I — (TS Viterbi &
School of Enginces

EE 457 Unit 2b

Fast Adders
(Carry-Lookahead Adder)

I ——— 1SCViterbi
School of Engincering

Carry-Lookahead Adders

FAST ADDERS

O

| USCVlterbl 203

Ripple Carry Adder Critical Path

* Critical Path = Longest possible delay path

Assume tg,,, = 5 ns,
teary= 4 ns
| | | | | | | |
X Y X Y X Y X Y
«—— Co FA Ci e Co FA Ci [Co FA Ci e Co FA Ci|—
S S S S
; l l l

Critical Path

I ——— 1SCViterbi
School of Engincering

Ripple Carry Adders

* Ripple-carry adders (RCA) are slow due to
carry propagation
— At least
— Total delay for n-bit adder =

levels of logic per full adder
*T
fa

I (JSC Viterbi €D

Fast Adders

* Recall that any logic function can be implemented as a
implementation
— SOP (AND-OR / NAND-NAND) implementation
— POS (OR-AND / NOR-NOR) implementation
* Rather than waiting for the previous carry,
[Cii =] can we compute the carry as a
function of just the inputs
— Ciq = F(X X0 X0 Yo Yig)e-Yo)

— This requires gates with many inputs which is infeasible in
modern technologies above 4 or 5 inputs

— But, we can try to use this idea of generating multiple
by looking at many inputs

I (JSC Viterbi

Fast Adders

* To produce multiple carries in parallel, let us define some new
signals for each column of addition that indicate information
about the carry-out regardless of carry-in:

- g= : This column will generate a carry-out whether or
not
g; is true when A, and B;is 1 => g, = A, * B,

- p= : This column will propagate a carry-in (if there is
one) to the carry-out.
p; is true when A; or B;is 1 =>p; = A, + B,
* Using these signals, we can define the carry-out (c;,,) as:

Ci+1 =

I (JSC Viterbi G2

Carry Lookahead Analogy

* Consider the carry-chain like a long tube broken into
segments. Each segment is controlled by a valve
(propagate signal) and can insert a fluid into that
segment (generate signal)

* The carry-out of the diagram below will be true if g1

is true or plis true and g0 is true, or p1, pO and cl is
true

s
GE“‘*‘;
o yawe
oo OV D
g9 NE
Y%

2

I (JSC Viterbi

Carry Lookahead Logic

* Define each carry in terms of p,, g and the
initial carry-in (c,) and not in terms of

* cl=g,+ pyCy
*C2=g +p,C =

°*c3=
e c4=

I (JSC Viterbi €D

4-Bit CLA Carry Lookahead Adder

e At this point we should probably stop as we have a gate in our e Useca rry-Iookahead Iogic Al B @
equation ¢ : I th) G — — T 1
+ Let’s take our logic and build a 4-bit carry lookahead adder (CLA)) 0 generate a € carries | Aal T |”|Z '“l T1 AT Ei” |
In one ShOt and then | A3 B3 A2 B2 Al B1 AD BO |

PG
create the sum | Lo w e vw o w0 ow |
© b @ owm wm wm w w LT[T[] |
Delay to produce s2 L I R Loy b Example 4-bit CLA shown | e e e |
| Delayforpigi= below | i |
e Delaytoproducec2=___ 7 7 7 7 | o . o o |
e Delaytoproduces2=___ s3 s2 s1 s0 | A3B3 | A2B2 | A1B1 | A0BO I
= gates \l/_ c4 p3 g3 c3 p2 g2 c2 pi g1 c1 p0 g0 | |
(Compare to 8 gate delays for ca P G CLL c0 | |
RCA) \L \L | S3 S2 B[3:01 | st S0 :
Is S3 produced later than S2? L—— T T T T T
Is C3 the last signal produced?
USC Viterbi @ I (JSC Viterbi

School of Engincering

16-Bit CLA

¢ At this point we should probably stop as we have a 5-input gate in our
equation

A[15:12] B[15:12] A[11:8] B[11:8] A[7:4] B[74] A[3:0] B[3:0] co

ii}:i{il}g{iig{ii
cL—{ui U U W

S[15:12] S[11:8] S[7:4] S[3:0]

16-bit RCA Delay = = gate delays
Delay of the above adder design = =__ gates

Let us improve by looking ahead at a higher level to produce
C16,C12,C8, C4 in

Define P and G as the overall Propagate and Generate
; - signals for a set of 4 bits
What'’s the difference

between the equation P =
for G here and C4 on
the previous slides G =

School of Engincering

16-bit CLA Closer Look

* Each 4-bit CLA only propagates its overall carry-in if each of the 4 columns propagates:
— PO =p3ep2eplepd
— P1=p7ep6ep5eps
— P2=pllepl0ep9 *p8
— P3=pl5epl4epl3 epl2
* Each 4-bit CLA generates a carry if any column generates and the more significant columns
propagate
— GO =g3+(p3 *g2) + (p3 *p2 *g1)+(p3 *p2 *p1 *g0)
— G3=g15+(pl5 egl4) + (pl5 epl4 egl3)+(pl5 epls epl3 egl2)
* The higher order CLL logic (producing C4,C8,C12,C16) then is realized as:
— (C4)=>C1 =GO + (PO *c0)
— (C16) => C4 = G3 + (P3 ®G2) + (P3 ®P2 ¢G1) +(P3 ® P2 ® P1 & GO)+ (P3 P2 eP1 eP0 *c0)
* These equations are exactly the same CLL logic we derived earlier

I (JSC Viterbi @3

School of Engincering

16-Bit CLA

Understanding 16-bit CLA hierarchy...

DTD 00000 00090 UL D:O
pe CLL | pe CLL | o CLL | pe CLL 5
S

cfei“) c 0]

<13
i

Delay =

___=Delay in producing Pi,Gi

____ = Delay in producing Pi*,Gi*

___ = Delay in producing C4,C8,C12,C16
____=Delay in producing c15

___ = Delay in producing S15

I (JSC Viterbi

%Ee BLE|ELL”

,Gi p G CLL p G CLL PG CLL PG CLL
Cc48 C32 \lL\L C16 i/J \H
i**,Gi* p3 a3 c3 p2 92 CLcZ p1 g1 c1 p0 g0
0 <—
J/— c4 b o c

School of Engincering

64-Bit CLA

e We canreuse the same CLL logic to build a 64-bit CLA co
[00 oo Dl][l[l D[II] 000 (0000 [O000 0000 0000 0000 0000 0000<—

__ = Delay in producing S63

Is the delay in producing s63 the same as in s35?
____ = Delay in producing S2

__ = Delay in producing SO

= Delay in producing Pi,Gi

= Delay in producing Pj*,Gj*

= Delay in producing C48

= Delay in producing C60

= Delay in producing C63

= Delay in producing S63
Total Delay

I (JSC Viterbi @

School of Engincering

Extrapolating CLA Logic Levels

In the above designs we’ve assumed 5-input AND
and OR gates are reasonable allowing us to group in
blocks of 4

— Define b = blocking factor = number of carries produced in
parallel

The greater the blocking factor the smaller the depth
of logic (and vice-versa)

This leads us to reason that the delay of a CLA is
O(logyn)

If we could only use 3-input gates we’d need a
blocking factor of 2

Blocking factor of 2
* Each A box T: N _
generates _[(.] % } A IF;WI
— p,=a+b, || ". I”ﬁ‘*”"”‘t_!l
—g=3a°b r»;c,' T _n_‘ﬁ ff I
— 5,= a,®b, N []
* Each B box ﬂ" M
generates ‘ gl
— Pi=pi*piy Bl !!"!.-H
— G =g+p;*8 l| -: : | 13
C1a=G; + (Piecy) O G i AT A e e
ep e e ey il sl

with ¢g. and then flow back up to compute the sum bits.
‘‘‘‘‘ nh oo 4. e o DA a

I (JSC Viterbi @ | USCViterb;

School of Engincering School of E ng

Credits

» Key lesson: In logic design trees are better * These slides were derived from Gandhi
than chains! Puvvada’s EE 457 Class Notes

