
1.1

EE 457 Unit 1

Overview of Digital System Design

1.2

Credits

• These slides were derived from Gandhi

Puvvada’s EE 457 Class Notes

1.3

REGISTERS & DATA ENABLES

Clocking Strategies

1.4

Registers

• A Register is a group of D-FF’s
tied to a common clock and
clear (reset) input

– Clear can be asynchronous or
synchronous

• Used to store multiple bit
values on each clock cycle

Qi*DiRSTCLK

QiXX1,0

0X1 ↑

000 ↑

110 ↑ 4-bit Register

D Q

CLR

RST

D Q

CLR

D Q

CLR

D Q

CLR

CLK

D3

D2

D1

D0

Q3

Q2

Q1

Q0

1.5

A0

A1

A2

A3

B0

B1

B2

B3

S0

S1

S2

S3

4-bit

Adder

X0

X1

X2

X3

D

CLR

Q

D Q

D Q

D Q

Clock

Y0

Y1

Y2

Y3

Z0

Z1

Z2

Z3

CLR

CLR

CLR

Reset

Example: Accumulator

• Sum a time-based sequence of numbers

• A register usually stores a single logic value (i.e. a number)

Register

time

X 2

Clock

3 9

Reset

Y 2 5 14

Z 0 2 5 14

9, 3, 2

1.6

Synchronous vs. Asynchronous

• The set/preset and clear inputs can be built to be synchronous

or asynchronous

• These terms refer to when the initialization takes place

– Asynchronous Reset (AR): Initialization of Q takes effect immediately

regardless of the CLK

– Synchronous Reset (SR): Initialization of Q takes effect only at an edge

(clear must be active at the edge)

AsynchronousSynchronous

Clock

Q’s

Clock

CLR

Q’s

Synchronous SET or CLR

means the signal must be

active at a clock edge before
Q will initialize

CLR

Asynchronous SET or CLR

means Q will initialize as soon

as the SET or CLR signal is
activated

1.7

Registers

• Whatever the D value is at the clock edge is sampled

and passed to the Q output until the next clock edge

4-bit Register – On clock edge, D is passed to Q

CLK

RST

D[3:0]

Q[3:0] 0000

0011 0100 0101 0110 0111 1000 1001 10100010

0011 0100 0101 0110 0111 1000 1001?

1.8

Selective Loading/Registering of Data

• What if we only want a register

to capture data on selective

clocks (and not on EVERY clock)

– Clocks are indicated with a “LOAD”

signal

4-bit Register

Want to load the register on the indicated

clock cycles and have it retain its value in the

other cycles

D Q

CLR

RST

D Q

CLR

D Q

CLR

D Q

CLR

CLK

D3

D2

D1

D0

Q3

Q2

Q1

Q0

1.9

Clocking Option 1

• Use Load as the clock signal

• (Does/Doesn’t) Work.

• ________________

LOAD =

Desired

Load time

Actual Load

time

D Q

CLR

RST

D Q

CLR

D Q

CLR

D Q

CLR

CLK

D3

D2

D1

D0

Q3

Q2

Q1

Q0

1.10

Clocking Option 2

• Use ~Load (inverted Load) as the

clock signal

• (Does/Doesn’t) Work.

• ________________

~LOAD =

Desired

Load time

Actual Load

time

D Q

CLR

RST

D Q

CLR

D Q

CLR

D Q

CLR

CLK

D3

D2

D1

D0

Q3

Q2

Q1

Q0

1.11

Glitches

• Temporary (transient) incorrect / toggling output values

due to differing delay paths of the inputs

– Eventually output settles to correct value

– Unless a circuit is specially designed, glitches are possible on all

circuits

1.12

Successive Loading Clocks

• If load is held high on two successive clock

cycles will get _________ edge(s)

1.13

Option 3

• Gate the clock with the load

signal

• Also susceptible to glitches

4-bit Register

D Q

CLR

RST

D Q

CLR

D Q

CLR

D Q

CLR

CLK

D3

D2

D1

D0

Q3

Q2

Q1

Q0

1.14

Option 4: Feedback mux

• Registers (D-FF’s) will sample the D
bit every clock edge and pass it to Q

• Sometimes we may want to hold the
value of Q and ignore D even at a
clock edge

• We can add an enable input and
some logic in front of the D-FF to
accomplish this

FF with Data Enable

(Always clocks, but selectively

chooses old value, Q, or new

value D)

D Q

CLR

D

Q
0

1
Y

S

EN
CLK
RST

Qi*DiENARCLK

0XX1X

QiXX00,1

QiX00↑

0010 ↑

1110↑

AR

1.15

D Q

CLR

D

Q
0

1
Y

S

EN
CLK
RST

Registers w/ Enables

• When EN=0, Q value is

passed back to the input

and thus Q will maintain its

value at the next clock edge

• When EN=1, D value is

passed to the input and

thus Q will change at the

edge based on D

When EN=0, Q is

recycled back to the input

1

When EN=1, D input is

passed to FF input

D
D

D Q

CLR

D

Q
0

1
Y

S

EN
CLK
RST

0

Q
Q

1.16

Registers w/ Enables

• The D value is sampled at the clock edge only
if the enable is active

• Otherwise the current Q value is maintained

CLK

RST

EN

D[3:0]

Q[3:0] 0000 0101 0111 1000

0011 0100 0101 0110 0111 1000 1001 10100010

1.17

Register With or Without An Enable
Free-Running Register

When to use one vs. the other?

• Free-running register: Do you want to update the stored value EVERY edge

• Register w/ Enable: In all other cases…

D Q

CLR

RST

D Q

CLR

D Q

CLR

D Q

CLR

CLK

D3

D2

D1

D0

Q3

Q2

Q1

Q0
0

1
Y

S

0

1
Y

S

0

1
Y

S

0

1
Y

S

EN

D Q

CLR

RST

D Q

CLR

D Q

CLR

D Q

CLR

CLK

D3

D2

D1

D0

Q3

Q2

Q1

Q0

Register with Load (Data) Enable

1.18

Counters

• Increment (Add 1 to Q) at each

clock edge

– Up Counter: Q* = Q + 1

• Standard counter components

include other features

– Enables: Will not count at edge if

EN=0

– Resets: Reset count to 0

– Parallel Load Inputs: Can initialize

count to a value P (i.e. Q* = P rather

than Q+1)

R
e

g
is

te
r

1

A
d
d

e
r

(+
)

Q

RESET

CLK

1.19

Sample 4-bit Counter

• 4-bit Up Counter

– RST: synchronous reset input

– PE and Pi inputs: loads Q
with P when PE is active

– CE: Count Enable

• Must be active for the
counter to count up

– TC (Terminal Count) output

• Active when Q=1111 AND
counter is enabled

• TC = EN•Q3•Q2•Q1•Q0

• Indicates that on the next
edge it will roll over to 0000

• Used to create 8-, 12-, 16-
bit, etc. counters from these
4-bit building blocks

Q*CEPERSTCLK

QXXX0,1

0XX1↑

 ↑

 ↑

↑

CLK

P0
P1
P2
P3

Q0
Q1
Q2
Q3

TC
PE

RST

4-bit
CNTR

CE

1.20

Counter Design

• Sketch the design of the 4-bit counter

presented on the previous slides

CLK

D[3:0] Q[3:0]

Reg

CLR

D[3:0]

LD

RST

CE

CLK

Q[3:0]

+

0

1 0

1

0001

1.21

Counters

SR=active

at clock

edge, thus

Q=0

Q*=Q+1 Enable

= off,

thus Q

holds

PE =

active,

thus

Q=P

Q*=Q+1 Q*=Q+1 Q*=Q+1 Q*=Q+1

Mealy TC output:

EN•Q3•Q2•Q1•Q0

0000

CLK

RST

CE

PE

P3-P0

Q3-Q0 0001 0010 0011 1110 1111

TC

1110

1 0000

1.22

Reference Verilog

• Verilog description of a register with enable

and counter with load and count enable
module reg16e(

input clk,

input reset,

input en,

input [15:0] d,

output reg [15:0] q

);

always @(posedge clk)

begin

if(reset)

q <= 16'd0;

else if(en)

q <= d;

end

endmodule

module cntr16ce(

input clk,

input reset,

input load,

input ce,

input [15:0] d,

output reg [15:0] q

);

always @(posedge clk)

begin

if(reset == 1)

q <= 16'd0;

else if(load == 1)

q <= d;

else if(ce == 1)

q <= q+1;

end

endmodule
16-bit Register w/ Enable

16-bit Counter w/ Load
and Count Enable

1.23

Data Register Summary

• Understand the operation of a free-running

register, register w/ data/load enable, and a

counter with count enables, etc.

1.24

SYNCHRONOUS SYSTEM DESIGN

TECHNIQUES

Datapath and Control Unit Decomposition

1.25

Digital System Design

• Control (CU) and Datapath Unit (DPU) paradigm

– Separate logic into datapath elements that operate on data and

control elements that generate control signals for datapath elements

– Datapath: Adders, muxes, comparators, counters, registers (w/

enables), memories, FIFO’s

– Control Unit: State machines/sequencers

Datapath

Control

…

…

1.26

Datapath + Control

• The control unit acts as scheduler and manager while

the datapath “does” the work

– Similar division of labor in many other areas

– Control signals include: __________, __________,

________ enables, output enables, etc.

Datapath

(DPU)

Control (CU)

Workers

Manager

Construction

Company

Puppeteer

Puppets

1.27

Identifying Control Signals

• Design a datapath to support the following RTL (Register

Transfer Level) operations

– Identify the control signals & other datapath components

A P B Q

ALUSUB/~ADD

C R

X Y

Z

C ← A+B, if F,G=0,0

C ← A-B, if F,G=0,1

R ← P+Q, if F,G=1,0

R ← P-Q, if F,G=1,1

L L

Desired Operations:

1.28

STATE MACHINE (CONTROL UNIT)

DESIGN

One-hot State Machine Design

1.29

Digital System Representation

Main Street

Turn

Sensor

S1

Turn

Sensor

S2

Overall sensor

output

S = S1 + S2

S
S1

S2

FF
inputs

FF
outputs

O
u

tp
u

ts

Raw inputs
Conditioned

inputs

State Diagram

Label each
section of

logic:

1.30

State Machine Review
State Diagrams

1. States

2. Transition Conditions

3. Outputs

State Machine

1. State Memory => FF’s

– n-FF’s => 2n states

2. Next State Logic (NSL) +

Input Function Logic (IFL)

– combinational logic for FF inputs

3. Output Function Logic (OFL)

– MOORE: f(state)

– MEALY: f(state + inputs)

SM

NSL

OFLD Q

Q

D Q

Q

Q0

Q1

D0

D1

X

CLK

F

(Input) (Next State) (Current State)

(Output)

State Diagram for “101”

Sequence Detector

X=1

S101S10S1Sinit

X=0 X=1

X=0

X=1

F=1
X=1 X=0

X=0

On Reset

(power on)

F=0F=0F=0

State Machines require sequential logic to
remember the current state

(w/ just combo logic we could only look at the
current value of X, but now we can take 4 separate

actions when X=0)

1.31

State Assignment

• Design of the traffic light controller with main turn arrow

• Represent states with some binary code, but what kind?

– Encoded: 3 States => 2 bit code: 00=SSG, 01=MSG, 10=MTG

– One-hot: Separate FF per state: 100=SSG, 010=MSG, 001=MTG

Main Street

Turn

Sensor

S1

Turn

Sensor

S2

Overall sensor

output

S = S1 + S2

State
Diagram

1.32

NSL Implementation in 1-Hot Method

• In one-hot assignment, NSL is

designed by simple observation

• For each state, examine each

incoming transition

– Each incoming arrow will be one case in

our logic

– We can just OR each condition together

• Describe each transition as a

combination of what state it

originates from & any associated

conditions

• Ex. Two arrows converge on MS:

“QMS should be ‘1’ on the next clock

when…

– Current state is MT ...OR…

– Current stat is SS AND S=0

QMSQMTQSS

001SS

010MT

100MS

One-hot State Assignment

1.33

NSL Implementation in 1-Hot Method

• Two arrows converge on MS:

“QMS should be ‘1’ on the next

clock when…

– Current state is MT ...OR…

– Current state is SS AND S=0

• Q*MS = DMS = QMT + QSS••••S’

• Q*MT = DMT =

• Q*SS = DSS =

• What about initial state? Preset

the appropriate flop.

QMSQMTQSS

001SS

010MT

100MS

One-hot State Assignment

1.34

Illustrative Example

• Consider the following state diagram

Input
Function

Logic
(IFL)

Next State
Logic
(NSL)

State
Memory

(SM)

Output Function
Logic
(OFL)

1.35

State Assignment & NSL

• Let us choose a one-hot state assignment (one

FF per state)

• Next State Equations:

– DI = QI* =

– DP = QP* =

– DD = QD* =

1.36

IFL, NSL, & OFL

• Now we can draw the logic for each section

DI

DP

DD

NSL

1.37

Waveform

• Recall, X = A+B and Y = B + C

• L is a combinational function

of the current state

STATE

SYSCLK

/RESET

X

Y

L

1.38

State Assignment & NSL

• Let us choose a one-hot state assignment (one

FF per state)

• Next State Equations:

– DI = QI* = QI•(A+B) + QD

– DP = QP* = QP•(B+C) + QI•(A+B)’

– DD = QD* = QP•(B+C)’

1.39

IFL, NSL, & OFL

• Now we can easily draw the logic for each

section
IFL

A

B

C

X

Y

OFL

QI

QD
L

NSL

QI

QD

QI
*

DI

QP
*

DP

QD
*

DD

X

Y
QP

QI

X’

Y’
QP

1.40

Waveform

• Recall, X = A+B and Y = B + C

• L is a combinational function

of the current state

STATE Initial Process Done Initial Process

SYSCLK

/RESET

X

Y

L

1.41

State Machine Summary

• 4 sections of state machine circuitry: _______________

• In one-hot state encoding, a system with 5 states requires

____ flip-flops (____ flip-flops per ______)

• In an encoded state encoding, a system with 5 states requires

___ flip-flops (_______ FF’s for n states)

• When designing the NSL for a state, enumerate the conditions

associated with the (incoming/outgoing) transitions to that

state

• To implement the power-on reset condition in a one-hot state

encoding, connect the RESET signal to the ______ input for

the ____ FF associated with the initial state, and to the

______ signals of the other FF(s).

1.42

STATE MACHINE OUTPUTS

Mealy- vs. Moore-style outputs

1.43

State Machine Outputs

• State Machine outputs can be classified

according to how the outputs are produced

– If Outputs = f(current state, other inputs)…

_______-Style

– If Outputs = f(current state)…

_______-Style

1.44

State 1
Z = 1

Moore-Style Outputs

• Moore-style outputs only depend on the current state

• Thus, they are valid ______ in the clock cycle and stay

___________ nearly the entire

• Often requires extra states compared to Mealy-style

implementations

The inputs do not feed into the OFL, thus Moore-Style

Next State Logic State
Memory

(Flip-

Flops)

Output
Function

Logic

inputs

outputs
next
state

current
state

clock

Qi
Di , Ji/Ki,

etc.

Moore output
Depends on state

(State1) only

1.45

State 1
if x>0, Z = 1

Mealy-Style Outputs

• Mealy-style outputs depend not only on the current state

but the external inputs

• Thus, they may not be valid until _____ in the clock cycle and

may ________ during the cycle if the inputs change

Notice the 3 sections of a state
machine drawn out here

Next State
Logic

State
Memory

(Flip-
Flops)

Output
Function

Logic

inputs

outputs
next

state

current

state

clock

The inputs feed into the output function logic, thus Mealy

Qi
Di , Ji/Ki,

etc.

Mealy output
Depends on state

(State1) & input (X)

1.46

Mealy vs. Moore Update

• Consider the update/loading of a register, X, with X-25

• Need to generate an X_LOAD signal

– Can be Moore or Mealy-style

Moore

Update

 X ← X-25

Moore

Check

Perform comp.

X ≥ 25

X < 25

1.47

Divider

• Consider design of a sequential divider, (X / Y)

• Algorithm:

– Repeatedly subtract Y from X while X-Y≥0 (or really X≥Y).

– Quotient, Q, is simply how many subtractions were performed (i.e.

count how many times we performed X=X-Y)

– Use a subtractor to compute X-Y (if subtractor needs to borrow, then

we know X-Y < 0 (or really X < Y)

• Sample Operation: X = 13, Y = 5

– Q = 0

– X = X – Y = 13 – 5 = 8, Q = 1

– X = X – Y = 8 – 5 = 3, Q = 2

– Remainder = X = 3

1.48

Divider Datapath

• Datapath for Divider

Y_Reg

Subtractor

X Y

Z

X_Reg

Borrow

X_LOAD Y_LOAD1 0

Y_INX_IN

1.49

Divider Control Unit

• Complete the state diagram

– What is the logic for X_Load

Initial

On Reset

(power on)

Count Done

S

S X ≥ Y

X ≥ Y

ACK

ACK

1.50

Mealy vs. Moore Comparison

Moore Implementation

• We need to compare X with Y to

determine if we should increment

our quotient and update X

• If we want Moore-style enable and

increment signals, we need a

separate compare & update state

Mealy Implementation

• In a Mealy-style implementation

we can compare and use the result

to produce the enable and

increment signals in the same clock

1.51

Mealy Timing

• In Mealy-style implementation, we must

ensure the clock is long enough for control

signals to be produced

1.52

Control Signal Timing

• When identifying control signals in the datapath, be sure to

consider if the signal should be valid

–“During the clock”
• Must be valid shortly after the beginning of the clock

(e.g. mux selects, etc.)

• Usually must be produced as Moore-style output or

fast, Mealy output

–“At the end of the clock”
• Must be valid by the end of the clock (e.g. register load

enables)

• Can be produced by combo logic in datapath

1.53

Datapath Design Example

• Design a datapath to support the following RTL (Register

Transfer Level) operations

– Identify the control signals & other datapath components

A P B Q

ALU

0 1 0 1

SUB/~ADD

C R

X Y

Z

L L

C ← A+B, if F,G=0,0

C ← A-B, if F,G=0,1

R ← P+Q, if F,G=1,0

R ← P-Q, if F,G=1,1

Desired Operations:

1.54

Divider Datapath

• Datapath for Divider

Y_Reg

Subtractor

X Y

Z

X_Reg

Borrow

X_LOAD Y_LOAD1 0

Y_INX_IN

1.55

MIN/MAX FINDER

1.56

Min/Max Finder Description

• Sixteen 4-bit unsigned numbers are stored in a

16x4 (16 rows/addresses of 4-bits each)

• Iterate over all numbers and determine the

maximum (largest) and minimum (smallest)

number

• First implement assuming (2) 4-bit comparators

are available

• Repeat the implementation assuming (1) 4-bit

comparator is available

• Remember in HW we try to perform as many

operations in parallel as possible to achieve

speed (e.g. perform iteration counter increment

in same clock as iteration)

• How many clocks do you think we need?

int min = data[0];

int max = data[0];

for(int i=1; i < N; i++)

{

if(data[i] < min)

min = data[i];

if(data[i] > max)

max = data[i];

}

30 51 52 53 54

0 1 2 3 4 5

10

6

data 21

1.57

Datapath Components

• The datapath requires…

– Two comparators (as per our first implementation description)

– A 16x4 memory

– ___________________________________

– ____________________________________

Comp.
A B

GT EQ LT
Comp.
A B

GT EQ LT

16x4

Mem.

Addr

D
a
ta

1.58

Datapath Components

• Algorithm

– After a START signal is applied, load the zero-th (0-th) number in the memory

in both MAX and MIN registers.

– Enter an iterative loop for the first thru fifteenth numbers with both the

current known MAX and MIN values, updating the registers appropriately

– When all iterations are done (or about to be done?) go to a DONE state

• Draw a flow chart or state diagram

1.59

Flow Chart

i ← 0

Start

MAX ← M[i]

MIN ← M[i]

i ← i+1

Compare

M[i] w/ MAX

M[i] > MAX?

MAX ← M[i]

Compare

M[i] w/ MIN

M[i] < MIN?

MIN ← M[i]

i ← i+1

Compare

i w/ MAXCNT

i == MAXCNT

DONE

(back to START

NO YES

YESNO

NO

YES

NO

YES

1.60

MinMax Control Unit

Initial

I

i ← 0

Load

L

Max ← M[i]

Min ← M[i]

i ← i+1

Done

D

START

START

Comp

C

Add transition conditions Comp state operations

1.61

Control Signal Timing Example

• Consider the following statement of building a

counter such that i increments

(i ← i+1) on each clock

– (During the clock / At the end of the clock) you enable the

counter so that (during the clock / at the end of the clock)

it actually increments

• Consider designing a minutes & seconds counter

circuit with separate counters for each

– Option 1: After 60 seconds (during 61st second) enable the

minutes counter

– Option 2: During the 60th second (after 59 seconds) enable

the minutes counter

1.62

Early or Late?

• Consider a counting loop to iterate MAX times

• In hardware we try to perform as many operations in parallel as possible

• To iterate MAX times, what should we compare with i?

Perform

process

i < MAX?

i = i+1

i = 0

YES

NO

i = 0

Perform

process

Prepare

i* = i+1
Compare

i < ____

NO

YES

S
o

ft
w

a
re

 S
ty

le

L
o

o
p

Hardware Style
Loop

1.63

1 Comparator Datapath

• The datapath now requires…

– One comparator

– A 16x4 memory

– (2) registers to store current min / max

– (1) 4-bit counter to counter iterations & address memory

MinRegMaxReg

Comp.
A B

GT EQ LT

16x4

Mem.

Addr

D
a
ta4-bit

Cntr.

CntEn Q

CLR

LDLD

0 1

1.64

1-Comparator Implementation

Add transition conditions and add counter
increment statements

1.65

Transition Conditions

• Is there any relationship between

conditions associated with incoming

transitions or outgoing transitions?

• Outgoing transitions must be

– ____________ (____ conditions true)

– ____________ (____ conditions true)

A B

C

A
B C

1.66

Example: Vote Counting Machine

1.67

Vote State Machine Conditions

• Remain in C until…

– Find a NO vote…

• …then go to C1N

– Have enough YES votes to

guarantee victory…

• …then go to WON

C C1N

WON

Seeing a no vote

Neither of
the two

C

• Have seen 3 YES Votes
• Have seen 2 YES votes

an am seeing a YES
vote

WON

V

MC3

Why is this wrong?

MC3 means we are
looking at V3 and still in
state C (i.e. V0,1,2 = yes)

1.68

Control / Datapath Interaction

• We have used the analogy of the control unit as a manager

and datapath as workers

• Consider the DPU as individual workers (plumbers,

electricians,…) who need to be told what to do each hour

(each clock cycle)

• The control unit uses the current state (updated each clock

cycle) to determine what work (control signals) should be

performed each hour (clock cycle)

• Control signals generated by state machines may fall into one

of two sets:

– Mealy-style outputs

– Moore-style outputs

1.69

Control Output Summary

• A ______-style output is conditioned upon the

current state AND other input signals

• A ______-style output is conditioned only

upon the current state

• In synchronous digital systems, you must

prepare a control signal ____________ so the

effect takes place at the ______________

(beginning of next clock)

1.70

TRI-STATE OUTPUTS & BUSES

1.71

Typical Logic Gate
• Gates can output two values: 0 & 1

– Logic ‘1’ (Vdd = 3V), or Logic ‘0’ (Vss = GND)

• Analogy: a sink faucet

– 2 possibilities: Hot (‘1’) or Cold (‘0’)

• Inputs cause EITHER a pathway from

output to VDD OR VSS

Hot Water = Logic 1

Cold Water = Logic 0

+3V

PMOS

NMOS

Output

Inputs

Vdd

Vss

Inputs

+3V

PMOS

NMOS

Output

Inputs

1.72

Output Connections

• Can we connect the output of two logic gates together?

Src 1

Src 2

Src 3

Vdd

Vss

Inputs

Vdd

Vss

Inputs

Src 1

Src 2

1.73

Tri-State Buffers

• Gates can output two values: 0 & 1

1. Logic 0 = 0 volts

2. Logic 1 = 5 volts

• Tristate buffers can output a third

value:

3. ____ = ___________________

(no connection to any voltage source)

• Analogy: a sink faucet

– 3 possibilities:

1.) Hot water,

2.) Cold water,

3.) _____________
Hot Water = Logic 1

Cold Water = Logic 0

+3V

PMOS

NMOS

OutputInputs

1.74

Tri-State Buffers

• Tri-state buffers have

an extra enable input

• When disabled, output

is Z

• When enabled, normal

buffer OutInEn

Zx0

001

111

In Out

Enable

Tri-State Buffer

E

1.75

Tri-State Buffers

• We use tri-state buffers to share one output
amongst several sources

• Rule: ______________________________

E

E

E

Src 1

Src 2

Src 3

EN1

EN2

EN3

D Q

QCLK

D-FF

1.76

Tri-State Buffers

• We use tri-state buffers to share one output amongst several
sources

• When 1 buffer enabled, its output overpowers the Z’s (no
connection) from the other gates

0

1

0

1

0

0

Select source
1 to pass its

data

Disabled
buffers

output ‘Z’

Z

0

Z

output of 0
overpowers

the Z

0

E

E

E

D Q

QCLK

D-FF

1.77

Communication Connections

• Multiple entities need to communicate

• We could use

– Point-to-point connections

– A _______________________

Separate point to point
connections

1.78

Bidirectional Bus

• ___ transmitter (otherwise bus contention)

• N receivers

0 1 0 0

1.79

Tri-State Buffer / Bussing Summary

• Provide a 3rd output value: ________________

• Allows multiple outputs to be wired together

• Only _____ bus driver can be enabled at a time

1.80

MICROARCHITECTURE EXAMPLE

1.81

Digital Design Goals

• Digital systems seek to optimize a design

along these three axes:

– Area (size)

– Speed

– Power Consumption

• Can often only optimize one or two of

these without sacrificing the other(s)

– Just as in software design, there is a classic

time/space trade-off

– Microarchitecture can determine where a

design falls in this trade space

Area

Power

Speed

1.82

Different Architectures

R0

R1

Rn

Y Reg.

ALU

Z Reg.

Single Bus

Clock 1: Y = Rsrc1
Clock 2: Z = Rsrc2 + Y
Clock 3: Rdst = Z

R0

R1

Rn

Y Reg.

ALU

Z Reg.

Two-Bus

Clock 1: Z = Rsrc1 + Rsrc2
Clock 2: Rdst = Z

R0

R1

Rn

Y Reg.

ALU

Z Reg.

Three Bus

Clock 1: Rdst = Rsrc1 + Rsrc2

General Implications: Less Resources => More Clock Cycles (Time)

