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EE 457 Unit 3

Instruction Sets

3.2

INSTRUCTION SET OVERVIEW

With Focus on our Case Study: MIPS 

3.3

Instruction Sets

• Defines the software interface of the processor  and 

memory system

• Instruction set is the vocabulary the HW can 

understand and the SW is composed with

• Most assembly/machine instructions fall into one of 

three categories

– ____________________________

– ____________________________

– ____________________________

3.4

Instruction Set Architecture (ISA)

• 2 approaches

– CISC = Complex instruction set computer

• Large, rich vocabulary

• More work per instruction, slower clock cycle

– RISC = Reduced instruction set computer

• Small, basic, but sufficient vocabulary

• Less work per instruction, faster clock cycle

• Usually a simple and small set of instructions with regular format 

facilitates building faster processors



3.5

MIPS ISA

• RISC Style

• 32-bit internal / 32-bit external data size
– Registers and ALU are 32-bits wide

– Memory bus is logically 32-bits wide (though may be physically 
wider)

• Registers
– 32 General Purpose Registers (GPR’s)

• For integer and address values

• A few are used for specific tasks/values

– 32 Floating point registers

• Fixed size instructions 
– All instructions encoded as a single 32-bit word

– Three operand instruction format (dest, src1, src2)

– Load/store architecture (all data operands must be in registers and 
thus loaded from and stored to memory explicitly)

3.6

MIPS Programmer-Visible Registers

• General Purpose Registers (GPR’s)
– Hold data operands or addresses 

(pointers) to data stored in 
memory

• Special Purpose Registers
– PC: ______________(32-bits)

• Holds the _________ of the next 
___________ to be fetched from 
memory & executed

– HI: Hi-Half Reg. (32-bits)
• For MUL, holds 32 MSB’s of 

result.  For DIV, holds 32-bit 
remainder

– LO: Lo-Half Reg. (32-bits)
• For MUL, holds 32 LSB’s of 

result. For DIV, holds 32-bit 
quotient

MIPS Core

PC:

$0 - $31

32-bits

GPR’s

Special Purpose Registers

HI:

LO:

add

sub

0xA140

MEM

??

3.7

MIPS Programmer-Visible Registers

• Coprocessor 0 Registers
– Status Register

• Holds various control bits for 
processor modes, handling 
interrupts, etc. 

– Cause Register
• Holds information about exception 

(error) conditions

• Coprocessor 1 Registers
– Floating-point registers

– Can be used for single or 
double-precision (i.e. at least 
64-bits wides)

MIPS Core

GPR’s

$f0 - $f31

64 or more

Coprocessor 1 –
Floating-point Regs.

Coprocessor 0 –
Status & Control Regs

Status:

Cause:

PC:

Special Purpose Registers

HI:

LO:

$0 - $31

32-bits

3.8

MIPS GPR’s
DescriptionReg. NumberAssembler Name

Constant 0 value$0$zero

Assembler temporary$1$at

Procedure return values or expression 

evaluation

$2-$3$v0-$v1

Arguments/parameters$4-$7$a0-$a3

Temporaries$8-$15$t0-$t7

Saved Temporaries$16-$23$s0-$s7

Temporaries$24-$25$t8-$t9

Reserved for OS kernel$26-$27$k0-$k1

Global Pointer (Global and static 

variables/data)

$28$gp

Stack Pointer$29$sp

Frame Pointer$30$fp

Return address for current procedure$31$ra



3.9

General Instruction Format Issues

• Instructions must specify three things:

– _____________________________

– _____________________________

– _____________________________

• Example:   ADD  $3, $1, $2   ($3 = $1 + $2)

• Binary (machine-code) representation broken into 

fields of bits for each part

000000 00000

Arith. Unused

OpCode

100000

Add

FunctionShift Amount

00001 00010

$1 $2

Src. 1 Src. 2 Dest.

00011

$3

3.10

Historical Instruction Format Options

• Different instruction sets specify these differently

– 3 operand instruction set (MIPS, PPC)

• Usually all 3 operands in registers

• Format:  ADD  DST, SRC1, SRC2  (DST = SRC1 + SRC2)

– 2 operand instructions (Intel / Motorola 68K)

• Second operand doubles as source and destination

• Format:  ADD  SRC1, S2/D    (S2/D = SRC1 + S2/D)

– 1 operand instructions  (Low-End Embedded, Java Virtual Machine)

• Implicit operand to every instruction usually known as the 

______________________ register

• Format:  ADD  SRC1 (ACC = ACC + SRC1)

– 0 operand instructions / ___________architecture

• Push operands on a stack: PUSH X, PUSH Y

• ALU operation:  ADD         (Implicitly adds top two items on stack:  X + Y

& replaces them with the sum)

3.11

General Instruction Format Issues

• Consider the pros and cons of each format when performing the set of 
operations
– F = X + Y – Z

– G = A + B

• Simple embedded computers often use single operand format 
– Smaller data size (8-bit or 16-bit machines) means limited instruc. size

• Modern, high performance processors use 2- and 3-operand formats

Three-OperandTwo-OperandSingle-OperandStack Arch.
ADD        F,X,Y

SUB        F,F,Z

ADD        G,A,B

MOVE      F,X

ADD         F,Y

SUB         F,Z

MOVE     G,A

ADD        G,B

LOAD       X

(+) More natural 
program style

(+) Smaller instruction 
count

(+) Smaller size to 
encode each 
instruction 

3.12

Addressing Modes

• Addressing modes refers to how an instruction specifies 

_______________ the operands are

– Can be in a ______________, _____________, or in the machine code 

of the instruction (immediate value)

• MIPS: All data operands for arithmetic instructions must be in 

a register

– MIPS require a ________________ to read data from memory into a 

register



3.13

Operand Addressing

• Load/Store architecture 

– Load operands from memory into a register

– Perform operations on registers and put results 

back into other registers

– Store results back to memory

– Because ALU instructions only access registers, 

the CPU design can be simpler and thus faster

• Most modern processors follow this approach

• Older designs

– Register/Memory Architecture (Intel)

• 1 operand of a ALU instruc. can be in a reg. or mem. but 

the other must be in a register

– Memory/Memory Architecture (DEC VAX)

• Operands of ALU instruc. can be in any combination of

memory or registers

• ADD  addrDst, addrSrc1, addrSrc2

Proc.

1.) Load operands to proc. registers

Mem.

Proc.

2.) Proc. Performs operation using 
register values

Mem.

Proc.

3.) Store results back to memory 

Mem.

Load/Store Architecture

int z = x + y;

LOAD $8, X

LOAD $9, Y

ADD $8,$8,$9

STORE $8, Z

3.14

Load/Store Addressing

• When we load or store from/to memory how do we 

specify the address to use? Some processors provide 

sophisticated/exotic address modes (auto-increment, 

base+scaled index, etc.). But what is useful and sufficient?

• Option 1:  Direct Addressing (constant address only)

– Constant address:  LW $8, 0xA140

– __________________! 

– How would loop translate?

00

00

00

00

A[0] @ 0xA140

MEM

A[1] @ 0xA144

A[2] @ 0xA148

A[3] @ 0xA14C

// C code

i = 0, x = 0;

while(i < MAX-1){

x = x + A[i]+A[i+1];

i += 2;

}

Is there a way to
write the body of
the loop to get a 
different element 
(the i-th element) 

on each iteration?

____!!

// assembly 

// assume $8 should get A[i]

// start loop instruc.

LW $8, 0xa140

LW $9, 0xa144

// x += $8 + $9 

// end loop instruc.

3.15

Load/Store Addressing
• Option 2: Indirect Addressing 

– Use register contents as address

– Put address in a register:  $9 = 0xA140

– Ex:   LW $8, ($9)  // $8 = MEM[$9]

– ________________!

• Option 3: Base Addressing (Indirect w/ Offset)

– Use register content + a constant as the address in register

– Put address in a register:  $9 = 0xA140

– Example:  LW $8, 4 ($9)  // $8 = MEM[$9 + 4]

– ________________!

00

00

00

00

A[0] @ 0xA140

MEM

A[1] @ 0xA144

A[2] @ 0xA148

A[3] @ 0xA14C

i = 0, x = 0;

while(i < MAX-1){

x = x + A[i]+A[i+1];

i += 2;

}

O
p

ti
o

n
 2

O
p

ti
o

n
 3

// assume $8 should get A[i]

// assume $10 = 0xa140

// start loop instruc.

LW  $8,  ______

LW  $9,  ______

ADD $10, __________

// x += $8 and $9

// end loop instruc.

// assume $8 should get A[i]

// assume $10 = 0xa140

// start loop instruc.

LW  $8, _____

ADD $10, _______

LW  $9, _____

ADD $10, _______

// x += $8 and $9

// end loop instruc.

3.16

Immediate Addressing

• Suppose you want to increment a variable (register)

– $8 = $8 + 1

– Where do we get the 1 from?

• Could have compiler/loader ______________________

__________________ and then load it from memory

• Constant usage is very common, so instruction sets usually 

support a constant to be directly placed ______

____________________

• Known as immediate value because it is immediately available 

with the instruction machine code itself

• Example: ADDI  $8,$8,1

opcode=6 rs=5 rt=5 immed.=16I-Type

ADDI 8 8 1



3.17

MIPS Instruction Format

• CISC and other older architectures use a variable size instruction to match 

the varying operand specifications (memory addresses, etc.)

– 1 to 8 bytes

• MIPS uses a FIXED-length instruction as do most RISC-style instruction sets

– Every instruction is 32-bits (4-bytes)

– One format (field breakdown) is not possible to support all the different 

instructions

– MIPS supports 3 instruction formats: R-Type, I-Type, J-Type

opcode=6 rs=5 rt=5 rd=5 shamt=5 func=6

opcode=6 rs=5 rt=5 immed.=16

opcode=6 Jump address=26

R-Type

I-Type

J-Type

add $4,$20,$17

lw $8,4($9)
addi $5,$5,137
beq $2,$3,0x1200

j  0x40a1c0

3.18

MIPS INSTRUCTIONS

ALU (R-Type) Instructions

Memory Access, Branch, & Immediate (I-Type) Instructions

3.19

R-Type Instructions

• Format

– rs, rt, rd are 5-bit fields for register numbers

– shamt = shift amount and is used for shift 

instructions indicating # of places to shift bits

– opcode and func identify actual operation

• Example:

– ADD $5, $24, $17

opcode rs (src1)

6-bits 5-bits

rt (src2)

5-bits

rd (dest)

5-bits

shamt

5-bits

function

6-bits

000000 11000

opcode rs

10001

rt

00101

rd

00000

shamt

100000

func

Arith. Inst. $24 $17 $5 unused ADD

3.20

R-Type Arithmetic/Logic Instructions
NotesAssemblyC operator

ADD  Rd, Rs, Rt+

Order:  R[s] – R[t]. SUBU for unsignedSUB  Rd, Rs, Rt-

Result in HI/LO.  Use mfhi and mflo
instruction to move results

MULT   Rs, Rt
MULTU Rs, Rt

*

If multiply won’t overflow 32-bit resultMUL   Rd, Rs, Rt*

R[s] / R[t].  
Remainder in HI, quotient in LO

DIV   Rs, Rt
DIVU Rs, Rt

/ 

AND  Rd, Rs, Rt&

OR   Rd, Rs, Rt|

XOR  Rd, Rs, Rt^

Can be used for bitwise-NOT (~)NOR Rd, Rs, Rt~( | )

Shifts R[s] left by shamt (shift 
amount) or R[t] bits

SLL   Rd, Rs, shamt
SLLV  Rd, Rs, Rt

<< 

Shifts R[s] right by shamt or R[t] bits 
replicating sign bit to maintain sign

SRA   Rd, Rs, shamt
SRAV  Rd, Rs, Rt

>>  (signed)

Shifts R[s] left by shamt or R[t] bits 
shifting in 0’s

SRL   Rd, Rs, shamt
SRLV  Rd, Rs, Rt

>>  (unsigned)

IF(R[s] < R[t]) THEN R[d] = 1 
ELSE R[d] = 0

SLT Rd, Rs, Rt
SLTU Rd, Rs, Rt

<, >, <=, >=



3.21

Shift Operations

• Shifts data bits either left or right

• Bits shifted out and dropped on one side

• Usually (but not always) 0’s are shifted in on the other side 

• Shifting is equivalent to multiplying or dividing by powers of 2

• 2 kinds of shifts
– Logical shifts (used for unsigned numbers)

– Arithmetic shifts (used for signed numbers)

0 0 0 0 0 0 1 1

Right Shift by 2 bits:

Original Data

Shifted by 2 bits

0 0 0 0 1 1 0 0

0 0 0 0 1 0 1 0 0 0

Left Shift by 2 bits:

Original Data

Shifted by 2 bits

0 0 0 0 1 0 1 0

0 0
New bits shifted in… 0’s shifted in…

3.22

Logical Shift vs. Arithmetic Shift

• Logical Shift
– Use for unsigned or non-

numeric data

– Will always shift in 0’s 
whether it be a left or right 
shift

• Arithmetic Shift
– Use for signed data

– Left shift will shift in 0’s

– Right shift will sign extend 
(replicate the sign bit) rather 
than shift in 0’s 

• If negative number…stays 
negative by shifting in 1’s

• If positive…stays positive by 
shifting in 0’s

Right shift

Left shift

Right shift

Left shift

0

0

0

Copies of 
MSB are 
shifted in

3.23

Logical Shift

• 0’s shifted in

• Only use for operations on unsigned data

– Right shift by n-bits = Dividing by 2n

– Left shift by n-bits = Multiplying by 2n

0 0 ... 0 0 1 1

Logical Right Shift by 2 bits:

... 0 1 1 0 0 0 0 0

Logical Left Shift by 3 bits:

0’s shifted in… 0’s shifted in…

0 ... 0 1 1 0 0 = +12

= +3 = +96

0 x 0 0 0 0 0 0 0 C

0 x 0 0 0 0 0 0 0 3 0 x 0 0 0 0 0 0 6 0

3.24

Arithmetic Shift

• Use for operations on signed data

• Arithmetic Right Shift – replicate MSB
– Right shift by n-bits = Dividing by 2n

• Arithmetic Left Shift – shifts in 0’s
– Left shift by n-bits = Multiplying by 2n

1 1 1 ... 1 1 1

Arithmetic Right Shift by 2 bits:

1 ... 1 0 0 0 0

Arithmetic Left Shift by 2 bits:

MSB replicated and shifted in… 0’s shifted in…

1 1 ... 1 1 0 0 = -4

= -1 = -16

Notice if we shifted in 0’s (like a 

logical right shift) our result would 

be a positive number and the 

division wouldn’t work

0 x F F F F F F F C

0 x F F F F F F F F
Notice there is no difference between 

an arithmetic and logical left shift.  

We always shift in 0’s.

0 x F F F F F F F 0



3.25

Logical Shift Instructions

• SRL instruction – Shift Right Logical

• SLL instruction – Shift Left Logical

• Format:
– SxL rd, rt, shamt

– SxLV rd, rt, rs

• Notes:
– shamt limited to a 5-bit value (0-31)

– SxLV shifts data in rt by number of places specified in rs

• Examples
– SRL $5, $12, 7

– SLLV  $5, $12, $20

000000 00000

opcode rs

10001

rt

00101

rd

00111

shamt

000010

func

Arith. Inst. unused $12 $5 7 SRL

000000 10100 10001 00101 00000 000100

Arith. Inst. $20 $12 $5 unused SLLV

3.26

Arithmetic Shift Instructions

• SRA instruction – Shift Right Arithmetic

• Use SLL for arithmetic left shift

• Format:
– SRA rd, rt, shamt

– SRAV rd, rt, rs

• Notes:
– shamt limited to a 5-bit value (0-31)

– SRAV shifts data in rt by number of places specified in rs

• Examples
– SRA $5, $12, 7

– SRAV  $5, $12, $20

000000 00000

opcode rs

10001

rt

00101

rd

00111

shamt

000011

func

Arith. Inst. unused $12 $5 7 SRA

000000 10100 10001 00101 00000 000111

Arith. Inst. $20 $12 $5 unused SRAV

3.27

I-Type Instructions

• Format

– rs, rt are 5-bit fields for register numbers

– immediate is a 16-bit constant

– opcode identifies actual operation

• Example:

– ADDI $5, $24, 1

– LW $5, -8($3)

opcode rs (src1)

6-bits 5-bits

rt (src/dst)

5-bits

immediate

16-bits

001000 11000

opcode rs

00101

rt

ADDI $24 $5

0000 0000 0000 0001

immediate

20

010111 00011 00101

LW $3 $5

1111 1111 1111 1000

-8

3.28

Immediate Operands

• Most ALU instructions also have an immediate form to be used when one 

operand is a constant value

• Syntax:  ADDI  Rs, Rt, imm

– Because immediates are limited to 16-bits, they must be extended to a full 32-

bits when used the by the processor

– Arithmetic instructions always _________________ to a full 32-bits even for 

unsigned instructions (addiu)

– Logical instructions always __________________ to a full 32-bits

• Examples:  

– ADDI  $4, $5, -1 // R[4] = R[5] + ___________________

– ORI $10, $14, -4 // R[10] = R[14]  |  __________________

Logical  Arithmetic 

ANDIADDI

ORIADDIU

XORISLTI

SLTIU

Note:  _____ is unnecessary 
since we can use ADDI with 
a negative immediate value



3.29

MEMORY ORGANIZATION

Bytes, Half-words, Words, Double-words, yikes!

3.30

Address Bus and Memory Size

• Most processors are byte-addressable
– Every byte (8-bits) has a unique address

• ASCII characters = 1-byte

• Pixels in an image = 1-byte

– NOT bit-addressable

• The processor has an address bus (wires 
connecting the processor to the memory 
address) which is a specific size

• This address bus size determines the
______________ amount of memory
that can be interfaced
– Address of size `n` implies __ unique 

addresses

– Byte-addressable implies 1 byte per unique 
address

– Thus, ___ bytes of memory max

– 32-bit address bus => ________ address space

5A 0x00000000

13

F8

…

0x00000001

0x00000002

Logical Byte-Oriented View of Mem.

Proc. Mem.

32

32

A

D

8E

D4

0xfffffffe

0xffffffff

3.31

MIPS Data Sizes

Integer

• 3 Sizes Defined

– Byte (B) 

• 8-bits

– Halfword (H) 

• 16-bits = 2 bytes

– Word (W)

• 32-bits = 4 bytes

Floating Point

• 3 Sizes Defined

– Single (S)

• 32-bits = 4 bytes

– Double (D) 

• 64-bits = 8 bytes

• (For a 32-bit data bus, a 

double would be accessed 

from memory in 2 reads)

In MIPS, size matters to memory access instructions, but ALU 

instructions always perform operation on full 32-bit register 

values

3.32

MIPS Memory Data Organization

• We can logically picture memory in 
the units (sizes) that we actually 
access them 

• We can access 1-byte at a time but
the data bus allows for wider access 
(32-bits)

• Logical view of memory arranged in 
rows of largest access size (word)
– Still with separate addresses for each 

byte

– Can get word, halfwords, or bytes

5A 0x000000

13

F8

…

0x000001

0x000002

Logical Byte-Oriented View of Mem.

Proc. Mem.

32

32

A

D

5A137C

2933

… 0x000008

0x000004

0x000000

Logical Word-Oriented View

F8

AD8E



3.33

Memory & Word Size

• If each byte has its own address, 

which address should we use for half-

words (2-byte chunks) or words (4-

byte chunks)?

– Start address = Smallest byte address 

within the larger chunk

• If we provide the start address (say 

0x4000) to memory, how does it 

know whether we want the byte, 

halfword, or word at address 0x4000

– Other control signals indicate how many 

bytes to access (1=byte, 2=half, or 

4=word)

Byte 1Byte 2Byte 3 Byte 0

Halfword 0Halfword 2

Word 0

…

…

0x4000

0x4001

0x4002

0x4003

0x4004

0x4005

0x4006

0x4007

Word 
0x4000

Word 
0x4004

Byte 
Address

3.34

MIPS Memory Alignment Limitations

• Bytes can start at any address

• Halfwords must start on an 
__________ address

• Words must start on an address 
that is a ___________

• Examples:
– Word @ A18C –

– Halfword @ FFE6 –

– Word @ A18E –

– Halfword @ FFE5 –

5A13F87C

…

00A18C

Addr

Data

Control

00FFE4

Valid Accesses

Invalid Accesses

C1EA 4B29

F87C

…

00A18C

Addr

Data

Control

00FFE4C1 4B29EA

49CF

5A13

BD52

3.35

Little- vs. Big-Endian Organization

• Refers to ordering of bytes w/in a larger 

chunk

• Big-Endian

– Byte ‘0’ is at the ______________ of a 

word

– PPC, Sparc

• Little-Endian

– Byte ‘0’ is at the ______________ of a 

word

– Intel, ___________

• MIPS can be configured either way

• Issues arise when moving smaller pieces 

within a large chunk across different 

endian-systems (e.g. TCP/IP transfer from 

little-endian machine to big-endian 

machine)

Word 

Address7       015     823   1631  24

8

4

0

Word 

Address7       015     823   1631  24

8

4

0

Little-Endian

Big-Endian

78563412
Little-

Endian

Big-Endian

3 2 1 0

0 1 2 3

Network Transfer
(copy 0=>0, 1=>1, etc.)

3.36

LOAD/STORE INSTRUCTIONS

Getting data in and out of the processor



3.37

Memory & Data Size

Byte operations only access the byte 
at the specified address

N N-1N+1N+2

(Assume start address = N)

Halfword operations access the 
2-bytes starting at the specified address

NN+1N+2N+3

Word operations access the 
4-bytes starting at the specified address

NN+1N+2N+3

• Little-endian memory can be thought of as right justified

• Always provide the ___________________ of the desired data

• Size is explicitly defined by the instruction used

• Memory Access Rules

– Halfword or Word access must start on an address that is a multiple of 
that data size (i.e. half = multiple of 2, word = multiple of 4)

Byte

31 0

Half

15

Word

31 0

LB

LH

LW

3.38

Memory Read Instructions (Signed)

LB (Load Byte)
Provide address of 

desired byte

LH (Load Half)
Provide address of 

starting byte

LW (Load Word)
Provide address of 

starting byte

Sign Extend

31 0

Byte

7

GPR

Sign Extend

31 0

Half

15

Word

31 0

If address = 0x02
Reg. = ______________

If address = 0x00
Reg. = _____________

If address = 0x00
Reg. = _____________

5A 13 7C

… 000004

000000F8

5A 13 7C

… 000004

000000F8

5A 13 7C

… 000004

000000F8

Memory

3.39

Memory Read Instructions (Unsigned)

LBU (Load Byte)
Provide address of 

desired byte

LHU (Load Half)
Provide address of 

starting byte

LW (Load Word)
Provide address of 

starting byte

Zero Extend

31 0

Byte

7

GPR

Zero Extend

31 0

Half

15

Word

31 0

If address = 0x01
Reg. = ______________

If address = 0x00
Reg. _______________

If address = 0x00
Reg. = _______________

Memory

5A 13 7C

… 000004

000000F8

5A 13 7C

… 000004

000000F8

5A 13 7C

… 000004

000000F8

3.40

Memory Write Instructions

SB (Store Byte)
Provide address of 

desired byte

SH (Store Half)
Provide address of 

starting byte

SW (Store Word)
Provide address of 

starting byte

if address = 0x02

if address = 0x02

if address = 0x00

Memory

31 0

Byte

7

GPR

31 0

Half

15

Word

31 0

Reg. = 0x12345678

Reg. = 0x12345678

Reg. = 0x12345678

5A 78 7C

… 000004

000000F8

56 78 7C

… 000004

000000F8

12 34 78

… 000004

00000056



3.41

Load Format (LW,LH,LB)

• LW  Rt, offset(Rs)

– Rt = Destination register

– offset(Rs) = Address of desired data

– RTL:  R[t] = M[ offset + R[s] ]

– offset limited to 16-bit signed number

• Examples

– LW $2, 0x40($3)   // R[2] = _______________

– LBU  $2, -1($4) // R[2] = _______________

– LH  $2, 0xFFFC($4) // R[2] = _______________

5A12C5B7

0x002048

134982FE

F8BE97CD

0x002044

0x002040

00002000R[3]

0000204CR[4]

old val.R[2]

3.42

More LOAD Examples

• Examples

– LB     $2,0x45($3) // R[2] = _______________

– LH     $2,-6($4) // R[2] = _______________

– LHU  $2, -2($4) // R[2] = _______________

5A12C5B7

0x002048

134982FE

F8BE97CD

0x002044

0x002040

00002000R[3]

0000204CR[4]

old val.R[2]

3.43

Store Format (SW,SH,SB)

• SW  Rt, offset(Rs)

– Rt = Source register

– offset(Rs) = Address to store data

– RTL:  M[ offset + R[s] ] = R[t]

– offset limited to 16-bit signed number

• Examples

– SW $2, 0x40($3)   

– SB  $2, -5($4) 

– SH  $2, 0xFFFE($4) 

00002000R[3]

0000204CR[4]

123489ABR[2]

123489AB

0x002048

AB4982FE

89AB97CD

0x002044

0x002040

3.44

Loading an Immediate

• If immediate (constant) 16-bits or less

– Use ORI or ADDI instruction with $0 register

– Examples

• ADDI $2, $0, -1 // R[2] = 0 - 1 = -1

• ORI $2, $0, 0xF110 // R[2] = 0 | 0xF110 = 0xF110

• If immediate more than 16-bits

– Immediates limited to 16-bits so we must load constant 

with a 2 instruction sequence using the special LUI (Load 

Upper Immediate) instruction

– To load $2 with 0x12345678

• __________________

• __________________

R[2]

12345678R[2]
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BRANCH INSTRUCTIONS

Program Flow Control

3.46

Instruction Boundaries

• If the current instruction is at address 0xA140, what 

address does the next instruction occupy?

– Each instruction is 32-bits = 4-bytes

– The next instruction is located @ 0xA144

• We see then that instructions always lie on an addresses 

that are multiples of 4

• Fact 1: The PC register in the processor stores the 

address of the next instruction to be fetched

• Fact 2: Registers are needed when we want to store 

variable bits

• Fact 3: Addresses are 32-bits in MIPS

• Do we need a 32-bit register for the PC?

add

sub

0xA140

MEM

0xA144

XX00 = 00000

XX04 = ______

XX08 = ______

XX0c = ______

XX10 = ______

Multiples 
of 4 in hex 
and binary

bne0xA148

3.47

Branch Instructions

• Conditional Branches

– Branches only if a particular condition is true

– Fundamental Instrucs.: BEQ (if equal), BNE (not equal)

– Syntax:  BNE/BEQ Rs, Rt, label

• Compares Rs, Rt and if EQ/NE, branch to label, else continue

• Unconditional Branches

– Always branches to a new location in the code

– Instruction:  __________________________

– Pseudo-instruction:  B label

label: ----
----
----
b   label
----

----
beq $2,$3,label
----
----

label: ----

!=

=

3.48

Two-Operand Compare & Branches

• Two-operand comparison is accomplished 

using the SLT/SLTI/SLTU (Set If Less-than) 

instruction

– Syntax:  SLT Rd,Rs,Rt or SLT Rd,Rs,imm

• If Rs < Rt then Rd = 1, else Rd = 0

– Use appropriate BNE/BEQ instruction to infer 

relationship
BNE/BEQSLTBranch if…

____ $1,$0,labelSLT $1,$2,$3$2 < $3

____ $1,$0,labelSLT $1,$3,$2$2 ≤ $3

____ $1,$0,labelSLT $1,$3,$2$2 > $3

____ $1,$0,labelSLT $1,$2,$3$2 ≥ $3
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Branch Machine Code Format

• Branch instructions use the I-Type Format

• Operation:  PC = PC + {disp., 2'b00}

• Displacement notes

– Displacement is the value that should be 
added to the PC so that it now points to the 
desired branch location

– Processor appends two 0’s to end of disp. 
since all instructions are 4-byte words

• Essentially, displacement is in units of words

opcode rs (src1)

6-bits 5-bits

rt (src2)

5-bits

Signed displacement

16-bits

add

sub

0xA140

MEM

0xA144

bne0xA148

or0xA14c

lw0xA150

beq0xA154

3.50

Range of Branching

• How far away can you branch?

– Largest positive 16-bit number: 0x_______

– Largest negative 16-bit number: 0x_______

– 16-bit range =>  ±32KB

– Displacement is 16-bits concatenated with two 0's

– 18-bit range =>  _______

3.51

Jump Instructions

• Instruction format: J-Type

• Jumps provide method of 

branching beyond range of 

16-bit displacement

• Syntax:  J  label/address

– Operation:  PC = address

– Address is appended with 

two 0’s just like branch 

displacement yielding a 28-

bit address with upper 4-bits 

of PC unaffected

opcode

6-bits

Jump address

26-bits

Old PC

00Jump address
Old PC 
[31:28]

PC before execution of Jump

New PC after execution of Jump`

Sample Jump instruction

4-bits 26-bits 2-bits

0x1000001

0x8

0x84000004

3.52

Jump Register

• ‘jr’ instruction can be used if a full 32-bit jump 

is needed or variable jump address is needed

• Syntax:  JR  rs

– Operation: ______ = R[s]

– R-Type machine code format

• Usage:  

– Can load rs with an immediate address

– Can calculate rs for a variable jump (class member 

functions, switch statements, etc.)



3.53

SUPPORT FOR SUBROUTINES

3.54

Implementing Subroutines

• To implement subroutines in assembly we 
need to be able to:

– Branch to the subroutine code (JAL / JALR)

– Know where to return to when we finish the 
subroutine (JR $ra)

...

res = avg(x,4);

...

int avg(int a, int b)

{ ... }

C code: Assembly:

.text

...

jal  AVG

...

AVG: ...

jr   $ra

3.55

Jumping to a Subroutine

• JAL instruction (Jump And Link)

– Format:  jal  Address/Label

– Similar to jump where we load an address into the PC [e.g.
PC = addr]

• Same limitations (26-bit address) as jump instruction

• Addr is usually specified by a label

• JALR instruction (Jump And Link Register)

– Format:  jalr $rs

– Jumps to address specified by $rs

• In addition to jumping, JAL/JALR stores the 
_________ into R[31]=$ra (= return address) to be 
used as a link to return to after the subroutine 
completes

3.56

Jumping to a Subroutine

Assembly:

0x400000  jal AVG

0x400004  add

...

AVG: = 0x400810  

add

...

jr $ra

1

jal will cause the program to 
jump to the label AVG and 
store the return address in 
$ra/$31.

• Use the JAL instruction to jump execution to 
the subroutine and leave a link to the 
following instruction

0040 0000

PC before exec. of jal:

0000 0000

$ra before exec. of jal:

PC after exec. of jal:

$ra after exec. of jal:



3.57

0x400000  jal AVG

0x400004  add

...

AVG: = 0x400810  

add

...

0x4008ec  jr $ra

Returning from a Subroutine

• Use a JR with the $ra register to return to the 
instruction after the JAL that called this 
subroutine

Go back to where we left 
off using the return 
address stored by JAL

2

1

jal will cause the program 
to jump to the label AVG 
and store the return 
address in $ra/$31.

0040 08ec

PC before exec. of jr:

0040 0004

$ra before exec. of jr:

PC after exec. of jr:

3.58

Dealing with Return Addresses

• Multiple return addresses 

can be spilled to memory

– “Always” have enough 

memory

• Note:  Return addresses 

will be accessed in reverse 

order as they are stored

– 0x400208 is the second RA 

to be stored but should be 

the first one used to return

– A stack/LIFO is appropriate!

Assembly:

...

jal SUB1

0x40001A   ...

SUB1       jal SUB2

0x400208   jr $ra

SUB2       ...

jr $ra

1

2

3

4

3.59

CPU

Subroutines & Stacks

• Stack is a reserved area in memory

• Subroutines require a link (________ 
address) to be saved on the stack

• Processors usually dedicate a register to 
point to the top of the stack ($sp=R[29] 
= stack pointer)

0000 0000

0000 0000

0000 0000

0000 0000

7fffeff8$sp

0040 0208

0000 0000 7fffeffc

7fffeff8

7fffeff4

7fffeff0

7fffefec

7fffefe8

Stack grows 
towards lower 

addresses

Memory (RAM)

System / Kernel 
Memory

I/O

…

Code

Globals

0

…

Heap

fffffffc

Address

…

Stack

80000000Stack grows 
towards lower 

addresses

3.60

Subroutines and the Stack

...

jal SUB1

0x40001A   ...

SUB1  addi $sp,$sp,-4

sw $ra,0($sp)

jal SUB2

0x400208   lw $ra,0($sp)

addi $sp,$sp,4

jr $ra

SUB2   addi $sp,$sp,-4

sw $ra,0($sp)

...

lw $ra,0($sp)

addi $sp,$sp,4

jr $ra

$sp = 0000 0000 7fffeffc

7fffeff8

7fffeff4

$sp = 0000 0000 7fffeffc

7fffeff8

7fffeff4

$sp = 0000 0000 7fffeffc

7fffeff8

7fffeff4

1

1

2

3
2

3

$ra =

$ra =

$ra =

$sp = 0000 0000 7fffeffc

7fffeff8

7fffeff4

0

$ra =

0
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Stack Facts

• Stack grows in the 

direction of:

– Decreasing Addresses

– Increasing address

• Stack is a (LIFO / FIFO) 

data structure. 

• Stack Pointer points to 

the (top/bottom) of the 

stack

• Stack Pointer Register 

points to the

– Top-most FILLED location

– Next FREE location 

above the top-most 

filled location

3.62

Stack Facts

• When you push do 

you…

– Increment the SP

– Decrement the SP

• When you push do you 

– First update the SP and 

then place data 

– Place data then update 

SP

• When you pop, first you 

__________ then you 

__________

Recall:
• The stack grows downward
• The stack pointer points at the top OCCUPIED element on the stack.

3.63

Stack Balancing

• Stack shall be balanced:

– _________ number of push and pops 

– Pops shall be performed in ____________ order 

as corresponding pushes

3.64

Subroutines Calling Subroutines

• Nested subroutines make the stack 

(grow / shrink) because more 

(stack pointer values / return addresses) are 

stored on the stack

• Recursive subroutines make the stack 

(grow / shrink)
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Subroutines and the Stack

• When writing native assembly, programmer must add code to 

manage return addresses and the stack

• At the beginning of a routine (PREAMBLE)

– Push $ra (produced by ‘jal’) onto the stack

addi $sp,$sp,-4

sw   $ra,0($sp)

• Execute subroutine which can now freely call other routines

• At the end of a routine (POSTAMBLE)

– Pop/restore $ra from the stack

lw   $ra,0($sp)

addi $sp,$sp,4

jr   $ra

3.66

Translating HLL to Assembly

• HLL variables are simply locations in memory
– A variable name really translates to an address in assembly

NotesAssemblyC operator

Assume x @ 0x10000004
& y @ 0x10000008
& z @ 0x1000000C

LUI $8, 0x1000
ORI $8, $8, 0x0004
LW  $9, 4($8)
LW  $10, 8($8)
ADD $9,$9,$10
SW $9, 0($8)

int x,y,z;
…
x = y + z;

Assume array ‘a’ starts @ 
0x1000000C

LUI $8, 0x1000
ORI $8, $8, 0x000C
LB $9, 1($8)
ADDI $9,$9,-1
SB $9,1($8)

char  a[100];
…
a[1]--;

3.67

Translating HLL to Assembly

NotesAssemblyC operator

Assume dat @ 0x10000010
& x @ 0x10000020

LUI $8, 0x1000
ORI $8, $8, 0x0010
LW  $9, 0($8)
LW  $10, 4($8)
ADD $9,$9,$10
SW $9, 16($8)

int dat[4],x;
…
x = dat[0];
x += dat[1];

Assume y @ 0x10000010 & 
z @ 0x10000014

LUI $8, 0x1000
ORI $8, $8, 0x0010
LW $9, 0($8)
SRL $9, $9, 2
SW $9, 0($8)
LH $9, 4($8)
SLA $9, $9, 3
SH $9, 4($8)

unsigned int y;
short z;
y = y / 4;
z = z << 3;

3.68

Translating HLL to Assembly

AssemblyC operator

DAT:   .space 16
X:       .long     0

LA   $8, DAT
ADDI $9,$0,4
ADD  $10,$0,$0

LP:      LW  $11,0($8)
ADD $10,$10,$11
ADDI $8,$8,4
ADDI $9,$9,-1
BNE  $9,$0,LP
LA    $8,X 
SW   $10,0($8)

int dat[4],x=0;
for(i=0;i<4;i++)

x += dat[i];
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Branch Example 1

if A > B    (&A in $t0)

A = A + B (&B in $t1)

else

A = 1

.text

LW $t2,0($t0)

LW $t3,0($t1)

SLT  $1,$t3,$t2

BEQ $1,$0,ELSE

ADD $t2,$t2,$t3

B NEXT

ELSE:  ADDI $t2,$0,1

NEXT:  SW $t2,0($t0)

----

C Code

MIPS
Assembly

Could use pseudo-inst.
“BLE $4,$5,ELSE”

This branch skips over 
the “else” portion. This 
is a pseudo-instruction 
and is translated to 
BEQ $0,$0,next

3.70

Branch Example 2

for(i=0;i < 10;i++) ($t0=i)

j = j + i;        ($t1=j)

.text

ADDI $t0,$0,$0

LOOP:  SLTI $1,$t0,10

BEQ  $1,$0,NEXT

ADD  $t1,$t1,$t0

ADD  $t0,$t0,1

B     LOOP

NEXT:  ----

C Code

MIPS
Assembly

Branches if i is not 
less than 10

Loops back to the 
comparison check

3.71

Another Branch Example

int dat[10];

for(i=0;i < 10;i++) ($t1=i)

data[i] = 5;      

.data

dat: .space  40

.text

la      $t0,dat

addi    $t1,$zero,10

addi    $t2,$zero,5

LOOP:  sw      $t2,0($t0)

addi    $t0,$t0,4

addi    $t1,$t1,-1

bnez    $t1,$zero,LOOP

NEXT:  ----

C Code

MIPS
Assembly

3.72

A Final Example
char A[] = “hello world”;

char B[50];

// strcpy(B,A);

i=0;

while(A[i] != 0){

B[i] = A[i]; i++;

}

B[i] = 0;

.data

A:     .asciiz “hello world”

B:     .space  50

.text

la      $t0,A

la      $t1,B

LOOP:  lb      $t2,0($t0)

beq     $t2,$zero,NEXT

sb $t2,0($t1)

addi    $t0,$t0,1

addi    $t1,$t1,1

b LOOP

NEXT:  sb      $t2,0($t1)

C Code

MIPS 
Assembly
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REFERENCE

3.74

R-Type Instructions

• Format

– rs, rt, rd are 5-bit fields for register numbers

– shamt = shift amount and is used for shift 

instructions indicating # of places to shift bits

– opcode and func identify actual operation

• Example:

– ADD $5, $24, $17

opcode rs (src1)

6-bits 5-bits

rt (src2)

5-bits

rd (dest)

5-bits

shamt

5-bits

function

6-bits

000000 11000

opcode rs

10001

rt

00101

rd

00000

shamt

100000

func

Arith. Inst. $24 $17 $5 unused ADD

3.75

Logical Operations

• Logic operations on numbers means performing the 

operation on each pair of bits

Initial Conditions:  R[1]= 0xF0, R[2] = 0x3C

AND   $2,$1,$2

R[2] = 0x30

0xF0
AND 0x3C

0x30

1111 0000
AND 0011 1100

0011 0000

OR  $2,$1,$2

R[2] = 0xFC

$F0
OR $3C

$FC

1111 0000
OR 0011 1100

1111 1100

XOR  $2,$1,$2

R[2] = 0xCC

0xF0
XOR 0x3C

0xCC

1111 0000
XOR 0011 1100

1100 1100

1

2

3

3.76

Logical Operations

• Logic operations on numbers means performing the 

operation on each pair of bits

Initial Conditions:  R[1]= 0xF0, R[2] = 0x3C

NOR $2,$1,$2

R[2] = 0x03

0xF0
NOR 0x3C

0x03

1111 0000
NOR 0011 1100

0000 0011

4

NOR $2,$1,$1

R[2] = 0x0F

0xF0
NOR 0xF0

0x0F

1111 0000
NOR 1111 0000

0000 1111

Bitwise NOT operation can be performed by NOR’ing 

register with itself
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Logical Operations

• Logic operations are often used for “bit” fiddling

– Change the value of 1-bit in a number w/o affecting other 
bits

– C operators: & = AND, | = OR, ^ = XOR, ~ = NOT

• Examples (Assume an 8-bit variable, v)

– Set the LSB to ‘0’ w/o affecting other bits
• v = v & 0xfe;

– Check if the MSB = ‘1’ regardless of other bit values
• if( v & 0x80) { code }

– Set the MSB to ‘1’ w/o affecting other bits
• v = v | 0x80;

– Flip the LS 4-bits w/o affecting other bits
• v = v ^ 0x0f;

3.78

Calculating Branch Displacements

• To calculate displacement you must know where 

instructions are stored in memory (relative to each 

other)

– Don’t worry, assembler finds displacement for you…you 

just use the label

MIPS Assembly

SLTI

ADDI

ADDI

ADD

BEQ

ADD

BEQ

----

A

1 word for 
each 

instruction

.text

ADDI $8,$0,$0

ADDI  $7,$0,10

LOOP:  SLTI $1,$8,10

BEQ  $1,$0,NEXT

ADD  $9,$9,$8

ADD  $8,$8,1

BEQ $0,$0,LOOP

NEXT:  ----

A + 0x4

A + 0x8

A + 0xC

A + 0x10

A + 0x14

A + 0x18

A + 0x1C

3.79

Calculating Displacements

• Disp. = [(Addr. of Target) – (Addr. of Branch + 4)] / 4

– Constant 4 is due to the fact that by the time the branch executes the 

PC will be pointing at the instruction after it (i.e. plus 4 bytes)

• Following slides will show displacement calculation for BEQ 

$1,$0,NEXT

MIPS Assembly

SLTI

ADDI

ADDI

ADD

BEQ

ADD

BEQ

----

A

1 word for 
each 

instruction

.text

ADDI $8,$0,$0

ADDI  $7,$0,10

LOOP:  SLTI $1,$8,10

BEQ  $1,$0,NEXT

ADD  $9,$9,$8

ADD  $8,$8,1

BEQ $0,$0,LOOP

NEXT:  ----

A + 0x4

A + 0x8

A + 0xC

A + 0x10

A + 0x14

A + 0x18

A + 0x1C

3.80

Calculating Displacements

• Disp. = [(Addr. of Target) – (Addr. of Branch + 4)] / 4

• Disp. =  (A+0x1C) – (A+0x0C+ 4) = 0x1C – 0x10 = 0x0C / 4

=  0x03

MIPS
Assembly

SLTI

ADDI

ADDI

ADD

BEQ

ADD

BEQ

----

A

1 word for 
each 

instruction

.text

ADDI $8,$0,$0

ADDI  $7,$0,10

LOOP:  SLTI $1,$8,10

BEQ  $1,$0,NEXT

ADD  $9,$9,$8

ADD  $8,$8,1

BEQ $0,$0,LOOP

NEXT:  ----

A + 0x4

A + 0x8

A + 0xC

A + 0x10

A + 0x14

A + 0x18

A + 0x1C
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Calculating Displacements

• If the BEQ does in fact branch, it will add the displacement 

({0x03, 00} = 0x000C) to the PC (A+0x10) and thus point to the 

MOVE instruction (A+0x1C)

A + 0x10

+ 000C

A + 0x1CPC

PC

(after fetching 
BEQ)

(after adding 
displacement)MIPS Assembly

.text

ADDI $8,$0,$0

ADDI  $7,$0,10

LOOP:  SLTI $1,$8,10

BEQ  $1,$0,NEXT

ADD  $9,$9,$8

ADD  $8,$8,1

BEQ $0,$0,LOOP

NEXT:  ----

SLTI

ADDI

ADDI

ADD

BEQ

ADD

BEQ

----

A

A + 0x4

A + 0x8

A + 0xC

A + 0x10

A + 0x14

A + 0x18

A + 0x1C

000100 00001

opcode rs

00000

rt

0000 0000 0000 0011

immediate

BEQ $1,$0,0x03

3.82

Another Example

• Disp. = [(Addr. of Label) – (Addr. of Branch + 4)] / 4

• Disp. =  (A+0x04) – (A+0x14 + 4) = 0x04 – 0x18 

= 0xFFEC / 4 = 0xFFFB

.text

ADDI $8,$0,$0

LOOP:  SLTI $1,$8,10

BEQ  $1,$0,NEXT

ADD  $9,$9,$8

ADD  $8,$8,1

BEQ $0,$0,LOOP

NEXT:  ----

SLTI

ADDI

ADD

BEQ

ADD

BEQ

----

A

A + 0x4

A + 0x8

A + 0xC

A + 0x10

A + 0x14

A + 0x18

000100 00000

opcode rs

00000

rt

1111 1111 1111 1011

immediate

BEQ $0,$0,0xFFFB

3.83

Immediate Operands

• Most ALU instructions also have an immediate form to be used when one 

operand is a constant value

• Syntax:  ADDI  Rs, Rt, imm

– Because immediates are limited to 16-bits, they must be extended to a full 32-

bits when used the by the processor

– Arithmetic instructions always sign-extend to a full 32-bits even for unsigned 

instructions (addiu)

– Logical instructions always zero-extend to a full 32-bits

• Examples:  

– ADDI  $4, $5, -1 // R[4] = R[5] + 0xFFFFFFFF

– ORI $10, $14, -4 // R[10] = R[14]  |  0x0000FFFC

LogicalArithmetic

ANDIADDI

ORIADDIU

XORISLTI

SLTIU

Note:  SUBI is unnecessary 
since we can use ADDI with 
a negative immediate value

3.84

Loading an Immediate

• If immediate (constant) 16-bits or less

– Use ORI or ADDI instruction with $0 register

– Examples

• ADDI $2, $0, 1 // R[2] = 0 + 1 = 1

• ORI $2, $0, 0xF110 // R[2] = 0 | 0xF110 = 0xF110

• If immediate more than 16-bits

– Immediates limited to 16-bits so we must load constant 

with a 2 instruction sequence using the special LUI (Load 

Upper Immediate) instruction

– To load $2 with 0x12345678

• LUI $2,0x1234

• ORI $2,$2,0x5678

12340000R[2]

12345678R[2]

OR 00005678

LUI

ORI
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Return Addresses

• No single return address for a subroutine since AVG may be 

called many times from many places in the code

• JAL always stores the address of the instruction after it 

(i.e. PC of ‘jal’ + 4)

Assembly:

0x400000  jal AVG

0x400004  add

...

0x400024  jal AVG

0x400028  sub

...

0x400810  

AVG ...

jr $ra

0x400004 is the return address for this JAL

0x400028 is the return address for this JAL

0040 0000PC

0040 0024PC

3.86

Return Addresses

• A further complication 
is nested subroutines (a 
subroutine calling 
another subroutine)

• Main routine calls SUB1 
which calls SUB2

• Must store both return 
addresses but only one 
$ra register

Assembly:

...

jal SUB1

0x40001A   ...

SUB1       jal SUB2

0x400208   jr $ra

SUB2       ...

jr $ra

1

2

3

4

3.87

Dealing with Return Addresses

• Multiple return addresses 

can be spilled to memory

– “Always” have enough 

memory

• Note:  Return addresses 

will be accessed in reverse 

order as they are stored

– 0x400208 is the second RA 

to be stored but should be 

the first one used to return

– A stack is appropriate!

Assembly:

...

jal SUB1

0x40001A   ...

SUB1       jal SUB2

0x400208   jr $ra

SUB2       ...

jr $ra

1

2

3

4
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Stacks

• Stack is a data structure where data is 
accessed in reverse order as it is stored

• Use a stack to store the return 
addresses and other data

• System stack defined as growing 
towards smaller addresses

– MARS starts stack at 0x7fffeffc

– Normal MIPS starts stack at 0x80000000

• Top of stack is accessed and maintained  
using $sp=R[29] (stack pointer)

– $sp points at top occupied location of 
the stack

0000 0000

0000 0000

0000 0000

0000 0000

7fffeffc

$sp =

0040 0208

0000 0000

Stack Pointer

Always points to 

top occupied 

element of the 

stack

0x7fffeffc is the base of 
the system stack for 
the MARS simulator

7fffeffc

7fffeff8

7fffeff4

7fffeff0

7fffefec

7fffefe8

Stack grows 
towards lower 
addresses
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Stacks

• 2 Operations on stack

– Push: Put new data on top of 

stack

• Decrement $sp

• Write value to where $sp points

– Pop: Retrieves and “removes” 

data from top of stack 

• Read value from where $sp 

points

• Increment $sp to effectively 

“delete” top value

Push will add a value to the top of 
the stack

Pop will remove the top value from 
the stack

Empty stack

Push

0000 0000

7fffeffc

$sp = 0000 0000

0000 0000 7fffeffc

7fffeff8

7fffeff4

0000 0000

7fffeff8

$sp = 0040 0208

0000 0000 7fffeffc

7fffeff8

7fffeff4

Pop
0000 0000

7fffeffc

$sp = 0040 0208

7fffeffc

7fffeff8

7fffeff4

0000 0000
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Push Operation

• Push: Put new data on 
top of stack

– Decrement SP

• addi  $sp,$sp,-4

• Always decrement by 4 
since addresses are always 
stored as words (32-bits)

– Write return address ($ra) 
to where SP points

• sw   $ra, 0($sp)

Push return address 
(e.g. 0x00400208)

Decrement SP by 4 (since pushing 
a word), then write value to where 
$sp is now pointing

0000 0000

7fffeffc

$sp =

0040 0208

0000 0000 7fffeffc

7fffeff8

7fffeff4

7fffeff8
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Pop Operation

Pop return address

0000 0000

7fffeff8

$sp =

0040 0208

0000 0000 7fffeffc

7fffeff8

7fffeff4

7fffeffc

• Pop: Retrieves and 
“removes” data from top 
of stack 

– Read value from where SP 
points

• lw $ra, 0($sp)

– Increment SP to effectively 
“delete” top value

• addi $sp,$sp,4

• Always increment by 4 when 
popping addresses

Read value that SP points at then 
increment SP (this effectively 
deletes the value because the next 
push will overwrite it)

Warning:  Because the stack grows towards 

lower addresses, when you push something 

on the stack you subtract 4 from the SP and 

when you pop, you add 4 to the SP.
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Pseudo-instructions

• “Macros” translated by the assembler to 

instructions actually supported by the HW

• Simplifies writing code in assembly

• Example – LI (Load-immediate) pseudo-

instruction translated by assembler to 2 

instruction sequence (LUI & ORI)

...

lui  $2, 0x1234

ori  $2, $2, 0x5678

...

...

li   $2, 0x12345678

...

With pseudo-instruction After assembler…
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Pseudo-instructions

Actual AssemblyPseudo-instruction

NOR  Rd,Rs,$0NOT Rd,Rs

SUB   Rd,$0,RsNEG Rd,Rs

LUI     Rt, {immediate[31:16], 16’b0}

ORI    Rt, {16’b0, immediate[15:0]}

LI      Rt, immed. # Load Immediate

LUI     Rt, {immediate[31:16], 16’b0}

ORI    Rt, {16’b0, immediate[15:0]}

LA     Rt, label         # Load Address

SLT    $1,Rs,Rt

BNE   $1,$0,Label

BLT Rs,Rt,Label

Note:  Pseudoinstructions are assembler-dependent.  See MARS Help for more details. 
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Credits

• These slides were derived from Gandhi 

Puvvada’s EE 457 Class Notes


