
2a.1

EE 457 Unit 2a

Fixed Point Systems and Arithmetic

2a.2

SIGNED AND UNSIGNED SYSTEMS

Unsigned

2’s Complement

Sign and Zero Extension

Hexadecimal Representation

2a.3

Signed Systems

• Several systems have been used

– 2’s complement system

– 1’s complement system

– Sign and magnitude

2a.4

Unsigned and Signed Variables

• Unsigned variables use unsigned binary (normal

power-of-2 place values) to represent numbers

• Signed variables use the ____________ system

(____________ weight) to represent numbers

128 64 32 16 8 4 2 1

1 0 0 1 0 0 1 1

1 0 0 1 0 0 1 1

2a.5

2’s Complement System

• MSB has negative weight

• MSB determines sign of the number

– 1 = negative

– 0 = positive

• To take the negative of a number
(e.g. -7 => +7 or +2 => -2), requires __________

– This is accomplished by ______________________

1001

0110

+ 1
0111

x = -7

Bit flip (1’s comp.)

Add 1

-x = -(-7) = +7

2a.6

Zero and Sign Extension

2’s complement = Sign Extension (Replicate sign bit):

Unsigned = Zero Extension (Always add leading 0’s):

111011 = 00111011

011010 = 00011010

110011 = 11110011

pos.

neg.

Increase a 6-bit number to 8-bit
number by zero extending

Sign bit is just repeated as
many times as necessary

• Extension is the process of increasing the number of bits used
to represent a number without changing its value

2a.7

Zero and Sign Truncation

• Truncation is the process of decreasing the number of bits used
to represent a number without changing its value

2’s complement = Sign Truncation (Remove copies of sign bit):

Unsigned = Zero Truncation (Remove leading 0’s):

00111011 = 111011

00011010 = 011010

11110011 = 10011

pos.

neg.

Decrease an 8-bit number to 6-bit

number by truncating 0’s. Can’t

remove a ‘1’ because value is changed

Any copies of the MSB can be

removed without changing the

numbers value. Be careful not to

change the sign by cutting off

ALL the sign bits.

2a.8

Arithmetic & Sign

• You learned the addition (carry-method) and

subtraction (borrow-method) algorithms in grade

school

• Consider A + B…do you definitely use the addition

algorithm?

– What if A=(2), B=(-5)?

• Human add/sub algorithm depends on ________!!

2a.9

Unsigned and Signed Arithmetic

• Addition/subtraction process is the same for
both unsigned and signed numbers

– Add columns right to left

– Drop any final carry out

• This is the KEY reason we use 2’s complement
system to represent signed numbers

• Examples:

1001

+ 0011

1100

11 If unsigned If signed

2a.10

Unsigned and Signed Subtraction

• Subtraction process is the same for both
unsigned and signed numbers

– Convert A – B to A + Comp. of B

– Drop any final carry out

• Examples:

(12)

(2)

(-4)

(2)

If unsigned If signed

1100

- 0010

If unsigned If signed

2a.11

Overflow

• Overflow occurs when the result of an

arithmetic operation is too ____________

__________ with the given number of bits

– Unsigned overflow (___) occurs when adding or

subtracting unsigned numbers

– Signed (2’s complement overflow) overflow (___)

occurs when adding or subtracting 2’s

complement numbers

2a.12

Unsigned Overflow

0000

0001

0010

0011

0100

0101

0110

0111

1000

1111

1110

1101

1100

1011

1010

1001

0

+1

+2

+3

+4

+5

+6

+7

+8

+9

+10

+11

+12

+13

+14

+15

Overflow occurs when you cross
this discontinuity

10

Plus 7

10 + 7 = 17

With 4-bit unsigned numbers we
can only represent 0 – 15. Thus,

we say overflow has occurred.

4 - 6 = 14

2a.13

2’s Complement Overflow

0000

0001

0010

0011

0100

0101

0110

0111

1000

1111

1110

1101

1100

1011

1010

1001

0

+1

+2

+3

+4

+5

+6

+7

-8

-7

-6

-5

-4

-3

-2

-1

Overflow occurs when you cross this

discontinuity

-6 + -4 = -10

With 4-bit 2’s complement

numbers we can only represent
-8 to +7. Thus, we say overflow

has occurred.

5 + 7 = +12

2a.14

Testing for Overflow

• Most fundamental test

– Check if answer is wrong (i.e. Positive + Positive yields a
negative)

• Unsigned overflow (C) test

– If _____________________________

• Signed (2’s complement) overflow (V) test

– Only occurs if

• ____________________________ … or…

• ____________________________

– Alternate test: See following slides

2a.15

Alternate Signed Overflow Test

• Check if _______________________________

VC4C3S3B3A3A & B

0
00Both Positive

1

0
10

One Positive &

One Negative

1

0
01

1

0
11Both Negative

1

2a.16

Overflow in Addition

• Overflow occurs when the result of the
addition cannot be represented with the given
number of bits.

• Tests for overflow:

– Unsigned: if Cout = 1

– Signed: if p + p = n or n + n = p

1101

+ 0100

If unsigned If signed

0110

+ 0101

If unsigned If signed

2a.17

Overflow in Subtraction

• Overflow occurs when the result of the subtraction
cannot be represented with the given number of
bits.

• Tests for overflow:

– Unsigned: if Cout = 0

– Signed: if addition is p + p = n or n + n = p

If unsigned If signed

0111

- 1000

If unsigned If signed

2a.18

Addition – Full Adders

• Perform the following addition using 1 Full Adder for each

column of addition

0110

+ 0111

1101

= X

= Y

01100

Full

Adder

X Y

Cin

S

Cout

0 1

1

0
__Full

Adder

X Y

Cin

S

Cout
Full

Adder

X Y

Cin

S

Cout
Full

Adder

X Y

Cin

S

Cout

1 1

0

1

1 1

1

1

0 0

1

0

2a.19

Performing Subtraction w/ Adders

• To subtract

– Flip bits of Y

– Add 1

0101

- 0011

1101

= X

= Y

Full

Adder

X Y

Cin

S

Cout
Full

Adder

X Y

Cin

S

Cout
Full

Adder

X Y

Cin

S

Cout
Full

Adder

X Y

Cin

S

Cout

0101

+ 1100

1

0010

1010

1100

0011

__

0100

1 101

2a.20

XOR Gate Review

XOR

Z
X

Y

X Y Z

0 0 0

0 1 1

1 0 1

1 1 0

YXZ ⊕=

True if an odd # of inputs are true
2 input case: True if inputs are different

2a.21

XOR Conditional Inverter

• If one input (say, X) to an XOR gate is 0,

then Z=_____

• If one input (say, X) to an XOR gate is 1,

then Z=_____

• Use one input as a control input which

can conditionally pass or invert the

other input

X Y Z

0 0 0

0 1 1

1 0 1

1 1 0

2a.22

Adder/Subtractor

• Using XOR gates

before one set of

adder inputs we can

– Selectively pass or

invert Y

– Add an extra ‘1’ via

the Carry-in

• If SUB/~ADD=0,

– Z = X+Y

• If SUB/~ADD=1,

– Z = X-Y

2a.23

Adder/Subtractor

• Exercise: Add appropriate

logic to produce

– C (unsigned overflow)

– V (signed overflow) flags

(assume we add a C3

output to the adder)

C3

2a.24

ALU Design

Complete the ALU

design given the

function table

below

ZOP[2:0]

X+Y000

X-Y001

SLT:

Z=1, if X<Y

Z=0, other

011

AND100

OR110

Z = und.Others

V

2a.25

NON-REQUIRED MATERIAL

2a.26

Hexadecimal Representation

• Since values in modern computers are many
bits, we use hexadecimal as a shorthand
notation (4 bits = 1 hex digit)

– 11010010 = D2 hex

– 0111011011001011 = 76CB hex

• To interpret the value of a hex number, you
must know what underlying binary system is
assumed (unsigned, 2’s comp. etc.)

2a.27

Translating Hexadecimal

• Hex place values (162, 161, 160) can ONLY be used if
the number is positive.

• If hex represents unsigned binary simply apply hex
place values
– B2 hex = 11*161 + 2*160 = 17810

• If hex represents signed value (2’s comp.)
– First determine the sign to be pos. or neg.

• Convert the MS-hex digit to binary to determine the MSB (e.g. for
B2 hex, B=1011 so since the MSB=1, B2 is neg.)

• In general, hex values starting 0-7 = pos. / 8-F = neg.

– If pos., apply hex place values (as if it were unsigned)

– If neg., take the 16’s complement and apply hex place
values to find the neg. number’s magnitude

2a.28

Taking the 16’s Complement

• Taking the 2’s complement of a binary number yields

its negative and is accomplished by finding the 1’s

complement (bit flip) and adding 1

• Taking the 16’s complement of a hex number yields

its negative and is accomplished by finding the 15’s

complement and adding 1

– 15’s complement is found by subtracting each digit of the

hex number from F16

FF

- B2

4D

+ 1
4E

Subtract each digit from F

15’s comp. of B2

Add 1

16’s comp. of B2

Original value B2:

16’s comp. of B2:

2a.29

Translating Hexadecimal

• Given 6C hex
– If it is unsigned, apply hex place values

• 6C hex = 6*161 + 12*160 = 10810

– If it is signed…
• Determine the sign by looking at MSD

– 0-7 hex has a 0 in the MSB [i.e. positive]

– 8-F hex has a 1 in the MSB [i.e. negative]

– Thus, 6C (start with 6 which has a 0 in the MSB is
positive)

• Since it is positive, apply hex place values
– 6C hex = 6*161 + 12*160 = 10810

2a.30

Translating Hexadecimal

• Given FE hex
– If it is unsigned, apply hex place values

• FE hex = 15*161 + 14*160 = 25410

– If it is signed…
• Determine sign => Negative

• Since it is negative, take 16’s complement and then
apply place values

– 16’s complement of FE = 01 + 1 = 02 and apply place
values = 2

– Add in sign => -2 = FE hex

2a.31

Finding the Value of Hex Numbers

• B2 hex representing a signed (2’s comp.) value
– Step 1: Determine the sign: Neg.

– Step 2: Take the 16’s comp. to find magnitude

FF - B2 + 1 = 4E hex

– Step 3: Apply hex place values (4E16 = +7810)

– Step 4: Final value: B2 hex = -7810

• 7C hex representing a signed (2’s comp.) value
– Step 1: Determine the sign: Pos.

– Step 2: Apply hex place values (7C16 = +12410)

• 82 hex representing an unsigned value
– Step 1: Apply hex place values (8216 = +13010)

2a.32

Hex Addition and Overflow

• Same rules as in binary

– Add left to right

– Drop any carry (carry occurs when sum > F16)

• Same addition overflow rules

– Unsigned: Check if final Cout = 1

– Signed: Check signs of inputs and result

7AC5

+ C18A

3C4F

11

If unsigned If signed

Overflow
Cout = 1

No Overflow
p + n

6C12

+ 549F

C0B1

10

If unsigned If signed

No Overflow
Cout = 0

Overflow
p + p = n

1

2a.33

Hex Subtraction and Overflow

• Same rules as in binary

– Convert A – B to A + Comp. of B

– Drop any final carry out

• Same subtraction overflow rules

– Unsigned: Check if final Cout = 0

– Signed: Check signs of addition inputs and result

B1ED

- 76FE

B1ED

8901

+ 1

3AEF

If unsigned
No Overflow

Cout = 1

If signed
Overflow
n + n = p

1

0001

- 0002

0001

FFFD

+ 1

FFFF

If unsigned
Overflow
Cout = 0

If signed
No Overflow

p + n

0

2a.34

Credits

• These slides were derived from Gandhi

Puvvada’s EE 457 Class Notes

