
2b.1

EE 457 Unit 2b

Fast Adders

(Carry-Lookahead Adder)

2b.2

FAST ADDERS

Carry-Lookahead Adders

2b.3

Ripple Carry Adder Critical Path

• Critical Path = Longest possible delay path

X Y

S

CiCo

X Y

S

CiCo FAFA

X Y

S

CiCo

X Y

S

CiCo FAFA

Critical Path

Assume tsum = 5 ns,

tcarry= 4 ns

2b.4

Ripple Carry Adders

• Ripple-carry adders (RCA) are slow due to

carry propagation

– At least __ levels of logic per full adder

– Total delay for n-bit adder = ___ * Tfa

2b.5

Fast Adders

• Recall that any logic function can be implemented as a

____________ implementation

– SOP (AND-OR / NAND-NAND) implementation

– POS (OR-AND / NOR-NOR) implementation

• Rather than waiting for the previous carry,

[Ci+1 = ___________] can we compute the carry as a

function of just the inputs

– Ci+1 = f(Xi,Xi-1,…X0,Yi,Yi-1,…Y0)

– This requires gates with many inputs which is infeasible in

modern technologies above 4 or 5 inputs

– But, we can try to use this idea of generating multiple

_______________ by looking at many inputs

2b.6

Fast Adders

• To produce multiple carries in parallel, let us define some new

signals for each column of addition that indicate information

about the carry-out regardless of carry-in:

– gi = ____________: This column will generate a carry-out whether or

not ______________________

gi is true when Ai and Bi is 1 => gi = Ai • Bi

– pi = _____________: This column will propagate a carry-in (if there is

one) to the carry-out.

pi is true when Ai or Bi is 1 => pi = Ai + Bi

• Using these signals, we can define the carry-out (ci+1) as:

ci+1 = __________

2b.7

Carry Lookahead Analogy

• Consider the carry-chain like a long tube broken into

segments. Each segment is controlled by a valve

(propagate signal) and can insert a fluid into that

segment (generate signal)

• The carry-out of the diagram below will be true if g1

is true or p1 is true and g0 is true, or p1, p0 and c1 is

true

2b.8

Carry Lookahead Logic

• Define each carry in terms of pi, gi and the

initial carry-in (c0) and not in terms of ____

• c1 = g0 + p0c0

• c2 = g1 + p1c1 = __________________

• c3 =

• c4 =

2b.9

4-Bit CLA

• At this point we should probably stop as we have a _______ gate in our

equation

• Let’s take our logic and build a 4-bit carry lookahead adder (CLA)

CLL

a3 b3

s3

a0 b0

s0

c0a1 b1

s1

a2 b2

s2

p3 g3c4 p2 g2c3 p1 g1c2 p0 g0c1

c0

P GC4

Delay to produce s2

• Delay for pi,gi = ____

• Delay to produce c2 = ___

• Delay to produce s2 = ___

= ___ gates

(Compare to 8 gate delays for

RCA)

Is S3 produced later than S2?

Is C3 the last signal produced?

2b.10

Carry Lookahead Adder

• Use carry-lookahead logic

to generate all the carries

in one shot and then

create the sum

• Example 4-bit CLA shown

below

2b.11

16-Bit CLA

• At this point we should probably stop as we have a 5-input gate in our

equation

16-bit RCA Delay = _____ = ____ gate delays

Delay of the above adder design = __________ = ___ gates

Let us improve by looking ahead at a higher level to produce

C16, C12, C8, C4 in _______________

A[15:12] B[15:12] A[11:8] B[11:8] A[7:4] B[7:4] A[3:0] B[3:0]

S[15:12] S[11:8] S[7:4] S[3:0]C16

C4C8C12

C0

Define P and G as the overall Propagate and Generate

signals for a set of 4 bits

P = ____________________

G = ___

PG PG PG PG

What’s the difference

between the equation

for G here and C4 on

the previous slides

2b.12

16-bit CLA Closer Look

• Each 4-bit CLA only propagates its overall carry-in if each of the 4 columns propagates:

– P0 = p3• p2 •p1 •p0

– P1 = p7• p6 •p5 •p4

– P2 = p11• p10 •p9 •p8

– P3 = p15• p14 •p13 •p12

• Each 4-bit CLA generates a carry if any column generates and the more significant columns

propagate

– G0 = g3 + (p3 •g2) + (p3 •p2 •g1)+(p3 •p2 •p1 •g0)

– …

– G3 = g15 + (p15 •g14) + (p15 •p14 •g13)+(p15 •p14 •p13 •g12)

• The higher order CLL logic (producing C4,C8,C12,C16) then is realized as:

– (C4) =>C1 = G0 + (P0 •c0)

– …

– (C16) => C4 = G3 + (P3 •G2) + (P3 •P2 •G1) +(P3 • P2 • P1 • G0)+ (P3 •P2 •P1 •P0 •c0)

• These equations are exactly the same CLL logic we derived earlier

2b.13

16-Bit CLA

• Understanding 16-bit CLA hierarchy…

CLL CLL CLL CLL

C16

C4C8C12

C0

Delay =

= ___ = Delay in producing Pi,Gi

= ___ = Delay in producing Pi*,Gi*

= ___ = Delay in producing C4,C8,C12,C16

= ___ = Delay in producing c15

= ___ = Delay in producing S15

P

CLL
p3 g3

c4

p2 g2c3 p1 g1c2 p0 g0c1

c0

P* G*

GP GP GP G
G

c15

2b.14

64-Bit CLA

• We can reuse the same CLL logic to build a 64-bit CLA

= ___ = Delay in producing S63

Is the delay in producing s63 the same as in s35?

= ___ = Delay in producing S2

= ___ = Delay in producing S0

CLL CLL CLL CLL

C16C32C48

P

CLL
p3 g3

c4

p2 g2c3 p1 g1c2 p0 g0c1
c0

P G

GP GP GP G
G

C52C56C60

c63

C36C40C44 C20C24C28 C4C8C12

C0

s35

= ___ = Delay in producing Pi,Gi

= ___ = Delay in producing Pj*,Gj*

= ___ = Delay in producing C48

= ___ = Delay in producing C60

= ___ = Delay in producing C63

= ___ = Delay in producing S63

= _____ Total Delay

Pi,Gi

Pi*,Gi*

Pi**,Gi**

2b.15

Extrapolating CLA Logic Levels

• In the above designs we’ve assumed 5-input AND

and OR gates are reasonable allowing us to group in

blocks of 4

– Define b = blocking factor = number of carries produced in

parallel

• The greater the blocking factor the smaller the depth

of logic (and vice-versa)

• This leads us to reason that the delay of a CLA is

O(logbn)

• If we could only use 3-input gates we’d need a

blocking factor of 2

2b.16

Blocking factor of 2

• Each A box

generates

– pi = ai + bi

– gi = ai • bi

– si = ai⊕bi

• Each B box

generates

– Pi = pi • pi-1

– Gi = gi+pi • gi-1

– ci+1=Gi + (Pi•ci)

2b.17

• Key lesson: In logic design trees are better

than chains!

2b.18

Credits

• These slides were derived from Gandhi

Puvvada’s EE 457 Class Notes

