
1

EE 457 Unit 4

Computer System Performance

2

Motivation

• An individual user wants to:

– Minimize single program execution
time

• A datacenter owner wants to:

– Maximize number of compute jobs
performed per unit time

– Minimize cost (power, # of servers,
etc.)

http://e-telligentinternetmarketing.com/website/frustrated-computer-user-2/

http://www.intomobile.com/2010/11/02/opera-iceland-clean/

http://e-telligentinternetmarketing.com/website/frustrated-computer-user-2/
http://www.intomobile.com/2010/11/02/opera-iceland-clean/

3

Performance Depends on View Point?!

• What's faster:

– A 777 passenger airliner

– An F-22 fighter jet

• If you are an individual interested in getting from
point A to point B, then the F-22

– This is known as latency [units of time]

– Time from the start of an operation until it completes

• If you are trying to evacuate a large number of
people, the airliner looks much better

– This is known as throughput or bandwidth [jobs/time]

4

Throughput vs. Latency

• If Latency is the Time it takes for a Job to complete & Throughput
= Jobs / Time…

• …Is Throughput = 1 / Latency?
– No!

– Latency is from the perspective of a single job

– Throughput is from the perspective of many jobs

– Parallelism is the great friend of throughput!

• We will see many times in this course (pipelining, memory org.,
etc.) that there is often not much we can do about latency but
there are lots of ways to improve throughput
– Hopefully without degrading latency too much, if at all

5

Metrics

• What are the metrics?

– Clock speed (GHz),

– IPS/OPS = Instructions/Operations Per Second

– FLOPS = Floating Point Ops. Per Second

– CPI, IPC = Clocks per Instruction (vice versa)

– Memory Latency

– Memory Bandwidth

– Network bandwidth

– FLOPS/Watt

6

Execution Time

• Key Point: When comparing different systems,
absolute execution time is the ultimate
criterion (metric)

• Using a rate as a metric can often be
misleading metrics

– Often not comparing apples to apples

– Often not normalized

7

What's Wrong with Rates

• Two trains take two different routes from City A to City B and leave at the
same time. Train 1 travels at 60 MPH, while train 2 travels at 75 MPH. Which
one arrives first?

• Need to know how far each route is?

• Example 1 (MIPS):

– You may hear that Computer 1 executes 500 MIPS while Computer 2 executes
750 MIPS. Which one executes a given program faster?

– Train speed = MIPS & Routes = Program (how many instructions)

– MIPS is only useful for the same compiled program run on 2 CPU’s

• Example 2 (Clock Rate):

– You may hear that CPU1 runs at 2 GHz and CPU2 runs at 3 GHz, which one
executes a program faster (assume same instruction set)

– CPU1 may have CPI=2 while CPU2 has CPI=4

– CPU1 Time = 2/2GHz < CPU2 Time = 4/3GHz

8

Wall Clock Time vs. CPU Time

• Even execution time can be hard to measure accurately
because the OS may allocate a percentage of compute cycles
to other programs (also, part of a programs execution is spent
in OS calls for I/O, etc.)
– Wall Clock Time: Real time it took from when the user submitted the

job until it was completed

– CPU Time (User Time + System Time): Actual time the program used
the CPU either in the application code (User Time) or in the OS
(System Time)

• Doesn't include I/O time

– Linux/Unix: % time executable
• real 0m16.019s

• user 0m12.840s

• sys 0m0.180s

9

Performance

• Performance is defined as the inverse of
execution time

• Often want to compare relative performance
or speedup (how many times faster is a new
system than an old one)

New

Old

Old

New

Execution

Execution

ePerformanc

ePerformanc
 Speedup ==

Performance =
1

Execution Time

10

Performance Equation

• Execution time can be modeled using three components
– Instruction Count: Total instructions executed by the program

• IC = Dynamic Instruction Count not Static Instruction Count

– Clocks Per Instruction (CPI): Average number of clock cycles to execute
each instruction

– Cycle Time: Clock period (1 / Freq.)

 Time Cycle*CPI *Count Instruc.

Clock

Time
*

nInstructio

Clocks
 *Count Instruc. Time Exec.

=

=

Compiler /

Instruction Set Microarchitecture

Technology

(VLSI design)

11

Dynamic vs. Static Instruction Count

• Static instruction count is the
number of written instructions

• Dynamic instruction count (or
“trace” count) is how many
instruction were executed at run
time

• Would you prefer either:
– Small Static IC & Large Dynamic IC … or

…

– Large Static IC & Small Dynamic IC

LP: ----

BNE LP

THN:----

ELS:----

Dynamic ICStatic IC

12

What Affects Performance
Component SW/HW Affects Description

Algorithm SW Instruc. Count &
CPI

Determines how many instructions &
which kind are executed

Programming
Language

SW Instruc. Count &
CPI

Determines constructs that need to
be translated and the kind of

instructions

Compiler SW Instruc. Count &
CPI

Efficiency of translation affects how
many and which instructions are

used

Instruction Set HW Instruc. Count,
CPI, Clock Cycle

Determines what instructions are
available and what work each

instruction performs

Microarchitecture HW CPI, Clock Cycle Determines how each instruction is
executed (CPI, clock period)

Source: H&P, Computer Organization & Design, 3rd Ed.

13

Different Architectures

R0

R1

Rn

Y Reg.

ALU

Z Reg.

Single Bus

Clock 1: Y = Rsrc1

Clock 2: Z = Rsrc2 + Y

Clock 3: Rdst = Z

R0

R1

Rn

Y Reg.

ALU

Z Reg.

Two-Bus

Clock 1: Z = Rsrc1 + Rsrc2

Clock 2: Rdst = Z

R0

R1

Rn

Y Reg.

ALU

Z Reg.

Three Bus

Clock 1: Rdst = Rsrc1 + Rsrc2

General Implications: Less Resources => More Clock Cycles (Time)

14

Example

• Processor A runs at 200 MHz and executes a 40 million instruction
program at a sustained 50 MIPS

• Processor B runs at 400 MHz and executes the same program (w/ a
different compiler) which yields a count of 60 million instructions and a
CPI of 6

• What is the CPI of the program on Proc. A?

• Which processor executes the program faster and by what factor?

• What is the MIPS rate of Proc. B?

instrucs

second

second

cycles
CPI A 6

6

10*50
*

10*200
=

125.1
8.0

9.0

sec9.0
10*400

*
.

6
*.10*60

sec8.0
.10*50

*.10*40

6

6

6

6

===

==

==

A

B

B

A

ExecTime

ExecTime
Speedup

cycles

second

instruc

cycles
instrucsExecTime

instrucs

second
instrucsExecTime

MIPS
seconds

instrucs
MIPSB 67.66

9.0

10*60 6

==

15

Calculating CPI

• CPI can be found by taking the expected value
(weighted average) of each instruction type’s CPI [i.e.
CPI for each type * frequency (probability) of that
type of instruction]

• In practice, CPI is often hard too find analytically
because in modern processors instruction execution
is dependent on earlier instructions

– Instead we run benchmark applications on simulators to
measure average CPI.

=
i

iiType nTypeInstructioPCPICPI)(*_

16

Example

If CLK=1 MHz what is PEAK Inst./Sec. = 1 MIPS

Average CPI = (1+2+3)/3 = 2

Instruction Type CPI P1 Freq.

A 1 10%

B 2 40%

C 3 50%

Instruction Type CPI P1

A 1

B 2

C 3

Average CPI = 1*0.10 + 2*0.40 + 3*0.5

= .10+.80+1.5 = 2.40

17

Example

• Calculate CPI of this snippet of code using the
following CPI’s for each instruction type

add $s0,$zero,$zero

addi $t1,$zero,4

loop: lw $t2,0($t0)

add $t2,$t2,$t1

addi $t0,$t0,4

addi $t1,$t1,-1

bne $t1,$zero,loop

sw $t2,0($t2)

Instruction Type CPI

add 1

lw / sw 4

bne 2

Dynamic Instruction Count = 4*5 + 3 = 23

=
i

iiType nTypeInstructioPCPICPI)(*_

Instruction Type Dynamic Count

add 14

lw / sw 5

bne 4

826.1
23

42
)4*2()5*4()14*1(

23

1
==++= CPI

18

Other Performance Measures

• OPS/FLOPS = (Floating-Point) Operations/Sec.

– Maximum number of arithmetic operations per second the
processor can achieve

– Example: 4 FP ALU’s on a processor running @ 2 GHz => 8
GFLOPS

• Memory Bandwidth (Bytes/Sec.)

– Maximum bytes of memory per second that can be
read/written

• Programs are either memory bound or
computationally bound

• Performance/Watt, Energy Proportionality, etc.

19

Energy Proportional Computing

“The Case for Energy-Proportional Computing”, Luiz André

Barroso, Urs Hölzle, IEEE Computer, vol. 40 (2007).

Desired Power vs. Utilization
Relationship

http://research.google.com/pubs/LuizBarroso.html
http://research.google.com/pubs/author79.html

20

AMDAHL'S LAW
What should I optimize?

21

Amdahl’s Law

• Where should we put our effort when trying to
enhance performance of a program

• Amdahl’s Law = How much performance gain do we
get by improving only a part of the whole

tFactorImprovemen

fectedExecTimeAf
affectedExecTimeUnwExecTimeNe +=

tFactorImprovemen

Percent
Percent

wExecTimeNe

dExecTimeOl
Speedup

Affected

Unaffected +

==
1

22

Amdahl’s Law

• Holds for both HW and SW

– HW: Which instructions should
we make fast? The most used
(executed) ones

– SW: Which portions of our
program should we work to
optimize

• Holds for parallelization of
algorithms (converting code to
run multiple processors)

Original Sequential

Program

Parallelized Program

23

Parallelization Example

• A programmer parallelizes a function in his program to be run
on 8 cores. The function accounted for 40% of the runtime of
the overall program. What is the speedup of the
enhancement?

53.1
65.0

1

8

4.0
6.0

1
==

+

=Speedup

24

Example

• What if we improve only class B instrucs.

Instruction Type CPI P1 Freq.

A 1 30%

B 2 => 1 20%

C 3 50%

tFactorImprovemen

Percent
Percent

Speedup
Affected

Unaffected +

=
1

𝑆𝑝𝑒𝑒𝑑𝑢𝑝 =
1

9
11

+ (
2
11

/2)
=

1

10
11

= 11/10 = 1.1

…OR…

Must put

percentages in terms

of time

2.15/6
6/5

1

)2/3/1(3/2

1
===

+
=Speedup

25

Profiling

• How do you know where time is being spent?

• From a software (programming for performance) perspective,
profilers are handy tools
– Instrument your code to take statistics as it runs and then can show

you what percentage of time each function or even line of code was
responsible for

– Common profilers
• 'gprof' (usually standard with Unix / Linux installs) and 'g++'

• Intel VTune

• MS Visual Studio Profiling Tools

• From a hardware perspective, simulators can help
– SimpleScalar

– Simics

– Your own simulation model developed in Verilog/SystemC/etc.

26

gprof Output

% cumulative self self total

time seconds seconds calls s/call s/call name

42.96 4.48 4.48 56091649 0.00 0.00 Board::operator<(Board const&) const

6.43 5.15 0.67 2209524 0.00 0.00 std::_Rb_tree<...>::_M_lower_bound(...)

5.08 5.68 0.53 108211500 0.00 0.00 __gnu_cxx::__normal_iterator<...>::operator+(...)

4.51 6.15 0.47 4419052 0.00 0.00 Board::Board(Board const&)

4.32 6.60 0.45 1500793 0.00 0.00 void std::__adjust_heap<...>(...)

3.84 7.00 0.40 28553646 0.00 0.00 PuzzleMove::operator>(PuzzleMove const&) const

27

Credits

• These slides were derived from Gandhi
Puvvada’s EE 457 Class Notes

28

BACKUP

29

An Opening Question

• An Intel and a Sun/SPARC computer measure their
respective rates of instruction execution on the same
application written in C

– Computer A achieves 160 MIPS (Millions of Instructions
Per Second)

– Computer B achieves 200 MIPS

• Which computer executes the program faster?

– It depends on the instruction set and compiler (ultimately,
the instruction count). Computer B and its compiler may
use many more simpler (faster) instructions to implement
the program thereby increasing its instruction execution
rate but saying nothing of overall execution time

30

Another Question

• A Pentium 3 has a clock rate of 1 GHz while a
Pentium 4 has a clock rate of 2 GHz.

– They implement the same instruction set

– They are tested on the same executable program.

• Is the Pentium 4 twice as fast as the Pentium 3?

– Since they both use the same instructions and the same
instruction count (same executable), we may think that the
Pentium 4 would be twice as fast

– However, the microarchitectural implementation of the
processor may mean that the Pentium 3 executes
instructions in 2 clocks on average while the Pentium 4
executes instruction in 4 clocks on average thus making the
execution time exactly the same.

31

What Affects Speed

HW/SW Design

• Compiler & Instruction Set
– What instructions we

support, how high level
programs are translated,
what instructions the
compiler uses

• Microarchitecture
– Clocks per Instruction (CPI) or

its reciprocal, IPC

• IC Technology
– Gate/wire delay

– Clock

Corresponding Metric

• Instruction Count

– Static vs. dynamic

• CPI (Clocks per instruction)
or its reciprocal, IPC

• Clock frequency /
clock period

32

Microarchitecture’s Effect

• Micro-architecture affects performance via the CPI and clock period

– Consider LW and ADD instruction

• LW (Fetch, Decode & Fetch Base Reg., Add Base+Offset, Read Mem., Write Result

• ADD (Fetch, Decode & Fetch Src. Reg’s., Add, Write Result)

Instruc.

Fetch

CPIadd=1Decode

/ Reg.

Fetch

ALU
Memory

Access

Write

Result

add

lw CPIlw=1

Instruc.

Fetch

Decode

/ Reg.

Fetch

ALU
Memory

Access

Write

ResultlwR
E

G
.

R
E

G
.

R
E

G
.

R
E

G
. CPIadd=4

CPIlw=5

TCLK=50ns

TCLK=10ns

time

time

33

Example

• Two different processors implement the same instruction set (such as Intel
and AMD processors).

• There are four instruction classes (types) with the given CPI’s. P1 has a
clock rate of 2 GHz and P2 has a clock rate of 3 GHz.

• A certain program has an instruction mix in which classes A and B are
executed twice as often as C and D

• Which computer is faster and by how much?

Instruction Type CPI P1 CPI P2

A 1 2

B 2 2

C 2 2

D 3 4

Average CPI (P1): 11/6

Average CPI (P2): 14/6

Exec. Time (P1): IC * 11/6 * 0.5 ns

Exec. Time (P2): IC * 14/6 * 0.333 ns

Speedup = 11/12 / 14/18 = 1.17

