I USC Viterbi G

School of Engineering

EE 457 Unit 3

Instruction Sets

I USC Viterbi G2

chool of Engincering

With Focus on our Case Study: MIPS

INSTRUCTION SET OVERVIEW

. USC Viterbi G2

Instruction Sets

* Defines the software interface of the processor and
memory system

* Instruction set is the vocabulary the HW can
understand and the SW is composed with

* Most assembly/machine instructions fall into one of
three categories

. USC Viterbi

School of Engineering

Instruction Set Architecture (ISA)

* 2 approaches
— CISC = Complex instruction set computer

* Large, rich vocabulary

* More work per instruction, slower clock cycle
— RISC = Reduced instruction set computer

¢ Small, basic, but sufficient vocabulary

¢ Less work per instruction, faster clock cycle

¢ Usually a simple and small set of instructions with regular format
facilitates building faster processors

I USC Viterbi G

School of Engineering

RISC Style

32-bit internal / 32-bit external data size
— Registers and ALU are 32-bits wide
— Memory bus is logically 32-bits wide (though may be physically
wider)
Registers
- 32 General Purpose Registers (GPR’s)

. For integer and address values
. A few are used for specific tasks/values

— 32 Floating point registers
Fixed size instructions
— All instructions encoded as a single 32-bit word
— Three operand instruction format (dest, srcl, src2)

- Load/store architecture (all data operands must be in registers and
thus loaded from and stored to memory explicitly)

I USC Viterbi

School of Engineering

MIPS Programmer-Visible Registers

. GPR’s
* General Purpose Registers (GPR’s) 7
— Hold data operands or addresses $0 - $31 MIPS Core
(pointers) to data stored in |
memory
* Special Purpose Registers
— PC: (32-bits)
* Holds the of the next
to be fetched from
memory & executed W
— HI: Hi-Half Reg. (32-bits)
* For MUL, holds 32 MSB’s of PC:
result. For DIV, holds 32-bit I:]
remainder
— LO: Lo-Half Reg. (32-bits) MEM
* For MUL, holds 32 LSB’s of HI:
result. For DIV, holds 32-bit I:] OxA140 add
\

Special Purpose Registers

I (S Viterbi (7

School of Engineering

MIPS Programmer-Visible Registers

. GPR’s
* Coprocessor 0 Registers 7
— Status Register $0 - $31
* Holds various control bits for
processor modes, handling
interrupts, etc.
— Cause Register

Holds information about exception
(error) conditions

* Coprocessor 1 Registers
— Floating-point registers

— Can be used for single or
double-precision (i.e. at least
64-bits wides)

$f0 - $f31

32-bits

64 or more
Coprocessor 1 —
Floating-point Regs.

Status: I:]
[]

Cause:

Coprocessor 0 —
LO: I:] Status & Control Regs
\ MIPS Core
\

Special Purpose Registers

. USC Viterbi

School of Engineering
MIPS GPR’s

Szero S0 Constant 0 value

Sat s1 Assembler temporary

Sv0-Svil $2-$3 Procedure return values or expression
evaluation

$a0-$a3 $4-S7 Arguments/parameters
$t0-St7 $8-$15 Temporaries
$s0-Ss7 $16-$23 Saved Temporaries
$t8-$t9 $24-$25 Temporaries
SkO-Sk1 $26-527 Reserved for OS kernel

Sgp $28 Global Pointer (Global and static

variables/data)

Ssp $29 Stack Pointer

Sfp $30 Frame Pointer

Sra $31 Return address for current procedure

* Instructions must specify three things:

* Example: ADD S$3,51,52 ($3=%1+%2)
* Binary (machine-code) representation broken into
fields of bits for each part

I USC Viterbi

School of Engineering

General Instruction Format Issues

OpCode Src. 1 Src. 2 Dest. Shift Amount Function
000000 00001 00010 00011 00000 100000
Arith. $1 $2 $3 Unused Add

I USC Viterbi

School of Engineering

Historical Instruction Format Options

Different instruction sets specify these differently

— 3 operand instruction set (MIPS, PPC)
¢ Usually all 3 operands in registers
* Format: ADD DST, SRC1, SRC2 (DST = SRC1 + SRC2)
— 2 operand instructions (Intel / Motorola 68K)
* Second operand doubles as source and destination
e Format: ADD SRC1, S2/D (52/D = SRC1 + S2/D)
— 1 operand instructions (Low-End Embedded, Java Virtual Machine)

* Implicit operand to every instruction usually known as the
register
(ACC = ACC + SRC1)

architecture

* Format: ADD SRC1

— 0 operand instructions /
* Push operands on a stack: PUSH X, PUSH Y
* ALU operation: ADD (Implicitly adds top two items on stack: X +Y
& replaces them with the sum)

. USC Viterbi G

School of Engineering

General Instruction Format Issues

* Consider the pros and cons of each format when performing the set of
operations
- F=X+Y-Z
— G=A+B
* Simple embedded computers often use single operand format
— Smaller data size (8-bit or 16-bit machines) means limited instruc. size
* Modern, high performance processors use 2- and 3-operand formats

Stack Arch. Single-Operand Two-Operand Three-Operand
LOAD X MOVE F)X ADD F.X,Y
ADD F.Y SuB F.F.Z
SuB F.z ADD G,AB
MOVE GA
ADD G,B

encode each
instruction

(+) Smaller size to

(+) More natural
program style

(+) Smaller instruction
count

| USCViterbi @

School of Engineerin,

Addressing Modes

Addressing modes refers to how an instruction specifies
the operands are

— Canbeina , , or in the machine code
of the instruction (immediate value)
MIPS: All data operands for arithmetic instructions must be in

a register

— MIPS require a
register

to read data from memory into a

I USC Viterbi G

Operand Addressing

’intz=x+y; ‘

School of Engineering

* Load/Store architecture Load/Store Architecture

— Load operands from memory into a register LOAD $8, X
— Perform operations on registers and put results LGAD, 395 Y

back into other registers Proc. Mem.
— Store results back to memory

. . . 1.) Load operands to proc. registers
— Because ALU instructions only access registers,) P P 9

the CPU design can be simpler and thus faster ADD $8,$8,$9

* Most modern processors follow this approach

Proc. Mem.

* Older designs

— Register/Memory Architecture (Intel)
* 1operand of a ALU instruc. can be in a reg. or mem. but
the other must be in a register
— Memory/Memory Architecture (DEC VAX)
* Operands of ALU instruc. can be in any combination of
memory or registers
¢ ADD addrDst, addrSrc1, addrSrc2

2.) Proc. Performs operation using
register values

STORE $8, Z

—

3.) Store results back to memory

Proc. Mem.

I USC Viterbi

Load/Store Addressing

* When we load or store from/to memory how do we MEM
specify the address to use? Some processors provide A[0] @ 0xA140 00
sophisticated/exotic address modes (auto-increment, A[1] @ 0xA144 00
base+scaled index, etc.). But what is useful and sufficient? A[2] @ oxA148 00

e Option 1: Direct Addressing (constant address only) A[3] @ 0xA14C 00

— Constant address: LW $8, 0xA140
- !

— How would loop translate?

// C code
i=0, x=20;
while(i < MAX-1){

Is there a way to

write the body of
the loop to get a

different element
(the i-th element)
on each iteration?

// assembly
// assume $8 should get A[i]
// start loop instruc.
¥ = x2+ A[i]+A[i+1]; LW $8, Oxa1lde
i4= 2;
} ’ LW $9, @xalds

// x += $8 + $9
// end loop instruc.

. USC Viterbi a,

Load/Store Addressing

* Option 2: Indirect Addressing MEM
— Use register contents as address A[0] @ 0xA140 00
— Putaddress in a register: $9 = 0xA140 A[1] @ 0xA144 00
— Ex: LW S8, ($9) // $8 = MEM[$9] A[2] @ 0xA148 00
_ | A[3] @ 0xA14C 00

* Option 3: Base Addressing (Indirect w/ Offset)
— Use register content + a constant as the address in register
— Putaddress in a register: $9 = 0xA140

— Example: LW $8, 4 ($9) // $8 = MEM[$9 + 4] }
— |

i=0, x=20;

while(i < MAX-1){
X = x + A[i]+A[i+1];
i+= 2;

| USC\[itgf};;r_
Immediate Addressing

* Suppose you want to increment a variable (register)
— $8=88+1
— Where do we get the 1 from?
* Could have compiler/loader
and then load it from memory

* Constant usage is very common, so instruction sets usually
support a constant to be directly placed

// assume $8 should get A[i]
// assume $10 = Oxaldo
// start loop instruc.

// end loop instruc.

LW $8, _ LW $8,

ADD $10, LW $9,
E LW $9, bt ADD $10,
"3_ ADD $10, -2 // x += $8 and $9
© // x += $8 and $9 8- // end loop instruc.

// assume $8 should get A[i]
// assume $10 = Oxaldo
// start loop instruc.

* Known as immediate value because it is immediately available
with the instruction machine code itself

* Example: ADDI $8,58,1

ADDI

8

8

1

I-Type ’opcode:Gl rs=5 I rt=5 I

immed.=16

I (/S C Viterbi @
MIPS Instruction Format

* CISC and other older architectures use a variable size instruction to match
the varying operand specifications (memory addresses, etc.)
— 1to 8 bytes
* MIPS uses a FIXED-length instruction as do most RISC-style instruction sets
— Every instruction is 32-bits (4-bytes)
— One format (field breakdown) is not possible to support all the different
instructions

— MIPS supports 3 instruction formats: R-Type, I-Type, J-Type

R—Type’opcode:ﬁl rs=5 I =5 I rd=5 Ishamt=5| func=6 ‘add $4,$20,$17

Iw $8,4($9)
\ addi $5,$5,137
beq $2,$3,0x1200

I-Type ’opcode=6| rs=5 I rt=5 I immed.=16

J-Type ’opcode=6| Jump address=26 ‘ j 0x40a1c0

I USC Viterbi

School of Engineering

ALU (R-Type) Instructions

Memory Access, Branch, & Immediate (I-Type) Instructions

MIPS INSTRUCTIONS

| USCViterbi
R-Type Instructions

School of Engineering

* Format
6-bits 5-bits 5-bits 5-bits 5-bits 6-bits
’ opcode Irs (src1)|rt (src2)|rd (dest)l shamt | function ‘

—rs, rt, rd are 5-bit fields for register numbers

— shamt = shift amount and is used for shift
instructions indicating # of places to shift bits

— opcode and func identify actual operation
* Example:
— ADD S5, $24, 517

opcode rs rt rd shamt func
| 000000 [11000 | 10001 [00101 | 00000 | 100000 |
Arith. Inst. $24 $17 $5 unused ADD

. USC Viterbi

School of Engineering

R-Type Arithmetic/Logic Instructions

C operator Assembly Notes
+ ADD Rd, Rs, Rt
SUB Rd, Rs, Rt Order: R[s] — R[t]. SUBU for unsigned
* MULT Rs, Rt Result in HI/LO. Use mfhi and mflo
MULTU Rs, Rt instruction to move results
* MUL Rd, Rs, Rt If multiply won’t overflow 32-bit result
/ DIV Rs, Rt RI[s]/ R[t].
DIVU Rs, Rt Remainder in HI, quotient in LO
& AND Rd, Rs, Rt
| OR Rd, Rs, Rt
A XOR Rd, Rs, Rt
~(]) NOR Rd, Rs, Rt Can be used for bitwise-NOT (~)
<< SLL Rd, Rs, shamt Shifts R[s] left by shamt (shift
SLLV Rd, Rs, Rt amount) or R[t] bits
>> (signed) SRA Rd, Rs, shamt Shifts R[s] right by shamt or R[t] bits
SRAV Rd, Rs, Rt replicating sign bit to maintain sign
>> (unsigned) SRL Rd, Rs, shamt Shifts R[s] left by shamt or R[t] bits
SRLV Rd, Rs, Rt shifting in 0’s
<, >, <=, >= SLT Rd, Rs, Rt IF(R[s] < RI[t]) THEN R[d] = 1
SLTU Rd, Rs, Rt ELSE R[d] =0

| USCVit,e.,r,bi @
Shift Operations

» Shifts data bits either left or right
* Bits shifted out and dropped on one side
* Usually (but not always) Q’s are shifted in on the other side
» Shifting is equivalent to multiplying or dividing by powers of 2
* 2 kinds of shifts
— Logical shifts (used for unsigned numbers)
— Arithmetic shifts (used for signed numbers)

Right Shift by 2 bits:
1000011‘001\

New bits shifted in... \

100000011\00
Shifted by 2 bits

Left Shift by 2 bits:

!‘lool|00101o‘
Original Data

/ 0’s shifted in...

00[00101000
Shifted by 2 bits

Original Data

I USC Viterbi G

School of Engineering

Logical Shift vs. Arithmetic Shift

Arithmetic Shift
— Use for signed data
— Left shift will shift in O’s

— Right shift will sign extend
(replicate the sign bit) rather

* Logical Shift .
— Use for unsigned or non-
numeric data

— Will always shift in 0’s
whether it be a left or right

shift than shift in 0’s
* If negative number...stays
negative by shifting in 1’s
* If positive...stays positive by
shifting in 0’s
| o | o
Left shift Left shift
Copies of
0 _’< ‘ MSB are ‘ ‘
- - : shifted in - - :
Right shift Right shift

USC Viterbi G2

School of Engineering

Logical Shift

e 0’s shifted in

* Only use for operations on unsigned data
— Right shift by n-bits = Dividing by 2"
— Left shift by n-bits = Multiplying by 2"

0x0000000C
’o 01100‘=+12

TN

Logical Right Shift by 2 bits: Logical Left Shift by 3 bits:

0’s shifted in... 0’s shifted in...
00 ...00011=43 [... 01100000]=49
0x00000003 0x00000060

] USC\[it?Kb;r_
Arithmetic Shift

* Use for operations on signed data

* Arithmetic Right Shift — replicate MSB
— Right shift by n-bits = Dividing by 2"

* Arithmetic Left Shift — shifts in 0’s
— Left shift by n-bits = Multiplying by 2"

0xFFFFFFFC
’11 1100‘=-4

— T

Arithmetic Right Shift by 2 bits: Arithmetic Left Shift by 2 bits:

MSB replicated and shifted in... 0’s shifted in...
111 ...111]=-1 [1 ...10000 |=-16
OXFFFFFFFF OXFFFFFFFO

Notice there is no difference between
an arithmetic and logical left shift.
We always shift in 0’s.

Notice if we shifted in 0’s (like a
logical right shift) our result would
be a positive number and the
division wouldn’t work

I USC Viterbi G2

Logical Shift Instructions

School of Engineering

* SRLinstruction — Shift Right Logical
* SLLinstruction — Shift Left Logical
* Format:
— SxLrd, rt, shamt
— SxLVrd, rt, rs
* Notes:
— shamt limited to a 5-bit value (0-31)
— SxLV shifts data in rt by number of places specified in rs
* Examples
— SRLS5,512,7
— SLLV S$5,$12,520

opcode rs rt rd shamt func
| 000000 [00000 | 10001 [00101 | 00111 | 000010 |
Arith. Inst. unused $12 $5 7 SRL
| 000000 [10100 | 10001 [00101 | 00000 | 000100 |
Arith. Inst. $20 $12 $5 unused SLLV

I USC Viterbi

School of Engineering

Arithmetic Shift Instructions

* SRAinstruction — Shift Right Arithmetic
e Use SLL for arithmetic left shift
* Format:

— SRAd, rt, shamt

— SRAVrd, rt, rs
* Notes:

— shamt limited to a 5-bit value (0-31)

— SRAV shifts data in rt by number of places specified in rs
* Examples

— SRAS5,S812,7

— SRAV $5, 812,520

opcode rs rt rd shamt func
| 000000 [00000 | 10001 [00101 | 00111 | oooott |
Arith. Inst. unused $12 $5 7 SRA
| 000000 [10100 | 10001 [00101 | 00000 | 000111 |
Arith. Inst. $20 $12 $5 unused SRAV

I (S Viterbi (22

|-Type Instructions

* Format
6-bits 5-bits 5-bits
’ opcode | rs (src1) Irt (src/dst)l

16-bits
immediate ‘

—rs, rt are 5-bit fields for register numbers

— immediate is a 16-bit constant
— opcode identifies actual operation

* Example: o
opcode rs rt immediate
— ADDI $5,$24,1 [001000 | 11000 | 00101 | 000000000000 0001 |
ADDI $24 $5 20
— LW S5, -8(53) [010111 | 00011 | ooto1 | 1111 11111111 1000 |
Lw $3 $5 -8

I USC Viterbi

Immediate Operands

* Most ALU instructions also have an immediate form to be used when one
operand is a constant value
e Syntax: ADDI Rs, Rt, imm
— Because immediates are limited to 16-bits, they must be extended to a full 32-
bits when used the by the processor

— Arithmetic instructions always to a full 32-bits even for

unsigned instructions (addiu)

— Logical instructions always to a full 32-bits

* Examples:
— ADDI
— ORI

84,55, -1 // R[4] =R[5] +
$10, $14, -4 // R[10] = R[14] |

Arithmetic Logical

ADDI ANDI

Note: is unnecessary
ADDIU ORI since we can use ADDI with
SLTI XORI a negative immediate value

SLTIU

I USC Viterbi

School of Engineering

Bytes, Half-words, Words, Double-words, yikes!

MEMORY ORGANIZATION

I USC Viterbi

School of Engineering

Address Bus and Memory Size

* Most processors are byte-addressable |r A :
— Every byte (8-bits) has a unique address Proc‘.'D'"eQ" ~ Mem
¢ ASCIl characters = 1-byte 32
* Pixelsin an image = 1-byte
— NOT bit-addressable
* The processor has an address bus (wires D4 OxEEEEEEEE
connecting the processor to the memory 8E Oxfffffffe
address) which is a specific size
* This address bus size determines the
amount of memory F8 0x00000002
that can be interfaced 13 0x00000001
— Address of size 'n” implies __ unique 5A 0x00000000
addresses . - .
— Byte-addressable implies 1 byte per unique Logical Byte-Oriented View of Mem.
address
— Thus, ___ bytes of memory max

— 32-bit address bus => address space

. USC Viterbi Gav

MIPS Data Sizes

Integer Floating Point
* 3 Sizes Defined * 3 Sizes Defined
— Byte (B) — Single (S)
¢ 8-bits e 32-bits = 4 bytes
— Halfword (H) — Double (D)
* 16-bits = 2 bytes * 64-bits = 8 bytes
— Word (W) * (For a 32-bit data bus, a

double would be accessed

e 32-bits = 4 bytes ;
from memory in 2 reads)

In MIPS, size matters to memory access instructions, but ALU
instructions always perform operation on full 32-bit register
values

. USC Viterbi G2

School of Engineering

MIPS Memory Data Organization

* We can logically picture memory in A
the units (sizes) that we actually Proch“"‘“"'*.Mem.
access them L3 1
* We can access 1-byte at a time but
the data bus allows for wider access
(32-b|t$) F8 0x000002
* Logical view of memory arranged in ; Zzzzzzzz

rows of largest access size (word)

— Still with separate addresses for each
byte
— Can get word, halfwords, or bytes

Logical Byte-Oriented View of Mem.

0x000008
8E AD 33 29 0x000004
7cC F8 13 5A | 0x000000

Logical Word-Oriented View

I USC Viterbi G

Memory & Word Size

* If each byte has its own address,
which address should we use for half-
words (2-byte chunks) or words (4-

| Byte3 | Byte2 | Byte1 | Byteo |

byte chunks)? Halfword 2 Halfword 0
— Start address = Smallest byte address Word 0
within the larger chunk
* If we provide the start address (say A:Jd@
0x4000) to memory, how does it -ﬁ)
know whether we want the byte, Word 0x4001 E
halfword, or word at address 0x4000 0x4000 | 0x4002
. Lo 0x4003
— Other control signals indicate how many © 0xd008
bytes to access (1=byte, 2=half, or Word 0:4005
4=word) 0x4004 0x4006
| 0x4007

I USC Viterbi

School of Engineering

MIPS Memory Alignment Limitations

¢ Bytes can start at any address Addz —
¢ Halfwords must start on an
address Data
00A18C
¢ Words must start on an address
that is a Control

R ExampIeS' Valid Accesses

— Word @ A18C —

— Halfword @ FFE6 —

— Word @ A18E - Addr EA 4B | 00OFFEA4

Halfword @ FFE5 —

52 CF 49
7Cc F8 00A18C

Invalid Accesses

Data

Control

. USC Viterbi G

School of Engineering

Little- vs. Big-Endian Organization

Word

» Refers to ordering of bytes w/in a larger N2 B 158 7 0 o Addwess
chunk i

* Big-Endian 0

— Byte ‘0’ is at the of a Big-Endian
word
Word
— PPC, Sparc 3124 2316 15 8 7 0 Address
* Little-Endian 8
— Byte ‘0’ is at the of a 4
word 0
— Intel, Little-Endian
* MIPS can be configured either way 3 2 1 0
Little-

* Issues arise when moving smaller pieces (12]3¢ [56[78] Erdion
within a large chunk across different etwork Transfer
endian-systems (e.g. TCP/IP transfer from %07 1=>1, etc.)
little-endian machine to big-endian ’ | | | ‘ Big-Endian

machine) 0] 2 3

. USC Viterbi

School of Engineering

Getting data in and out of the processor

LOAD/STORE INSTRUCTIONS

I USC Viterbi G

Memory & Data Size

+ Little-endian memory can be thought of as right justified

» Always provide the of the desired data
» Size is explicitly defined by the instruction used

* Memory Access Rules

— Halfword or Word access must start on an address that is a multiple of
that data size (i.e. half = multiple of 2, word = multiple of 4)

(Assume start address = N)

| e [we [w NI v
Byte operations only access the byte
31 15 0 at the specified address
T s [[ve D
Halfword operations access the
31 : 2-bytes starting at the specified address
C woa [

Word operations access the
4-bytes starting at the specified address

I USC Viterbi

School of Engineering

Memory Read Instructions (Signed)

GPR Memory
3 7 0 LB(LoadByte)
Sign Extend Byte Provide address of 000004
If address = 0x02 desjred byte 5a | 13 [Fs [7c | ooo0oo
Reg. =
31 15 0
a Provide address of sa | 13 [rs | 7c | 000000
If address = 0x00 starting byte
Reg. =
31 0
[wod e ooons
Provide address of 5a | 13 | F8 | 7C | 000000

If address = 0x00
Reg. =

starting byte

. USC Viterbi

School of Engineering

Memory Read Instructions (Unsigned)

GPR Memory

LBU (Load Byte)

Zero Extend Byte Provide address of 000004
If address = 0x01 desired byte sa [13 [r8 [7¢ | 000000
Reg. =
31 15 0
ero Provide address of sa | 13 | ¥8 [7¢ | 000000
If address = 0x00 starting byte
Reg.
31 0
[wod e o
Provide address of 5A | 13 | F8 | 7c | 000000

If address = 0x00
Reg. =

starting byte

. USC Viterbi

School of Engineering

Memory Write Instructions

GPR Memory
3 7 0 SB (Store Byte) 000004
Provide address of
Reg. = 0x12345678 desired sa F8 | 7c | 000000
if address = 0x02
31 15 0
[T o
Provide address of 000000
Reg. = 0x12345678 starting byte if address = 0x02
31 0
| wod [e
Provide address of 12 34 56 78 [0

Reg. = 0x12345678 starting byte if address = 0x00

I USCVit,e.,r,bi _
Load Format (LW,LH,LB)

* LW Rt, offset(Rs)
— Rt = Destination register
offset(Rs) = Address of desired data
RTL: R[t] = M[offset + R[s]]
offset limited to 16-bit signed number

* Examples
— LW $2, 0x40($3)
— LBU $2,-1(34)
— LH $2, OXFFFC($4) // R[2] =

/I R[2] =

/I R[2] =

old val.

R[2] F8BE97CD | 0x002048
R[3] | 00002000 134982FE | 0x002044
R[4] | 0000204C 5A12C5B7 | 0x002040

| USCVit?.,rbi _
More LOAD Examples

* Examples
— LB $2,0x45($3)
— LH $2,-6(34)
— LHU $2,-2($4)

/I R[2] =

/I R[2] =
/I R[2] =

F8BE97CD

0x002048
R[3] 00002000 134982FE 0x002044
R[4] 0000204C 5A12C5B7 0x002040

I USC\ﬁt?FP; _
Store Format (SW,SH,SB)

* SW Rt, offset(Rs)

— Rt =Source register

— offset(Rs) = Address to store data

— RTL: M[offset + R[s]] = R[t]

— offset limited to 16-bit signed number
* Examples

— SW S2, 0x40(S3)

— SB $2,-5(54)

— SH $2, OXFFFE(S4)

R[2] | 123489AB 89AB97CD | 0x002048
R[3] | 00002000 AB4982FE | 0x002044
x(4] |P00002000 123489AB | 0x002040

| USC\[itgf};;r_
Loading an Immediate

* |f immediate (constant) 16-bits or less
— Use ORI or ADDI instruction with SO register

— Examples
+ ADDI $2, $0, -1
+ ORI $2, 0, 0xF110

* |f immediate more than 16-bits

— Immediates limited to 16-bits so we must load constant
with a 2 instruction sequence using the special LUI (Load
Upper Immediate) instruction

— To load $2 with 0x12345678

J/R[2]=0-1=-1
//R[2] =0 | OxF110 = OxF110

12345678

b R[2]

I USC Viterbi

School of Engineering

Program Flow Control

BRANCH INSTRUCTIONS

_USCViterbi
Instruction Boundaries

e If the current instruction is at address 0xA140, what

address does the next instruction occupy?
— Each instruction is 32-bits = 4-bytes
— The next instruction is located @ 0xA144

hool of Engineering

MEM
0xA140 add
0xA144 sub
0xA148 bne

* We see then that instructions always lie on an addresses

that are multiples of 4

* Fact 1: The PC register in the processor stores the
address of the next instruction to be fetched

* Fact 2: Registers are needed when we want to store
variable bits

* Fact 3: Addresses are 32-bits in MIPS
* Do we need a 32-bit register for the PC?

XX00 = 00000
XX04 =
XX08 =
XXo0c =
XX10 =
Multiples
of 4 in hex
and binary

ering

] USCVite_rbi
Branch Instructions

* Conditional Branches

— Branches only if a particular condition is true

— Fundamental Instrucs.: BEQ (if equal), BNE (not equal)

— Syntax: BNE/BEQ Rs, Rt, label

* Compares Rs, Rt and if EQ/NE, branch to label, else continue

* Unconditional Branches

— Always branches to a new location in the code

— Instruction:

— Pseudo-instruction: B label

label: ----
1= < beq $2,$3,label

b label
label: ----

. USC Viterbi

School of Engineering

Two-Operand Compare & Branches

* Two-operand comparison is accomplished
using the SLT/SLTI/SLTU (Set If Less-than)

instruction

— Syntax: SLT Rd,Rs,Rt or SLT Rd,Rs,imm

* IfRs<RtthenRd=1,else Rd=0

— Use appropriate BNE/BEQ instruction to infer

relationship
Branch if... SLT BNE/BEQ
$2<S3 SLT $1,52,53 ___$1,50,label
$2<3$3 SLT $1,$3,52 _$1,0,label
$2>83 SLT $1,53,52 _$1,50,label
$2>$3 SLT $1,52,53 __$1,50,label

N (SC Viterbi _
Branch Machine Code Format

* Branch instructions use the I-Type Format

6-bits 5-bits 5-bits
’ opcode Irs (src1)| rt (src2) I

e Operation: PC=PC + {disp., 2'b00}
* Displacement notes

16-bits
Signed displacement ‘

— Displacement is the value that should be MEM
added to the PC so that it now points to the OxA1401 add
. . 0xA144 sub
desired branch location
0xA148 bne
— Processor appends two 0’s to end of disp. OxAl4c -
since all instructions are 4-byte words 0xA150 | Iw
* Essentially, displacement is in units of words 0xA154 | beq

| USCVit?,r,bi ‘
Range of Branching

* How far away can you branch?
— Largest positive 16-bit number: Ox
— Largest negative 16-bit number: Ox
— 16-bit range => +32KB
— Displacement is 16-bits concatenated with two 0's
— 18-bit range =>

| USC\/iterb;r_@
Jump Instructions

School of Engineering

0x1000001
26-bits
Jump address ‘

* Instruction format: J-Type 6-bis

’ opcode |

* Jumps provide method of
branching beyond range of
16-bit displacement

* Syntax: J label/address
— Operation: PC = address

Sample Jump instruction

ox8

Old PC |
PC before execution of Jump

4-bits 26-bits 2-bits

— Address is appended with
two O’s just like branch
displacement yielding a 28-
bit address with upper 4-bits
of PC unaffected

old PC
[31:28]

Jump address 00

New PC after execution of Jump®

0x84000004

| USCViterbi@
Jump Register

School of Engineering

* ‘jr’ instruction can be used if a full 32-bit jump
is needed or variable jump address is needed
* Syntax: JR rs
— Operation: = R[s]
— R-Type machine code format
* Usage:
— Can load rs with an immediate address

— Can calculate rs for a variable jump (class member
functions, switch statements, etc.)

I USC Viterbi G

School of Engineering

SUPPORT FOR SUBROUTINES

_USCViterbi
Implementing Subroutines

chool of Engincering

* To implement subroutines in assembly we
need to be able to:
— Branch to the subroutine code (JAL / JALR)

— Know where to return to when we finish the
subroutine (JR Sra)

C code: Assembly:
.text
res = avg(x,4);

jal AVG

int avg(int a, int Db)
AVG:

{ coo J

jr Sra

. USC Viterbi G

Jumping to a Subroutine

e JAL instruction (Jump And Link)
— Format: jal Address/Label
— Similar to jump where we load an address into the PC [e.g.
PC = addr]
* Same limitations (26-bit address) as jump instruction
* Addr is usually specified by a label
* JALR instruction (Jump And Link Register)
— Format: jalr $rs
— Jumps to address specified by Srs

* In addition to jumping, JAL/JALR stores the
into R[31]=Sra (= return address) to be
used as a link to return to after the subroutine
completes

| USCVitqb; _
Jumping to a Subroutine

e Use the JAL instruction to jump execution to
the subroutine and leave a link to the
following instruction

PC before exec. of jal:

[0040 0000 \
Assembly:
$ra before exec. of jal: 0x400000 jal AVG jal will cause the program to
[0000 0000 | |0x400004 add jump to the label AVG and

store the return address in

PC after exec. of jal: $ra/$31.

| |

$ra after exec. of jal:

| |

AVG: = 0x400810
add

jr $ra

I USC Viterbi G

School of Engineering

Returning from a Subroutine

* Use a JR with the Sra register to return to the
instruction after the JAL that called this

subroutine
PC before exec. of jr:
[0040 08ec \
$ra before exec. of jr: 0x400000 jal AVG jal will cause the program
[0040 0004 | |0x400004 add to jump to the label AVG
and store the return
PC after exec. of jr: ® address in $ra/$31.
’ ‘ AVG: = 0x400810
‘9 add
Go bgck to where we left 0x4008ec” ir Sra
off using the return

address stored by JAL

I USC Viterbi

School of Engineering

Dealing with Return Addresses

* Multiple return addresses
can be spilled to memory
— “Always” have enough
memory
* Note: Return addresses
will be accessed in reverse
order as they are stored

— 0x400208 is the second RA
to be stored but should be
the first one used to return

— A stack/LIFO is appropriate!

Assembly:
jal SUB1

0x40001A

MSUB1 jal SUB2

0x400208 jr $ra

SUB2 ‘a
jr $ra

. USC Viterbi

School of Engineering

Subroutines & Stacks

Stack is a reserved area in memory
Subroutines require a link (
address) to be saved on the stack

Processors usually dedicate a register to
point to the top of the stack (Ssp=R[29]
= stack pointer)

CPU
Ssp | TEffefes \ 0000 0000 | 7fffeffc
0040 0208 | 7fffeffs

0000 0000 | 7fffeff4

Stack grows 0000 0000 | 7T£ffeff0
towards lower 0000 0000 | 7fffefec
addresses 0000 0000 | 7fffefes

Stack grows
towards lower
addresses

fiffffc

System / Kernel
Memory

/0

80000000
Stack

Heap

Globals

Code 0
Address

Memory (RAM)

Subroutines and the Stack

jal SUB1
0x40001A
SUB1 0 addi $sp, $sp, -4
sw $ra, 0 ($sp)
0 jal SUB2
0x400208 1w $ra, 0 ($sp)
addi $sp, $sp, 4
e jr Sra
SUB2 addi $sp, $sp, -4
9 sw S$ra, 0 ($sp)
1w $ra, 0(Ssp)
addi $sp, $sp, 4
jr Sra

®$sp

Sra

0$sp

Sra

USC Viterbi

School of Engineering

’\>

0000

0000

Tfffeffc

Tfffeff8

Tfffeffd

0000

0000

Tfffeffc

Tfffeff8

Tfffeffd

0000

0000

Tfffeffc

Tfffeff8

Tfffeffd

0000

0000

Tfffeffc

Tfffeffs

Tfffeffd

] USCVite_,fPi _
Stack Facts

e Stack grows in the
direction of:

* Stack Pointer points to
the (top/bottom) of the
— Decreasing Addresses stack

— Increasing address

e Stackis a (LIFO / FIFO)
data structure.

» Stack Pointer Register
points to the
— Top-most FILLED location

— Next FREE location
above the top-most
filled location

] USC\/it¢;bi ‘
Stack Facts

* When you pop, first you
then you

* When you push do
you...
— Increment the SP

— Decrement the SP

* When you push do you

— First update the SP and
then place data

— Place data then update
SP

Recall:
» The stack grows downward
» The stack pointer points at the top OCCUPIED element on the stack.

| USCWF??P{
Stack Balancing

 Stack shall be balanced:
— number of push and pops

— Pops shall be performed in order

as corresponding pushes

. USC Viterbi

School of Engineering

Subroutines Calling Subroutines

* Nested subroutines make the stack
(grow / shrink) because more
(stack pointer values / return addresses) are
stored on the stack

e Recursive subroutines make the stack
(grow / shrink)

I USC Viterbi

School of Engineering

Subroutines and the Stack

* When writing native assembly, programmer must add code to
manage return addresses and the stack

* At the beginning of a routine (PREAMBLE)

— Push Sra (produced by ‘jal’) onto the stack
addi $sp, $sp, -4
sw $ra, 0 ($sp)

* Execute subroutine which can now freely call other routines
* At the end of a routine (POSTAMBLE)

— Pop/restore $ra from the stack
1w $ra, 0 (S$sp)
addi $sp, Ssp, 4
Jjr Sra

I USC Viterbi

Translating HLL to Assemblys

* HLL variables are simply locations in memory

— Avariable name really translates to an address in assembly

hool of Engineering

C operator

Assembly

Notes

int x,y,z;

X=Y+2Z

LUI $8, 0x1000
ORI $8, $8, 0x0004
LW $9, 4($8)

Assume x @ 0x10000004

&y @ 0x10000008
& z @ 0x1000000C

LW $10, 8($8)
ADD $9,$9,$10
SW $9, 0($8)

char a[100]; LUI $8, 0x1000
ORI $8, $8, 0x000C
LB $9, 1($8)

ADDI $9,$9,-1

SB $9,1($8)

Assume array ‘a’ starts @
0x1000000C
a[t]-;

. USC Viterbi

School of Engineering

Translating HLL to Assembly

C operator Assembly Notes
int dat[4],x; LUI $8, 0x1000 Assume dat @ 0x10000010
ORI $8, $8, 0x0010 & x @ 0x10000020
x = dat[0]; LW $9, 0($8)
X += dat[1]; LW $10, 4($8)
ADD $9,$9,$10

SW $9, 16($8)

unsigned int y; LUI $8, 0x1000 Assume y @ 0x10000010 &

short z; ORI $8, $8, 0x0010 z @ 0x10000014
y=y/4 LW $9, 0($8)
Z=2<<3; SRL $9, $9, 2

SW $9, 0($8)

LH $9, 4($8)

SLA $9, $9, 3

SH $9, 4(3$8)

. USC Viterbi

School of Engineering

Translating HLL to Assembly

C operator Assembly
int dat[4],x=0; DAT: .space 16
for(i=0;i<4;i++) X: dong O
X += datfi]; LA $8, DAT
ADDI $9,$0,4

ADD $10,$0,$0
LP: LW $11,0($8)
ADD $10,$10,$11
ADDI $8,$8,4
ADDI $9,$9,-1
BNE $9,$0,LP
LA $8X
SW $10,0($8)

] USCYl’F?II‘bl
Branch Example 1

if A > B (&§A in St0)
C Code A=A+ B (&B in $tl)
else
A=1
MIPS .text
Assembly — #t2,0(3t0)
w $t3,0(5t1) L Could use pseudo-inst.

SLT $1,$t3,st2

BEQ $1,$0,ELSE

ADD S$t2,5t2,s5t3
—]

“BLE $4,$5,ELSE”

L This branch skips over

B NEXT the “else” portion. This
BLSE ADDL HiE2, 50,1 is a pseudo-instruction
NEXT: SW $t2,0($t0)

and is translated to
BEQ $0,$0,next

I USC Viterbi

C Code

MIPS
Assembly

Branch Example 2

School of Engineering

for (i=0;1i < 10;i++) (St0=1i)
j=3+ i; (St1=73)

.text
ADDI $t0,$0,$0

LOOP: SLTI $1,%$t0,10
BEQ $1,$0,NEXT
ADD $tl,$tl, st0
ADD $t0, $t0,1
B LOOP

NEXT: -———-—

| Branches if i is not
less than 10

Loops back to the
comparison check

| USCVitg};; @
Another Branch Example

int dat[10];

C Code for (i=0;1i < 10;i++) ($tl=i)
datal[i] = 5;
MIPS s dee
Assembly ats -space
.text
la s$t0,dat
addi stl, $zero, 10
addi $t2, $zero, 5
LOOP: sw $t2,0(5t0)
addi $t0,$t0,4
addi $tl,stl,-1
bnez $tl, $zero, LOOP

NEXT:

. USC Viterbi G

C Code

MIPS
Assembly

A Final Example

char A[] = “hello world”;

char B[50];

// strcpy (B,A);

i=0;

while (A[i] != 0){

B[i] = A[i]; i++;

}

B[i] = 0;
.data

A: .asciiz “hello world”

B: .space 50
.text
la $t0,A
la $t1,B

LOOP: 1b $t2,0($t0)
beq $t2, $zero, NEXT
sb $t2,0(5t1)
addi $t0,5t0,1
addi Stil, 8Ei,d
b LOOP

NEXT: sb $t2,0(Stl)

School of Engineering

I USC Viterbi G

School of Engineering

REFERENCE

| USC\/itg;bi .
R-Type Instructions

* Format
6-bits 5-bits 5-bits 5-bits 5-bits 6-bits
’ opcode Irs (src1)|rt (scm)lrd (dest)l shamt | function ‘

—rs, rt, rd are 5-bit fields for register numbers

— shamt = shift amount and is used for shift
instructions indicating # of places to shift bits

— opcode and func identify actual operation

* Example:
— ADD S5, S24, S17
opcode rs rt rd shamt func
| 000000 [11000 | 10001 [00101 | 00000 | 100000 |
Arith. Inst. $24 $17 $5 unused ADD

I (S Viterbi (27
Logical Operations

* Logic operations on numbers means performing the
operation on each pair of bits
’ Initial Conditions: R[1]= 0xFO0, R[2] = 0x3C ‘

@ AND $2,$1,$2 —_— 0xFO — 1111 0000
AND 0x3C AND 0011 1100

R[2] = 0x30 — 0x30 «— 0011 0000

@ OR $2,%$1,%$2 — $F0 — 1111 0000
OR $3C OR 0011 1100

R[2] = OXFC — $FC «— 1111 1100
® XOR $2,$1,$2 — 0xFO — 1111 0000
XOR 0x3C XOR 0011 1100

R[2] = 0xCC — 0xCC «— 1100 1100

| USC\[it?Kb;r_
Logical Operations

* Logic operations on numbers means performing the
operation on each pair of bits
’ Initial Conditions: R[1]= 0xFO0, R[2] = 0x3C ‘

@ NOR $2,$1,$2 —_— OxFO — 1111 0000
NOR 0x3C NOR 0011 1100
R[2] = 0x03 — 0x03 «— 0000 0011

Bitwise NOT operation can be performed by NOR’ing
register with itself

NOR $2,$1,$1 — oxFO — 1111 0000
NOR 0xF0 NOR 1111 0000
R[2] = OxOF — OXOF «— 0000 1111

| USCVit,e.,r,bi @
Logical Operations

* Logic operations are often used for “bit” fiddling
— Change the value of 1-bit in a number w/o affecting other
bits
— Coperators: & =AND, | = OR, A = XOR, ~ = NOT
* Examples (Assume an 8-bit variable, v)
— Set the LSB to ‘0’ w/o affecting other bits
e v=v & Oxfe;
— Check if the MSB = ‘1’ regardless of other bit values
e if(v & 0x80) { code }
— Set the MSB to ‘1’ w/o affecting other bits
e v=v | 0x80;
— Flip the LS 4-bits w/o affecting other bits

e v=vA"QOx0f;

I USC Viterbi

hool of Engineering

Calculating Branch Displacements

* To calculate displacement you must know where
instructions are stored in memory (relative to each

other)

— Don’t worry, assembler finds displacement for you...you

just use the label

.text A ADDI
ADDI $8,50,S0 A + 0x4 ADDI
ADDI $7,50,10 A + 0x8 SLTI
LOOP: SLTI $1,$8,10 A +0xC BEQ
BEQ $1,$0,NEXT ‘ A+ 0x10 ADD
ADD 795 59, 5 A + 0x14 ADD
ADD $8,58,1
BEO $0, 0, LOOP A +0x18 BEQ
NEXT : - A + 0x1C

MIPS Assembly

1 word for
each
instruction

. USC Viterbi

School of Engineering

Calculating Displacements

* Disp. = [(AddTr. of Target) — (Addr. of Branch + 4)] / 4

— Constant 4 is due to the fact that by the time the branch executes the
PC will be pointing at the instruction after it (i.e. plus 4 bytes)

* Following slides will show displacement calculation for BEQ

$1,50,NEXT

.text A ADDI
ADDI $8,50,50 A + 0x4 ADDI
ADDI $7,50,10 A + 0x8 SLTI

LOOP: SLTI $1,5%8,10 A+ OxC BEQ 1 "‘;‘;’c"hf”
BEQ $1,$0, NEXT ‘ A +0x10 ADD instruction
ADD 79 B9, 5 A + 0x14 ADD
ADD $8,58,1
BEQ $0, $0, LOOP A + 0x18 BEQ

NEXT: ———n A +0x1C

MIPS Assembly

Calculating Displacements

* Disp. = [(Addr. of Target) — (Addr. of Branch + 4)] / 4

USC Viterbi

School of Engineering

* Disp. = (A+0x1C)— (A+0x0C+ 4) = 0x1C—-0x10 =0x0C/ 4

= 0x03
ro— A ADDI
ADDI $8,50,%0 A +0x4 ADDI
ADDI $7,50,10 A +0x8 SLTI
LOOP: SLTI $1,$8,10 A + 0xC BEQ
sra susovext | EEE NCov o
HLD §9,39,58 A +0x14 ADD
ADD 78,58, 1 A + 0x18 BEQ
BEQ $0,%0, LOOP o
e A +0x1C
MIPS
Assembly

1 word for
each
instruction

| USCVit,e.,rPi _
Calculating Displacements

* If the BEQ does in fact branch, it will add the displacement
({0x03, 00} = 0x000C) to the PC (A+0x10) and thus point to the
MOVE instruction (A+0x1C)

-text A ADDI
HODE - 58, 50, 50 A + 0x4 ADDI
AODT 87,8010 A+0x8 SLTI
LOOP: SLTI $1,$8,10
BEQ $1,5$0, NEXT PC A + 0xC BEQ
ADD $9,$9, $8 (after fetching —_g00c A +0x10 ADD
ADD $8,$8,1 BEQ) - A +0x14 ADD
BEQ $0,$0, LOOP A +0x18 BEQ
NEXT: -—-—— PC A +0x1C
(after adding

displacement)

MIPS Assembly

opcode rs rt immediate

BEQ $1,$0,0x03 | 000100 | 00001 | 00000 [0000 0000 0000 0011 |

| USCViterbi
Another Example

[(Addr. of Label) — (Addr. of Branch + 4)] / 4

(A+0x04) — (A+0x14 + 4) = 0x04 — 0x18

* Disp. =
* Disp. =
= OXFFEC / 4 = OxFFFB
.text
ADDI $8,$0,5$0
LOOP: SLTI $1,$8,10
BEQ $1,50,NEXT
ADD $9,5%9, 48
ADD $8,$8,1
BEQ $0, $0, LOOP
NEXT: ———-—

opcode

rs rt

)

A
A + 0x4
A + 0x8
A +0xC
A + 0x10
A + 0x14
A +0x18

immediate

BEQ $0,$0,0xFFFB [000100 [00000 [00000 |

1111 1111 1111 1011 ‘

School of Engineering

ADDI
SLTI
BEQ
ADD
ADD
BEQ

| USCVit)e;};{
Immediate Operands

¢ Most ALU instructions also have an immediate form to be used when one
operand is a constant value
* Syntax: ADDI Rs, Rt, imm

— Because immediates are limited to 16-bits, they must be extended to a full 32-
bits when used the by the processor

— Arithmetic instructions always sign-extend to a full 32-bits even for unsigned
instructions (addiu)

— Logical instructions always zero-extend to a full 32-bits

* Examples:
— ADDI
— ORI

$4, 95, -1 // R[4] = R[S] + OXFFFFFFFF
$10, $14, -4 // R[10] = R[14] | OXO000FFFC

Arithmetic Logical

ADDI ANDI Note: SUBI is unnecessary
ADDIU ORI since we can use ADDI with
SLTI XORI a negative immediate value

SLTIU

Loading an Immediate

* |f immediate (constant) 16-bits or less
— Use ORI or ADDI instruction with SO register

— Examples
« ADDI$2, 50,1

* 0

* |f immediate more than 16-bits

Rl $2, 50, 0xF110

//R[2]=0+1=1

//R[2] =0 | OxF110 = OxF110

USC Viterbi

School of Engineering

— Immediates limited to 16-bits so we must load constant
with a 2 instruction sequence using the special LUI (Load
Upper Immediate) instruction

— To load $2 with 0x12345678

* LUI

0

$2,0x1234

Rl $2,52,0x5678

R[2] 12340000 LUI

OR 00005678

R[2]

12345678 ORI

] USCVit,e.,rPi _
Return Addresses

* No single return address for a subroutine since AVG may be
called many times from many places in the code

* JAL always stores the address of the instruction after it
(i.e. PC of ‘jal’ + 4)

Assembly:
PC | 0040 0000 |—> 0x400000 Jjal AVG 0x400004 is the return address for this JAL
0x400004 add
? o 0x400028is the return address for this JAL
PC | 0040 0024 0x400024 jal AVG
0x400028 sub
/
0x400810
.
jr Sra

] USCVit?,r,bi ‘
Return Addresses

* A further complication hosembly:
is nested subroutines (a sa1 sum1
subroutine calling © | 0x:0001a
another subroutine) ©
* Main routine calls SUB1 | .
. SUB1 jal SUB2
which calls SUB2 D020 e em
e Must store both return'©
addresses but only one 15" -
. jr S$ra
Sra register

. USC Viterbi

School of Engineering

Dealing with Return Addresses

e Multiple return addresses Assembly:
can be spilled to memory
jal SUB1
— “Always” have enough
memory 0 0x40001A
©
¢ Note: Return addresses
will be accessed in reverse I
SUB1 jal SUB2
order as they are stored
. 0x400208 jr Sra
— 0x400208 is the second RA ®
to be stored but should be [3|
the first one used to return SUB2
— A stack is appropriate! jr Sra

USC Viterbi

School of Engineering

Stacks

e Stack is a data structure where data is
accessed in reverse order as it is stored
e Use a stack to store the return
addresses and other data
* System stack defined as growing
towards smaller addresses
— MARS starts stack at Ox7fffeffc
— Normal MIPS starts stack at 0x80000000

Stack Pointer
Always points to
top occupied
element of the
stack

0x7fffeffc is the base of
the system stack for
the MARS simulator

Ssp =

* Top of stack is accessed and maintained ’ Tfffeffc ’—v 0000 0000 | 7fffeffc
using Ssp=R[29] (stack pointer) 9010 2200 | RPN
— S$sp points at top occupied location of 0000 0000 | 7efrerfa
the stack
0000 0000 | 7fffeffo
0000 0000 | 7fffefec
0000 0000 | 7fffefes

Stack grows
towards lower

addresses

] USCVite_,fPi _
Stacks

e 2 Operations on stack

’7fffeffc ’—’ 0000 0000 | 7fffeffc
— Push: Put new data on top of Sop = w000 cooo |ETTTN
stack 0000 0000 | 7fffeff4

» Decrement Ssp Empty stack
* Write value to where $sp points 0000 0000 | 7fffeffc
— Pop: Retrieves and “removes” sp = 0040 0208 | 7£ffeffs
push 0000 0000 | 7fffeff4

data from top of stack

Push wil lue to th f
* Read value from where $sp ush will add a value to the top o

the stack
oints
P Tfffeffc ’—’ 0000 0000 | 7£ffeffc
* Increment Ssp to effectively py— 5 Dfffeffs
“delete” top value 0000 0000 | 7£ffeff4
Pop

Pop will remove the top value from
the stack

| USCVit?,r,bi ‘
Push Operation

Push return address
(e.g. 0x00400208)

$sp =

e Push: Put new data on
top of stack

— Decrement SP ’ 7;5&(; ’—’ 0000 0000 | 7fffeffc
. Jfffeffs —| 0040 0208 | 7Effeffs
* addi $Sp,$$p,—4 0000 0000 | 7fffeff4

* Always decrement by 4
since addresses are always
stored as words (32-bits)

— Write return address (Sra)
to where SP points

* sw Sra, 0(Ssp)

Decrement SP by 4 (since pushing
a word), then write value to where
$sp is now pointing

| USCVi,t,,eri
Pop Operation

ering

e Pop: Retrieves and

“removes” data from top Pop return address

of stack TEEfeffc — (0000000 | Terrartc
— Read value from where SP 0040 0208 | 7££fefes
points Ssp = 0000 0000 | 7fffeff4

] USCV1terb1
Pseudo-instructions

* “Macros” translated by the assembler to
instructions actually supported by the HW

» Simplifies writing code in assembly
* Example — LI (Load-immediate) pseudo-

e lw Sra, 0(Ssp)
— Increment SP to effectively
“delete” top value
e addi Ssp,Ssp,4

¢ Always increment by 4 when
popping addresses

Read value that SP points at then
increment SP (this effectively
deletes the value because the next
push will overwrite it)

Warning: Because the stack grows towards
lower addresses, when you push something
on the stack you subtract 4 from the SP and
when you pop, you add 4 to the SP.

instruction translated by assembler to 2
instruction sequence (LUl & ORI)

lui $2,
ori $2, $2,

1234
, 0x12345678 0x123

With pseudo-instruction After assembler...

0x5678

I USC Viterbi

Pseudo-instructions

School of Engineering

Pseudo-instruction Actual Assembly

NOT Rd,Rs NOR Rd,Rs,S0
NEG Rd,Rs SUB Rd,S0,Rs
LI Rt,immed. # LoadImmediate LUI Rt, {immediate[31:16], 16’b0}

ORI Rt, {16’b0, immediate[15:0]}
LA Rt label # Load Address LUl Rt, {immediate[31:16], 16’b0}

ORI Rt, {16’b0, immediate[15:0]}
BLT Rs,Rt,Label SLT S$1,Rs,Rt

BNE $1,50,Label

Note: Pseudoinstructions are assembler-dependent. See MARS Help for more details.

I USC Viterbi

School of Engineering
Credits

* These slides were derived from Gandhi
Puvvada’s EE 457 Class Notes

