I USC Viterbi G

School of Engineering

EE 457 Unit 1

Overview of Digital System Design

] USCVite.,rbi @
Credits

* These slides were derived from Gandhi
Puvvada’s EE 457 Class Notes

. USC Viterbi G

School of Engineering

Clocking Strategies

REGISTERS & DATA ENABLES

. USC Viterbi

School of Engineering

Registers
. . DO D Q Qo
* A Register is a group of D-FF’s o
tied to a common clock and —
clear (reset) input o1 5 o ar
— Clear can be asynchronous or s
synchronous
* Used to store multiple bit D2 o @ a2
values on each clock cycle | &
CLK | RST D, Q s 5 a as
1,0 X X Q _ oA
1 1 X 0 RST
1 0 0 0 CLK
1 0 1 1 4-bit Register

N (]S C Viterbi (S | I (/S Viterbi (U

School of Engineering hool of Engineering

Example: Accumulator Synchronous vs. Asynchronous
* Sum a time-based sequence of numbers * The set/preset and clear inputs can be built to be synchronous
* Aregister usually stores a single logic value (i.e. a number) or asynchronous

* These terms refer to when the initialization takes place

— Asynchronous Reset (AR): Initialization of Q takes effect immediately

time ———-----mmm oo " regardless of the CLK
9,32 lrer i
Clock — Synchronous Reset (SR): Initialization of Q takes effect only at an edge
X0 A0 sol—"1 5o} © _] (clear must be active at the edge)
X1 At on Reset
x2 A2 ol oot 7 Synchronous Asynchronous
X3 A3
4-bit ’—IZ on X 2 3 9
50 Adder so| Y2 el z2 X X X X Clock Clock
B1 '—IZ cin I
B2 Y3 — z3 Y X 2 X 5 X 14 X CLR CLR
an Qs Qs
- l
’7 Clock Fx’e:set \\ Z X 0 X 2 X 5 14
Synchronous SET or CLR Asynchronous SET or CLR
Register means the signal must be means Q will initialize as soon
active at a clock edge before as the SET or CLR signal is
Q will initialize activated

School of Engineering

I ()5 Viterbi () | I (]S Viterbi (-

School of Engineering

Registers Selective Loading/Registering of Data
* Whatever the D value is at the clock edge is sampled * What if we only want a register b0 © o — ao
and passed to the Q output until the next clock edge to capture data on selective
clocks (and not on EVERY clock) 1 —
— Clocks are indicated with a “LOAD” o
. —
signal
D2 D Q Q2
CLK _| | | I_ ‘_CI,.H
RST f=——d —_t o5 — .
_§ svse || | L] L] L N
D[3:0] 00f0X__ 0011 X 0100 X ototi X o110 X ottt X 1000 X 1001} X 1010 _I—I—I—I_ ‘
Q[3:0] Zk 0000 0011 0100 0101 0110 0111 1000 X 1001 LOAD RST
Want to load the register on the indicated CLK
4-bit Register — On clock edge, D is passed to Q clock cycles and have it retain its value in the

other cycles 4-bit Register

I USC Viterbi

Clocking Option 1

School of Engineering

e Use Load as the clock signal

* (Does/Doesn’t) Work. S— O
S
°
Desirgd _:TH
/Loadtlme\ o — o
ssek [[L] LT L B
LOAD m D3 b a Q3

|

/ CLR

Actual Load LOAD _CRLSKT
time -

N

I USC Viterbi

Clocking Option 2

chool of Engincering

* Use ~Load (inverted Load) as the

clock signal) _, ’
 (Does/Doesn’t) Work. N o
. T
Desired 02 > o 2
NV Load tlme\ ‘_c,u:t
s [|| LT LT L D
~LOAD M ’ _,“‘Q ’
\ et

Actual Load ~LOAD = o

time

I (JSC Viterbi _@
Glitches

* Temporary (transient) incorrect / toggling output values
due to differing delay paths of the inputs
— Eventually output settles to correct value
— Unless a circuit is specially designed, glitches are possible on all

circuits
1 ns delay
F
A —D>—Tom)
B Ons
A

B [

F

| USCVitqb; @
Successive Loading Clocks

* If load is held high on two successive clock
cycles will get edge(s)

SYSCLK

LOAD

I ()5 Viterbi (0 USCViterbi (29
Option 3 Option 4: Feedback mux
DO D Q Qo . y) .
e Gate the clock with the load * Registers (D-FF’s) will sample the D
] el bit every clock edge and pass it to Q 0 v P— aQ
Slgnal * Sometimes we may want to hold the D 1s on
. . b1 PR al value of Q and ignore D even at a EN
* Also susceptible to glitches clock edge om;l
| * We can add an enable input and AR
some logic in front of the D-FF to FF with Data Enable
D2 b @ Q2 accomplish this (Always clocks, but selectively
LR chooses old value, Q, or new
| value D)
CLK AR EN D; Qr
SYSCLK | | L 03 o o a3 X 1 X X 0
LOAD]_ = 0,1 0 X X Q
1 0 0 X Q
REGCLK | SYSCLK RST
LOAD:D;EGCLK 1 0 1 0 0
CLK 4-bit Register 1 0 1 1 1
USCViterbi (12 | I (]S Viterbi (>
Registers w/ Enables Registers w/ Enables
. Q .
* When EN=0, Q value is ~] Q- . * The D value is sampled at the clock edge only
passed back to the input L3 o if the enable is active

D
EN 0
CLK

RST

and thus Q will maintain its
value at the next clock edge

* When EN=1, D value is
passed to the input and
thus Q will change at the
edge based on D

When EN=0, Q is
recycled back to the input

0
D
% b a Q
p 2T
1 CLR
EN

CLK
RST

When EN=1, D input is
passed to FF input

e Otherwise the current Q value is maintained

CLK [] B
RST [

EN T‘ N .
D[3:0] @é))(o011} X 0100i X o101 /X otto; X of11 /X 10007 X 1001 | ¥ 1010
QE:0] X 0000 X 0101 o X 1000

I USC Viterbi G

School of Engineering

Register With or Without An Enable

] Free-Running Register ‘ | Register with Load (Data) Enable ‘

0 I
DO D Q Qo \vl D Q Qo
DO 18
CLR CLR
1 1
S |
D1 D a Qi Y D Q Qt
D1 18
CLR CLR
T | I
O |
D2 D Q Q2 Y D a Q2
D2 18
CLR CLR
| | I
i |
D3 D Q Q3 Y D Q Q3
D3 18
CLR CLR
| EN |
RST RST
CLK CLK

When to use one vs. the other?
* Free-running register: Do you want to update the stored value EVERY edge
» Register w/ Enable: In all other cases...

I USC Viterbi

Counters

* Increment (Add 1 to Q) at each

clock edge

— Up Counter: Q*=Q+1

e Standard counter components

include other features

— Enables: Will not count at edge if

EN=0

— Resets: Reset countto O

hool of Engineering

yo

Register

RESET

CLK

\d

\d

— Parallel Load Inputs: Can initialize
count to a value P (i.e. Q* = P rather

than Q+1)

. USC Viterbi _

Sample 4-bit Counter

* 4-bit Up Counter e
— RST: synchronous reset input —{PO Qo
. — P1 . Qf
— PE and P, inputs: loads Q _p2 4':#:‘ Ql—
with P when PE is active —p3 C =
— CE: Count Enable B :ET ol
* Must be active for the “Neix
counter to count up

TC (Terminal Count) output
* Active when Q=1111 AND "
counter is enabled CLE | FSU e CE Q
* TC=ENeQ3+Q2+Q1+Q0 0.1 X X X

* Indicates that on the next
edge it will roll over to 0000

¢ Used to create 8-, 12-, 16-
bit, etc. counters from these
4-bit building blocks

- > > [—

. USC Viterbi

Counter Design

» Sketch the design of the 4-bit counter

presented on the previous slides

CE —

D[3:0] _

LD _
RST-

CLK -

School of Engineering

D[3:0] Q[3:0]

Reg

CLR
CLK

Q[3:0]

USC Viterbi @

School of Engineering

Counters

ok | [= 1 7 L [
CE)
PE /

[)
P3-P0O \ 1110 / []]
& " M [][
Q3-Q0 X _ 0000 X 0001 X 0010 X oot X 1110 X§[1f11 X§ooo
Q\ <
LN
at clock = off, active,
thus Q thus

edge, thus

holds

Q=P Mealy TC output:
EN-Q3-Q2-Q1-Q0

| USC\ﬁterbl@
Reference Verilog

 Verilog description of a register with enable
and counter with load and count enable

module reglée(module cntrilé6ce(

input clk, input clk,
input reset, input reset,
input en, input load,

input [15:0] d, input ce,
output reg [15:0] q input [15:0] d,
)5 output reg [15:0] q

always @(posedge clk)

begin always @(posedge clk)
if(reset) begin
q <= 16'de; if(reset == 1)
else if(en) q <= 16'd0;
q <= d; else if(load == 1)
end q <= d;
endmodule else if(ce == 1)
q <= q+1;
end
endmodule

16-bit Register w/ Enable .
16-bit Counter w/ Load

and Count Enable

USCV1terb1@
Data Register Summary

e Understand the operation of a free-running
register, register w/ data/load enable, and a
counter with count enables, etc.

. USC Viterbi

School of Engineering

Datapath and Control Unit Decomposition

SYNCHRONOUS SYSTEM DESIGN
TECHNIQUES

| USCVit,e.,r,bi @
Digital System Design

* Control (CU) and Datapath Unit (DPU) paradigm

— Separate logic into datapath elements that operate on data and
control elements that generate control signals for datapath elements

— Datapath: Adders, muxes, comparators, counters, registers (w/
enables), memories, FIFO’s

— Control Unit: State machines/sequencers

— Control

—

SN Datapath I
— —
E— —

I USC Viterbi

hool of Engineering

Datapath + Control

* The control unit acts as scheduler and manager while

the datapath “does” the work

— Similar division of l[abor in many other areas

— Control signals include: , ,
enables, output enables, etc.

Puppeteer

—»| Control (CU) — Manager
—>
1] 17 1] 17
N Datapath N Workers . ‘
- (DPU) > — >
—> —> —> —>

Construction

Company Puppets

|] \\
;; _\'{'
[!:' ‘!' 3 A AN
N —— N
LI EAY

7\

. USC Viterbi G2

School of Engineering

Identifying Control Signals

* Design a datapath to support the following RTL (Register
Transfer Level) operations
— Identify the control signals & other datapath components

Desired Operations:

C« A+B, ifFG=0,0
C«AB, ifFG=0,1 A Ve 1IVe |V o |
R P+Q, ifFG=1,0
R<P-Q, ifFG=1,1

sus/~ADD ALU
Z

V V

Sch

One-hot State Machine Design

STATE MACHINE (CONTROL UNIT)
DESIGN

USC Viterbi

ool of Engincering

USC Viterbi

School of Engineering

Digital System Representation

[

| | Turn

| | Sensor
. S$1

G

Overall sensor

On Reset
(power on)

<=§>

State Diagram

Turn
Sensor output
s2 m |H|H S=81+82 M
[
Main Street Conditioned
Raw inputs nputs . FF FF
inputs outputs
$1 — s — > >
- > — - .g
S2 S o
— 1 [%
[] S
> —>
Label each
section of

logic:

P ()5 Vierbi (-
State Machine Review

State Diagrams State Machine

1. States 1. State Memory => FF’s
2. Transition Conditions = nFFs=>20states

2. Next State Logic (NSL) +
3. Outputs Input Function Logic (IFL)

— combinational logic for FF inputs
3. Output Function Logic (OFL)
MOORE: f(state)
MEALY: f(state + inputs)

State Machines require sequential logic to -
remember the current state

(w/ just combo logic we could only look at the -

current value of X, but now we can take 4 separate

N Input, (Next State). Current State,
actions when X=0) (px) D ()
o Q[oFL
D Q
(Output)
NSL) gl F
| L
| SM
Dy Q
1 D Q
— [t —
X=0 vy 1 ar
State Diagram for “101” |
Sequence Detector T
T
T

State Assignment

USCViterbi C2>

School of Engineering

Design of the traffic light controller with main turn arrow

Represent states with some binary code, but what kind?
— Encoded: 3 States => 2 bit code: 00=SSG, 01=MSG, 10=MTG
— One-hot: Separate FF per state: 100=SSG, 010=MSG, 001=MTG

Overall sensor
output
S=81+82

Turn
Sensor m U H
s2
1=1
[

Main Street

On Reset
(power on)

State
Diagram

USCViterbi G2

School of Engineering

NSL Implementation in 1-Hot Method

On Reset
(power on)

* In one-hot assignment, NSL is
designed by simple observation

cIMT QMS
ss 1 0 o0
MT 0 1 0
MS 0 0 1

¢ For each state, examine each
incoming transition
— Each incoming arrow will be one case in

our logic One-hot State Assignment
— We can just OR each condition together
* Describe each transition as a 4
combination of what state it —[psET o | Qus
originates from & any associated
T > CLR
conditions I o
|
e Ex. Two arrows converge on MS: 5 |
“Qus should be ‘1’ on the next clock _[p sET o] Qss :
when...
TN Par :
— Current state is MT ...OR... | | & Q
MT
— Current stat is SS AND S=0 ! | DSl
_____________ L]
> CLR

USCViterbi G2

School of Engineering

NSL Implementation in 1-Hot Method

On Reset
(power on)

QMT QMS
ss 1 0 o
MT 0 1 0

MS 0 0 1
One-hot State Assignment

* Two arrows converge on MS:
“Qys should be ‘1’ on the next
clock when...

— Current state is MT ...OR...
— Current state is SS AND S=0

* Q¥*ys=Dys = Qur + Qss°S’

USC Viterbi

chool of Engincering

Illustrative Example

e Consider the following state diagram

Process
L=0

On Reset

: (power on)

A+B

B+C

1 '
e Q*, =Dy = _DSETQ_QMS B+C
MT MT A+B
T + C(I?R v
| —> — S
. Q*SS = DSS = 4 | — —> LT >
p SET o] Css : — — > —>
A —— |
* What about initial state? Preset :‘ P C(!I_)R | It Input >
the appropriate flop. | : 5 SET | Qur Function
e Lo——> Logic Next State State Output Function
CLR (IFL) Logic Memory Logic
? (NSL) (SM) (OFL)
USC Viterbi Cs) | | USC Viterbi

School of Engineering

State Assignment & NSL

* Let us choose a one-hot state assignment (one
FF per state)

eeeeeee o) A A
{ wwwww = s] /PREQ— _D/PREQ_ _D/F’REQ_
Process
©) () o b | —par | —pag
A+B o (T)
/RESET —
* Next State Equations:
— DI = QI* =
_ — * —
Dp = Qp* =

—Dp=Qp* =

School of Engineering

IFL, NSL, & OFL

* Now we can draw the logic for each section

IED

S

w)
o

On Reset
(power on)
{ A+B B+C
Process
L=0

B+C

Waveform

* Recal, X=A+BandY=B+C

L is a combinational function
of the current state

USCViterbi Gap

hool of Engineering

USCViterbi 2
State Assignment & NSL

* Let us choose a one-hot state assignment (one
FF per state)

D._ o /PRE & DP_ /‘;%‘; |Qp D_D /‘/:%Z &
SvscLK I [S I G e svseux 1Py Do Doy
IRESET _J eser v ’7 (’7 T
x] * Next State Equations:
STATE _ DP - QP* - QP.(B_I_C) + Ql.(A_l_B)r
- —Dp = Qp* = Q.*(B+C)
USC Viterbi & USC Viterbi

School of Engin

IFL, NSL, & OFL

 Now we can easily draw the logic for each
section

IFL NSL
|————= 1 é ———————— 1 ar
A | I | =1
I : I Y g I : *
______ xp' 19 o
’ [
I__O_FL__.I Q |
Q Qp’
Qp > Do

SYSCLK

/RESET - i

School of Engineering

Waveform

 Recal, X=A+BandY=B+C

L is a combinational function
of the current state

SYSCLK

/RESET

X

Y

STATE Initil | Process§ Done { Initial

X

Process

N (JSC Viterbi (40
State Machine Summary

* 4 sections of state machine circuitry:

* In one-hot state encoding, a system with 5 states requires
flip-flops (flip-flops per)
* Inan encoded state encoding, a system with 5 states requires
___ flip-flops (FF’s for n states)

* When designing the NSL for a state, enumerate the conditions
associated with the (incoming/outgoing) transitions to that
state

* To implement the power-on reset condition in a one-hot state
encoding, connect the RESET signal to the input for
the FF associated with the initial state, and to the

signals of the other FF(s).

I USC Viterbi

hool of Engineering

Mealy- vs. Moore-style outputs

STATE MACHINE OUTPUTS

| USC\ﬁt?Fpi _
State Machine Outputs

» State Machine outputs can be classified
according to how the outputs are produced

— If Outputs = f(current state, other inputs)...
-Style

— If Outputs = f(current state)...
-Style

. USC Viterbi

School

Moore-Style Outputs

* Moore-style outputs only depend on the current state

* Thus, they are valid in the clock cycle and stay
nearly the entire
* Often requires extra states compared to Mealy-style
implementations

The inputs do not feed into the OFL, thus Moore-Style

1 of Engineering

inputs
. next current
o Next State Logic| state State state Outp_ut outputs
D. J./K.= Memory » Function —»
3 "o, | (Flip- Q Logic
! F|0ps) SYSCLK 4—1_J—Lmﬁ
Moore output meser | —
Depends on state [} X T
(State1) only : Y L
STATE Initid! Process
L S i .)

| USCVit,e.,r,bi _
Mealy-Style Outputs

* Mealy-style outputs depend not only on the current state
but the external inputs
* Thus, they may not be valid until in the clock cycle and

during the cycle if the inputs change

may
The inputs feed into the output function logic, thus Mealy
inputs
next current
Next State state State state OUIP}JI outputs
State 1 Logic D, JJK,| Memory *| Function [—>
o - Logic
4 .-
Mealy output :
Depends on state
. clock 13 8 3
(State1) & input (X) -
Notice the 3 sections of a state " smﬁ(° K%X—m
Delay Delay

machine drawn out here

| USCVit?.,rbi _
Mealy vs. Moore Update

* Consider the update/loading of a register, X, with X-25

Need to generate an X_LOAD signal
— Can be Moore or Mealy-style

Mealy

Moore

Check Check/Update
If X >25,

Perform comp.

X «— X-25

] USCVitqbi _
Divider

» Consider design of a sequential divider, (X /Y)

* Algorithm:
— Repeatedly subtract Y from X while X-Y=0 (or really X2Y).

— Quotient, Q, is simply how many subtractions were performed (i.e.
count how many times we performed X=X-Y)

— Use a subtractor to compute X-Y (if subtractor needs to borrow, then
we know X-Y <0 (or really X<Y)
* Sample Operation: X=13,Y=5
Q=0
X=X-Y=13-5=8, Q=1
X=X-Y=8-5=3,Q=2
Remainder =X =3

USC Viterbi

School of Engineering

Divider Datapath

e Datapath for Divider

Y_IN
Y_LOAD
Y_Reg
X Y
Subtractor
Borrow Z
—_—

Divider Control Unit

* Complete the state diagram
— What is the logic for X_Load

On Reset ACK

: (power on)

S

X>Y

USC Viterbi

School of Engineering

| USCVlterbl

0ol of Engine

Mealy vs. Moore Comparlson

Moore Implementation Mealy Implementation
We need to compare X with Y to * In a Mealy-style implementation
determine if we should increment we can compare and use the result
our quotient and update X to produce the enable and
If we want Moore-style enable and increment signals in the same clock

increment signals, we need a
separate compare & update state

s On Reset ACK
— (power on)

Initial
X« Xin
Y «Yin
i—0

Initial
X « Xin
Y < Yin

On Reset
(power on) —
S

s X=Y

Mealy Timing

USC Vlterbl G

School of Engineering

In Mealy-style implementation, we must
ensure the clock is long enough for control

signals to be produced

SYSCLK J |
13

3

X>=Y

(bO"OQ"'Q X_LOAD Y :X
R :V%A

' Subtractor
E Dalay

X_LOAD

Subfractor
Delay

USCViterbi G

School of Engineering

Control Signal Timing

* When identifying control signals in the datapath, be sure to
consider if the signal should be valid

—“During the clock”
* Must be valid shortly after the beginning of the clock
(e.g. mux selects, etc.)

* Usually must be produced as Moore-style output or
fast, Mealy output

—“At the end of the clock”

* Must be valid by the end of the clock (e.g. register load
enables)

* Can be produced by combo logic in datapath

_USCViterbi@
Datapath Design Example

School of Engineering

* Design a datapath to support the following RTL (Register
Transfer Level) operations
— Identify the control signals & other datapath components

YA Ve VB ¥V a |
X Y
suB/~ADD ALU

Z

Desired Operations:

C« A+B, ifFG=0,0
C«A-B, ifFG=0,1
R« P+Q, ifFG=1,0
R« P-Q, ifFG=1,1

| USCVit?.,rbi _
Divider Datapath

e Datapath for Divider

Y_IN
Y_LOAD
Y_Reg ‘
X Y
Subtractor
Borrow Z
—_—

USC Viterbi G

School of Engineering

MIN/MAX FINDER

. USC Viterbi _

School of Engineering

Min/Max Finder Description

* Sixteen 4-bit unsigned numbers are stored in a
16x4 (16 rows/addresses of 4-bits each)

* Iterate over all numbers and determine the 012 3 45 6
maximum (largest) and minimum (smallest)
number

data [s0]s1]s2]ss]sa] 0]

* First implement assuming (2) 4-bit comparators
are available

int min = data[@];
int max = data[@];
for(int i=1; i < N; i++)

* Repeat the implementation assuming (1) 4-bit
comparator is available

if(data[i] < min)
min = data[i];
if(data[i] > max)
max = data[i];

* Remember in HW we try to perform as many
operations in parallel as possible to achieve
speed (e.g. perform iteration counter increment }
in same clock as iteration)

* How many clocks do you think we need?

| USCVit,e.,r,bi @
Datapath Components

* The datapath requires...
— Two comparators (as per our first implementation description)
— A 16x4 memory

Addr

16x4
Mem.

Data

Comp.
GT EQ LT

Comp.
GT EQ LT

| USCVit?,r,bi _
Datapath Components

* Algorithm

— After a START signal is applied, load the zero-th (0-th) number in the memory
in both MAX and MIN registers.

— Enter an iterative loop for the first thru fifteenth numbers with both the
current known MAX and MIN values, updating the registers appropriately

— When all iterations are done (or about to be done?) go to a DONE state

* Draw a flow chart or state diagram

USC Viterbi

School of Engineering

Flow Chart

]
Compare v
b@» M[i] w/ MAX it
YES l
i<0 Compare
. i w/ MAXCNT
MAX « M[i] MAX « M[i]
" v NO
MIN « MI[i] Compare >
M(i] w/ MIN
. ‘L. NO YES
| — i+1 DONE
M[i] < MIN? ||
I e back to START
MIN « M[i]
—

USC Viterbi

School of Engineering

MinMax Control Unit

START

Load
L
Max — M[i]
START\ Min — Mii]

i —i+1

Add transition conditions Comp state operations

USC Viterbi

hool of Engineering

I USC Viterbi

School of Engineering

Control Signal Timing Example Early or Late?

* Consider a counting loop to iterate MAX times
* In hardware we try to perform as many operations in parallel as possible
* To iterate MAX times, what should we compare with i?

* Consider the following statement of building a
counter such that i increments
(i < i+1) on each clock

— (During the clock / At the end of the clock) you enable the

counter so that (during the clock / at the end of the clock)

it actually increments Perform g 1
—>| [
. — . process > Prepare Perform
* Consider designing a minutes & seconds counter %o e B
circuit with separate counters for each £3
— Option 1: After 60 seconds (during 615t second) enable the YES @
minutes counter Hardware Style
Loop
— Option 2: During the 60t second (after 59 seconds) enable
the minutes counter NO

I ()5 Viterbi (< USCViterbi &2

School of Engineerin

1 Comparator Datapath 1-Comparator Implementation

* The datapath now requires...
— One comparator
— A 16x4 memory

START

3

Load CompMax CompMin

— (2) registers to store current min / max L cM CN
— (1) 4-bit counter to counter iterations & address memory START Max — MI] If M[i] > Max
Min « MIi] Max — M[i] If M[i] < Min

Min «— M[i]

! L L] L

—{ CniEn Q ——>! Addr ‘ MaxReg ‘P ‘ MinReg LD‘

4-bit 16x4 &

Cntr. Mem. “
—> CLR A B

Comp.
T GT EQ P 1 Add transition conditions and add counter
increment statements

] USCViterbi
Transition Conditions

School of Engineering

* |s there any relationship between
conditions associated with incoming A B
transitions or outgoing transitions? ¢

* Qutgoing transitions must be
- (
- (

conditions true)

conditions true)

I USC Viterbi

1.1

hool of Engineering

Example: Vote Counting Machine

Maijority vote for a 5-vote case: In your homework #8, you have designed a
state machine to inspect four votes serially to find majority vote. Thisis a
similar problem with FIVE votes instead of FOUR votes. Majority means

three YES votes in the five-vote case also. The six states are: .y
gt
71 Mot
I = INITIAL QL mce s % LV
e il we
CIN = continuing COUNTING votes '
after seeing one (1) NO vote |
C2N = continuing COUNTING votes md’
after seeing two (2) NO votes
W = WON the majority vote 8o me5 |
L = LOST the majority vote Q.;— et

Complete the state diagram.

USC Viterbi 0

Vote State Machine Conditions

Have seen 3 YES Votes
Have seen 2 YES votes
an am seeing a YES

vote

e Remain in C until...
— Find a NO vote...
* ..then goto C1N

— Have enough YES votes to
guarantee victory...
* ..then go to WON

Neither of

the two Seeing a no vote

MC3 means we are
looking at V3 and still in
state C (i.e. V0,1,2 = yes)

Why is this wrong?

USC Viterbi

School of Engineering

Control / Datapath Interaction

We have used the analogy of the control unit as a manager
and datapath as workers

Consider the DPU as individual workers (plumbers,
electricians,...) who need to be told what to do each hour
(each clock cycle)

The control unit uses the current state (updated each clock
cycle) to determine what work (control signals) should be
performed each hour (clock cycle)

Control signals generated by state machines may fall into one
of two sets:

— Mealy-style outputs

— Moore-style outputs

I []S Viterbi (2 | I [/SC Viterbi (70

School of Engineering chool of Engincering

Control Output Summary

* A -style output is conditioned upon the
current state AND other input signals

c A -style output is conditioned only
upon the current state

* In synchronous digital systems, you must

prepare a control signal so the TRI-STATE OUTPUTS & BUSES

effect takes place at the
(beginning of next clock)

USC Viterbi G20 USC Viterbi C72
Typical Logic Gate Output Connections
. Gates'c?f\ output two Yallules: 0&1 Hot Water = Logic 1
— Logic 1" (vdd = 3V), or Logic ‘0" (Vss = GND) » Can we connect the output of two logic gates together?
* Analogy: a sink faucet
— 2 possibilities: Hot (‘1’) or Cold (‘0’)
* Inputs cause EITHER a pathway from
output to VDD OR VSS Vad Inputs
+3V +3V BE | v
—I‘—\ T | : & Src 1
\ np:uts rrrrrrrrrrrrrrrrrrrrrrrrrrrrrr
» PMOS > % vdd |
; > 1 Vss
Inputs \‘,‘ Inputs | Feeeeemeeqreeeeeeed u *— :I) oot I
— l—> — '_» nputs
Output oLt Output i vdd ’:u
/’ i — | |
> % > NMQS _I__.-‘_._ H Src 2
,‘ :D Src 3 1 o—
| ------------------ Ves | Vss .[>

I USC Viterbi G

Tri-State Buffers

Gates can output two values: 0 & 1

1. Logic0=0volts
2. Logic1l=5volts

Tristate buffers can output a third

value:
3. =

(no connection to any voltage source)

Analogy: a sink faucet

— 3 possibilities:
1.) Hot water,
2.) Cold water,
3))

Inputs

School of Engineering

> NMOS

@L

Hot Water = Logic 1

I USC Viterbi

Tri-State Buffers

* Tri-state buffers have
an extra enable input

* When disabled, output
isZ

* When enabled, normal
buffer

chool of Engincering

Tri-State Buffer

In Out
Enable
En In | Out
0 X Z
1 0 0
1 1 1

Tri-State Buffers

* We use tri-state buffers to share one output
amongst several sources

Rule:

Src 1

D

b

EN1

Src 2

USCViterbi C72

School of Engineering

D

j

EN2

EN3

D-FF
>cLk Q

. USC Viterbi

Tri-State Buffers

School of Engineering

* We use tri-state buffers to share one output amongst several

sources

* When 1 buffer enabled, its output overpowers the Z’s (no

connection) from the other gates

:D 0 0
Select source E -
1to passits —— 4

data

output of 0
overpowers
the Z

»—D Qr
D-FF

—>clk Qf

Disabled
buffers
output ‘Z’

I USC Viterbi G

School of Engineering

Communication Connections

* Multiple entities need to communicate

* We could use
— Point-to-point connections
—A

Separate point to point
connections

] USCViterbi
Bidirectional Bus

chool of Engincering

. transmitter (otherwise bus contention)

* N receivers

| _— ! !
H 1 P 0 b 0 !

o 911 o 911 o 911 o 91
pevieer | L ioeieez | b i T b peveen |

. USC Viterbi

School of Engineering

Tri-State Buffer / Bussing Summary

* Provide a 3 output value:

* Allows multiple outputs to be wired together
* Only bus driver can be enabled at a time

USC Viterbi

School of Engineering

MICROARCHITECTURE EXAMPLE

I USC Viterbi

School of Engineering

Digital Design Goals

* Digital systems seek to optimize a design
along these three axes:

Area
— Area (size)
Power
— Speed
— Power Consumption
Speed

* Can often only optimize one or two of
these without sacrificing the other(s)

— Just as in software design, there is a classic
time/space trade-off

— Microarchitecture can determine where a
design falls in this trade space

] USCVit?.,rbi _
Different Architectures

Single Bus Two-Bus Three Bus
e = N T
| R1 — | R1 = o R1 —

Rn }'-’ Rn \H_’ -ﬁ Rn —
veee | (Ovree © © oo
| — | [| T
ALU ALU ALU
! ¥ 1
ZReg. — [zRes. | |1@zres

Clock 1: Z = Rsrc1 + Rsrc2 Clock 1: Rdst = Rsrc1 + Rsrc2

Clock 2: Rdst =2

Clock 1: Y = Rsrc1
Clock 2: Z=Rsrc2 + Y
Clock 3: Rdst =2

General Implications: Less Resources => More Clock Cycles (Time)

