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Fast Adders

(Carry-Lookahead Adder)
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FAST ADDERS

Carry-Lookahead Adders
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Ripple Carry Adder Critical Path

• Critical Path = Longest possible delay path

X Y

S

CiCo

X Y

S

CiCo FAFA

X Y

S

CiCo

X Y

S

CiCo FAFA

Critical Path

Assume tsum = 5 ns,

tcarry= 4 ns
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Ripple Carry Adders

• Ripple-carry adders (RCA) are slow due to 

carry propagation

– At least __ levels of logic per full adder

– Total delay for n-bit adder = ___ * Tfa
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Fast Adders

• Recall that any logic function can be implemented as a 

____________ implementation

– SOP (AND-OR / NAND-NAND) implementation 

– POS (OR-AND / NOR-NOR) implementation

• Rather than waiting for the previous carry, 

[Ci+1 = ___________] can we compute the carry as a 

function of just the inputs

– Ci+1 = f(Xi,Xi-1,…X0,Yi,Yi-1,…Y0)

– This requires gates with many inputs which is infeasible in 

modern technologies above 4 or 5 inputs

– But, we can try to use this idea of generating multiple 

_______________ by looking at many inputs

2b.6

Fast Adders

• To produce multiple carries in parallel, let us define some new 

signals for each column of addition that indicate information 

about the carry-out regardless of carry-in:

– gi = ____________:  This column will generate a carry-out whether or 

not ______________________

gi is true when Ai and Bi is 1 => gi = Ai • Bi

– pi = _____________:  This column will propagate a carry-in (if there is 

one) to the carry-out. 

pi is true when Ai or Bi is 1 => pi = Ai + Bi

• Using these signals, we can define the carry-out (ci+1) as:

ci+1 = __________
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Carry Lookahead Analogy

• Consider the carry-chain like a long tube broken into 

segments. Each segment is controlled by a valve 

(propagate signal) and can insert a fluid into that 

segment (generate signal)

• The carry-out of the diagram below will be true if g1 

is true or p1 is true and g0 is true, or p1, p0 and c1 is 

true
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Carry Lookahead Logic

• Define each carry in terms of pi, gi and the 

initial carry-in (c0) and not in terms of ____

__________________________________

• c1 = g0 + p0c0

• c2 = g1 + p1c1 = __________________

• c3 =

• c4 =
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4-Bit CLA

• At this point we should probably stop as we have a _______ gate in our 

equation

• Let’s take our logic and build a 4-bit carry lookahead adder (CLA)

CLL

a3 b3

s3

a0 b0

s0

c0a1 b1

s1

a2 b2

s2

p3 g3c4 p2 g2c3 p1 g1c2 p0 g0c1

c0

P GC4

Delay to produce s2

• Delay for pi,gi = ____

• Delay to produce c2 = ___

• Delay to produce s2 = ___

= ___ gates

(Compare to 8 gate delays for 

RCA)

Is S3 produced later than S2?

Is C3 the last signal produced?
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Carry Lookahead Adder

• Use carry-lookahead logic 

to generate all the carries 

in one shot and then 

create the sum

• Example 4-bit CLA shown 

below
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16-Bit CLA

• At this point we should probably stop as we have a 5-input gate in our 

equation

16-bit RCA Delay = _____ = ____ gate delays

Delay of the above adder design = __________ = ___ gates

Let us improve by looking ahead at a higher level to produce 

C16, C12, C8, C4 in _______________

A[15:12] B[15:12] A[11:8] B[11:8] A[7:4] B[7:4] A[3:0] B[3:0]

S[15:12] S[11:8] S[7:4] S[3:0]C16

C4C8C12

C0

Define P and G as the overall Propagate and Generate 

signals for a set of 4 bits

P = ____________________

G = ___________________________________________

PG PG PG PG

What’s the difference 

between the equation 

for G here and C4 on 

the previous slides
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16-bit CLA Closer Look

• Each 4-bit CLA only propagates its overall carry-in if each of the 4 columns propagates:

– P0 = p3• p2 •p1 •p0

– P1 = p7• p6 •p5 •p4

– P2 = p11• p10 •p9 •p8

– P3 = p15• p14 •p13 •p12

• Each 4-bit CLA generates a carry if any column generates and the more significant columns 

propagate

– G0 = g3 + (p3 •g2) + (p3 •p2 •g1)+(p3 •p2 •p1 •g0)

– …

– G3 = g15 + (p15 •g14) + (p15 •p14 •g13)+(p15 •p14 •p13 •g12)

• The higher order CLL logic (producing C4,C8,C12,C16) then is realized as:

– (C4) =>C1 = G0 + (P0 •c0)

– …

– (C16) => C4 = G3 + (P3 •G2) + (P3 •P2 •G1) +(P3 • P2 • P1 • G0)+ (P3 •P2 •P1 •P0 •c0)

• These equations are exactly the same CLL logic we derived earlier
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16-Bit CLA

• Understanding 16-bit CLA hierarchy…

CLL CLL CLL CLL

C16

C4C8C12

C0

Delay = 

= ___ = Delay in producing Pi,Gi

= ___ = Delay in producing Pi*,Gi*

= ___ = Delay in producing C4,C8,C12,C16

= ___ = Delay in producing c15 

= ___ = Delay in producing S15 

P

CLL
p3 g3

c4

p2 g2c3 p1 g1c2 p0 g0c1

c0

P* G*

GP GP GP G
G

c15
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64-Bit CLA

• We can reuse the same CLL logic to build a 64-bit CLA

= ___ = Delay in producing S63

Is the delay in producing s63 the same as in s35?

= ___ = Delay in producing S2

= ___ = Delay in producing S0

CLL CLL CLL CLL

C16C32C48

P

CLL
p3 g3

c4

p2 g2c3 p1 g1c2 p0 g0c1
c0

P G

GP GP GP G
G

C52C56C60

c63

C36C40C44 C20C24C28 C4C8C12

C0

s35

= ___ = Delay in producing Pi,Gi

= ___ = Delay in producing Pj*,Gj*

= ___ = Delay in producing C48

= ___ = Delay in producing C60

= ___ = Delay in producing C63

= ___ = Delay in producing S63

= _____ Total Delay

Pi,Gi

Pi*,Gi*

Pi**,Gi**
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Extrapolating CLA Logic Levels

• In the above designs we’ve assumed 5-input AND 

and OR gates are reasonable allowing us to group in 

blocks of 4 

– Define b = blocking factor = number of carries produced in 

parallel

• The greater the blocking factor the smaller the depth 

of logic (and vice-versa)

• This leads us to reason that the delay of a CLA is 

O(logbn)

• If we could only use 3-input gates we’d need a 

blocking factor of 2
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Blocking factor of 2

• Each A box 

generates 

– pi = ai + bi

– gi = ai • bi

– si = ai⊕bi

• Each B box 

generates 

– Pi = pi • pi-1

– Gi = gi+pi • gi-1

– ci+1=Gi + (Pi•ci)
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• Key lesson:  In logic design trees are better 

than chains!
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Credits

• These slides were derived from Gandhi 

Puvvada’s EE 457 Class Notes


