
—> RegWrite
Aoprio] | ALy | 24
Control
Func. (Instruc.[5:0])) ————>

Only 1st#dd=>___ FF’s 22
USC Viterbi @ . USC Viterbi
School of Engineering School of Engineering
¢ ALU Control needs to know what o * ALUControl[2:0] is a function of: ALUOp[1:0] and Func.[5:0]
instruction type it is: (nstrucia126) | Control |—»
— Unit —
— R-Type (op. depends on func. code) Instruc. ALUOp[1:0] Instruction Func.[5:0] Desired ALU
_ LW/SW (Op. _ ADD) ALUOP[1:0] Operation Action
pul
— BEQ(op. = SUB) c’;h:‘:ol § LW 00 Load word X Add
* Let main control unit produce ALUOp[1:0] Func. (Instruc.[5:0)) ———>| SW 00 ST X -
to indicate then use Branch 01 BEQ X Subtract
function bits if necessary to tell the ALU R-Type 10 AND 100100 And
what to do R-Type 10 OR 100101 or
Instruction ALUOp[1:0] R-Type 10 Add 100000 Add
LW/SW 00 R-Type 10 Sub 100010 Subtract
Branch 01 R-Type 10 SLT 101010 Set on less
than
R-Type 10

Control unit maps instruction opcode to
ALUOPp[1:0] encoding

Produce each ALUControl[2:0] bit from the ALUOp and Func. inputs

24

| USCVit,e.,r,bi @
Control Signal Generation

* Other control signals are a function of the opcode

* We could write a full truth table or (because we are only
implementing a small subset of instructions) simply
decode the opcodes of the specific instructions we are
implementing and use those intermediate signals to
generate the actual control signals

OpCode OpCode R-Type

(Instruc.[31:26)) e éfzfch (Instruc.[31:26]) e éf?npch

—» MemRead LW —» MemRead
—> MemWrite —> MemWrite

Cont_rol —» MemtoReg Decoder sw cont_rOI —» MemtoReg

Unit L, Alusrc o Unit |— ALUSrc

—» RegDst —> RegDst
—> RegWrite Jum —> RegWrite
—> ALUOp[1:0] P —> ALUOp[1:0]

Could generate each control
signal by writing a full truth table
of the 6-bit opcode

Simpler for human to design if we decode the
opcode and then use individual “instruction”
signals to generate desired"tontrol signals

| USCVit?.,rbi _
Control Signal Truth Table

R | W | sw | BEQ | J | Jump | Branch | Reg | ALU | Memto- | Reg | Mem | Mem | ALU ALY
Type Dst | Src Reg Write | Read | Write | Op[1] | Op[0]
1 0|0 0 |0 0 0 0 0 1 0
0 110 0 |0 0 0 1 0 0 0
0 0|1 0 |0 0 0 0 1 0 0
0 0|0 1 0 0 1 0 0 0 1
0 0|0 0 1 1 X 0 0 X X

76 _Leit2

) %

Jump
MemRead & MemWiite % [TBranch Address
ALUOP[1:0]
MemtoReg
Control RegDst pesre
e ALUSro Branch
gll= RegWrite

Next Instruc. Address

521 [Read
Reg.1#
5 leg.
2016 |Read MemRead
Reg.2#
Read
Write data 1
|| o5 Reg.#
5 Read
Write
Data data 2
|
Register File

[150]

MemtoReg | 26

| USCViterbi@
Control Signal Logic

School of Engineering

Op[5]

opi4] Decoder

Op[3]

Opl2]

Op[1]

oplo] i I | | 5

R-Type LW SW BEQ J

Jump
Branch
RegDst
ALUSrc
MemtoReg
RegWrite
MemRead
MemWrite
ALUOp1
ALUOpO

27

USC Viterbi

School of Engineering

DATAPATH QUESTIONS

I USC Viterbi

School of Engineering

Fetch Datapath Question 1

¢ Can the adder used to increment the PC be an ALU and be
used/shared for ALU instructions like ADD/SUB/etc.

— In asingle-cycle CPU,

“Next” PC=PC + 4
4
CLK
\V4
PC Addr. Data f——p
Current PC/ Instruction Word
Read Address
. I-Cache / -MEM
Write

29

| USCVit?.,rbi _
Fetch Datapath Question 2

* Do we need the “Write” enable signal on the PC register for
our single-cycle CPU?
— In the single-cycle CPU,

“Next” PC=PC +4
4

Addr.

Data |—»
Current PC/ Instruction Word

Read Address
I-Cache / -MEM

Write

30

USCViterbi G2>

School of Engineering

RegFile Question 1

* Why do we need the write enable signal, REGWrite?

|
Cﬂ,’g{f —> Control Signals

apoado

o]
S
S
8 —
153 Read Read » Value of $1
(o] | 7 Reg. 1# datat
- =3 5
|8 Read
= Read
o] |_,;_' Reg.2# o p— Valueof$2
Instruction Word ——— § Write
= 5 Reg. #
ex. ALU instruc. S| ;
32 Data
- . .
NS Register File
TS
——— DS
3|8
- —
-
=2 I I
—— S8 CLK REGWrite 31
S

Result from add

USCViterbi &2

School of Engineering

RegFile Question 2

* Can write to registers be level sensitive or does it have to be
edge-sensitive?

|
C&gir: —> Control Signals

apoado

Read Read

Reg.1# data1 > Value of $1

sl

Read

o
=]
o
o
o
=]
8 | 5
8
= Read
=y | 75 Reg.2# a4 o[> Value of $2
Instruction Word —— § Write
=) 5 Reg. #
ex. ALU instruc. S| ;
a3 Data
- . .
ool Register File
EaE=]
—— DS
3|8
- —
=
=2 I I
—— 5|8 CLK REGWrite 32
=]

Result from add

| USCVit,e.,rPi @
RegFile Question 3

* Since we need a write enable, do we need read enables (i.e.
RE1, RE2)

—/ »Read Reg. 1# Read data 1 — Operand A
5 value

——»{RE1
—/ »{Read Reg.2# Read data2

—» RE2

——— Write Reg. #

Write Data
Register File
I I
CLK REGWrite 33
Result from add

— Operand B
value

| USC\/itg;bi ‘
Sign Extension Unit

* Ina ‘LW’ or ‘SW’ instructions with
their base register + offset format,
the instruction only contains the
offset as a 16-bit value

— Example: LW $4,-8(51)
— Machine Code: 0x8c24fff8
. -8 = Oxfff8

* The 16-bit offset must be extended
to 32-bits before being added to base
register

offset =

Oxfffg Oxfffffff8
16 32

[100011] 00001 [00100] 1111 1111 1111 1000
opcode rs rt offset

LW $4,0xfff8($1

34

| USCVit)e;}_;;{@
Sign Extension Questions

* What logic is inside a sign-extension unit?
— How do we sign extend a number?
— Do you need a shift register?

[b1gb1qbig b,| 16-bit offset
|b15| |b15Jb15|b14|b13| |bo| 32-bit sign-extended

output
35

| USC\[it?KP;r_
Data Memory Questions

* Do we need separate instruction and data
memory or can we just use one (i.e. most
personal computers only have one large set MemRead
of RAM)? |

Read

> Read Addr.

* Do we need separate read/write address
inputs or can we have just one address input
used for both operations?

Read Data ——»
—| Write Addr.

—| Write Data

Write

* Can we do away with the “read” control
signal (similar to how we did away with read
enables for register file)?

MemWrite

36

Branch Datapath Questi

USCViterbi &=

School of Engineering

on

* Is it okay to start adding branch offset even before

determining whether the branch is taken or not?

PC+4 (incremented PC) —p| >
Q
o Sum
(]
-
1 Read @
Reg. 1 #
2 ALUop
Inst d Read
nstruc. wor Reg. 2 #
) Read $1 value
BEQ $1,$2.offset Write ~ data1
Reg. # > Zero
-
Wi Read $2 value P Res.
e data 2
Data
Register File

word offset Sign extended word offset
Extend

Branch Target
Address to PC

ZERO (To control logic)

Sum

37

I USC Viterbi

hool of Engineering

Credits

* These slides were derived from Gandhi
Puvvada’s EE 457 Class Notes

