
1

EE 457 Unit 2b

Fast Adders
(Carry-Lookahead Adder)

2

FAST ADDERS

Carry-Lookahead Adders

3

Ripple Carry Adder Critical Path

• Critical Path = Longest possible delay path

X Y

S

CiCo

X Y

S

CiCo FAFA

X Y

S

CiCo

X Y

S

CiCo FAFA

Critical Path

Assume tsum = 5 ns,

tcarry= 4 ns

4 ns8 ns12 ns

17 ns

16 ns

13 ns 9 ns 5 ns

4

Ripple Carry Adders

• Ripple-carry adders (RCA) are slow due to
carry propagation

– At least 2 levels of logic per full adder

– Total delay for n-bit adder = n * Tfa

2 13456

5

Fast Adders

• Recall that any logic function can be implemented as a
2-level implementation

– SOP (AND-OR / NAND-NAND) implementation

– POS (OR-AND / NOR-NOR) implementation

• Rather than waiting for the previous carry,
[Ci+1 = f(Xi,Yi,Ci)] can we compute the carry as a
function of just the inputs

– Ci+1 = f(Xi,Xi-1,…X0,Yi,Yi-1,…Y0)

– This requires gates with many inputs which is infeasible in
modern technologies above 4 or 5 inputs

– But, we can try to use this idea of generating multiple carries
at once by looking at many inputs

6

Fast Adders

• To produce multiple carries in parallel, let us define some new
signals for each column of addition that indicate information
about the carry-out regardless of carry-in:
– gi = Generate: This column will generate a carry-out whether or not

the carry-in is ‘1’
gi is true when Ai and Bi is 1 => gi = Ai • Bi

– pi = Propagate: This column will propagate a carry-in (if there is one)
to the carry-out.
pi is true when Ai or Bi is 1 => pi = Ai + Bi

• Using these signals, we can define the carry-out (ci+1) as:

ci+1 = gi + pici

7

Carry Lookahead Analogy

• Consider the carry-chain like a long tube broken into
segments. Each segment is controlled by a valve
(propagate signal) and can insert a fluid into that
segment (generate signal)

• The carry-out of the diagram below will be true if g1
is true or p1 is true and g0 is true, or p1, p0 and c1 is
true

8

Carry Lookahead Logic

• Define each carry in terms of pi, gi and the
initial carry-in (c0) and not in terms of carry
chain (intermediate carries: c1,c2,c3,…)

• c1 = g0 + p0c0

• c2 = g1 + p1c1 = g1 + p1g0 + p1p0c0

• c3 = …

• c4 = …

9

4-Bit CLA

• At this point we should probably stop as we have a 5-input gate in our
equation

• Let’s take our logic and build a 4-bit carry lookahead adder (CLA)

a3 b3

s3

a0 b0

s0

c0a1 b1

s1

a2 b2

s2

p3 g3c4 p2 g2c3 p1 g1c2 p0 g0c1

c0

P GC4

Delay to produce s2

• Delay for pi,gi = 1

• Delay to produce c2 = 2

• Delay to produce s2 = 2

= 5 gates

(Compare to 8 gate delays for
RCA)

Is S3 produced later than S2?

Is C3 the last signal produced?

10

Carry Lookahead Adder

• Use carry-lookahead logic
to generate all the carries
in one shot and then
create the sum

• Example 4-bit CLA shown
below

11

Carry Lookahead Adder

• Use carry-lookahead logic
to generate all the carries
in one shot and then
create the sum

• Example 4-bit CLA shown
below

1

3 3

5

2

33

12

16-Bit CLA

• At this point we should probably stop as we have a 5-input gate in our
equation

16-bit RCA Delay = 16*2 = 32 gate delays

Delay of the above adder design = 3+2+2+4 = 11 gates

Let us improve by looking ahead at a higher level to

produce C16, C12, C8, C4 in parallel

A[15:12] B[15:12] A[11:8] B[11:8] A[7:4] B[7:4] A[3:0] B[3:0]

S[15:12] S[11:8] S[7:4] S[3:0]C16

C4C8C12

C0

7 35
11

Define P and G as the overall Propagate and Generate

signals for a set of 4 bits

P = p3 p2 p1 p0

G = g3 + p3g2 + p3p2g1 + p3p2p1g0

PG PG PG PG

What’s the difference
between the equation
for G here and C4 on
the previous slides

13

16-bit CLA Closer Look
• Each 4-bit CLA only propagates its overall carry-in if each of the 4 columns propagates:

– P0 = p3 p2 p1 p0

– P1 = p7 p6 p5 p4

– P2 = p11 p10 p9 p8

– P3 = p15 p14 p13 p12

• Each 4-bit CLA generates a carry if any column generates and the more significant columns
propagate

– G0 = g3 + (p3 g2) + (p3 p2 g1)+(p3 p2 p1 g0)

– …

– G3 = g15 + (p15 g14) + (p15 p14 g13)+(p15 p14 p13 g12)

• The higher order CLL logic (producing C4,C8,C12,C16) then is realized as:

– (C4) =>C1 = G0 + (P0 c0)

– …

– (C16) => C4 = G3 + (P3 G2) + (P3 P2 G1) +(P3 P2 P1 G0)+ (P3 P2 P1 P0 c0)

• These equations are exactly the same CLL logic we derived earlier

14

16-Bit CLA

• Understanding 16-bit CLA hierarchy…

CLL CLL CLL CLL

C16

C4C8C12

C0

Delay =

= 3 = Delay in producing Pi,Gi

= 5 = Delay in producing Pi*,Gi*

= 5 = Delay in producing C4,C8,C12,C16

= 7 = Delay in producing c15

= 9 = Delay in producing S15

P

CLL
p3 g3

c4

p2 g2c3 p1 g1c2 p0 g0c1

c0

P* G*

GP GP GP G
G

c15

15

64-Bit CLA

• We can reuse the same CLL logic to build a 64-bit CLA

= 13 = Delay in producing S63

Is the delay in producing s63 the same as in s35?

= 5 = Delay in producing S2

= 4 = Delay in producing S0

CLL CLL CLL CLL

C16C32C48

P

CLL
p3 g3

c4

p2 g2c3 p1 g1c2 p0 g0c1
c0

P G

GP GP GP G
G

C52C56C60

c63

C36C40C44 C20C24C28 C4C8C12

C0

s35

= 3 = Delay in producing Pi,Gi

= 5 = Delay in producing Pj*,Gj*

= 7 = Delay in producing C48

= 9 = Delay in producing C60

= 11 = Delay in producing C63

= 13 = Delay in producing S63

= 13 Total Delay

Pi,Gi

Pi*,Gi*

Pi**,Gi**

16

Extrapolating CLA Logic Levels

• In the above designs we’ve assumed 5-input AND
and OR gates are reasonable allowing us to group in
blocks of 4

– Define b = blocking factor = number of carries produced in
parallel

• The greater the blocking factor the smaller the depth
of logic (and vice-versa)

• This leads us to reason that the delay of a CLA is
O(logbn)

• If we could only use 3-input gates we’d need a
blocking factor of 2

17

Blocking factor of 2

• Each A box
generates

– pi = ai + bi

– gi = ai bi

– si = aibi

• Each B box
generates

– Pi = pi pi-1

– Gi = gi+pi gi-1

– ci+1=Gi + (Pici)

1

3

5

7

9

11

13

18

Credits

• These slides were derived from Gandhi
Puvvada’s EE 457 Class Notes

