
1.1

EE 457 Unit 1

Overview of Digital System Design

1.2

Credits

• These slides were derived from Gandhi
Puvvada’s EE 457 Class Notes

1.3

REGISTERS & DATA ENABLES
Clocking Strategies

1.4

Registers

• A Register is a group of D-FF’s
tied to a common clock and
clear (reset) input
– Clear can be asynchronous or

synchronous

• Used to store multiple bit
values on each clock cycle

CLK RST Di Qi*

1,0 X X Qi

↑ 1 X 0

↑ 0 0 0

↑ 0 1 1 4-bit Register

D Q

CLR

RST

D Q

CLR

D Q

CLR

D Q

CLR

CLK

D3

D2

D1

D0

Q3

Q2

Q1

Q0

1.5

A0

A1

A2

A3

B0

B1

B2

B3

S0

S1

S2

S3

4-bit

Adder

X0

X1

X2

X3

D

CLR

Q

D Q

D Q

D Q

Clock

Y0

Y1

Y2

Y3

Z0

Z1

Z2

Z3

CLR

CLR

CLR

Reset

Example: Accumulator

• Sum a time-based sequence of numbers

• A register usually stores a single logic value (i.e. a number)

Register

time

X 2

Clock

3 9

Reset

Y 2 5 14

Z 0 2 5 14

9, 3, 2

1.6

Synchronous vs. Asynchronous

• The set/preset and clear inputs can be built to be synchronous
or asynchronous

• These terms refer to when the initialization takes place
– Asynchronous Reset (AR): Initialization of Q takes effect immediately

regardless of the CLK

– Synchronous Reset (SR): Initialization of Q takes effect only at an edge
(clear must be active at the edge)

AsynchronousSynchronous

Clock

Q s

Clock

CLR

Q s

Synchronous SET or CLR

means the signal must be

active at a clock edge before

Q will initialize

CLR

Asynchronous SET or CLR

means Q will initialize as soon

as the SET or CLR signal is

activated

1.7

Registers

• Whatever the D value is at the clock edge is sampled
and passed to the Q output until the next clock edge

4-bit Register – On clock edge, D is passed to Q

CLK

RST

D[3:0]

Q[3:0] 0000

0011 0100 0101 0110 0111 1000 1001 10100010

0011 0100 0101 0110 0111 1000 1001?

1.8

Selective Loading/Registering of Data

• What if we only want a register
to capture data on selective
clocks (and not on EVERY clock)

– Clocks are indicated with a “LOAD”
signal

4-bit Register

SYSCLK

LOAD

Want to load the register on the indicated

clock cycles and have it retain its value in the

other cycles

D Q

CLR

RST

D Q

CLR

D Q

CLR

D Q

CLR

CLK

D3

D2

D1

D0

Q3

Q2

Q1

Q0

1.9

Clocking Option 1

• Use Load as the clock signal

• Doesn’t Work. Clocks too early

LOAD =

SYSCLK

LOAD

Desired

Load time

Actual Load

time

D Q

CLR

RST

D Q

CLR

D Q

CLR

D Q

CLR

CLK

D3

D2

D1

D0

Q3

Q2

Q1

Q0

1.10

Clocking Option 2

• Use ~Load (inverted Load) as the
clock signal

• Doesn’t Work…Glitches or
successive loading cycles

~LOAD =

Desired

Load time

Actual Load

time

SYSCLK

~LOAD

D Q

CLR

RST

D Q

CLR

D Q

CLR

D Q

CLR

CLK

D3

D2

D1

D0

Q3

Q2

Q1

Q0

1.11

Glitches

• Temporary (transient) incorrect / toggling output values
due to differing delay paths of the inputs
– Eventually output settles to correct value

– Unless a circuit is specially designed, glitches are possible on all
circuits

A

B

F

1 ns delay

0 ns

A

B

F

1.12

Successive Loading Clocks

• If load is held high on two successive clock
cycles you may only see one edge

SYSCLK

LOAD

1.13

Option 3

• Gate the clock with the load
signal

• Also susceptible to glitches

4-bit Register

D Q

CLR

RST

D Q

CLR

D Q

CLR

D Q

CLR

CLK

D3

D2

D1

D0

Q3

Q2

Q1

Q0

1.14

Option 4: Feedback mux

• Registers (D-FF’s) will sample the D
bit every clock edge and pass it to Q

• Sometimes we may want to hold the
value of Q and ignore D even at a
clock edge

• We can add an enable input and
some logic in front of the D-FF to
accomplish this

FF with Data Enable

(Always clocks, but selectively

chooses old value, Q, or new

value D)

D Q

CLR

D

Q
0

1

Y

S

EN

CLK

RST

CLK AR EN Di Qi*

X 1 X X 0

0,1 0 X X Qi

↑ 0 0 X Qi

↑ 0 1 0 0

↑ 0 1 1 1

AR

1.15

D Q

CLR

D

Q
0

1

Y

S

EN

CLK

RST

Registers w/ Enables

• When EN=0, Q value is
passed back to the input
and thus Q will maintain its
value at the next clock edge

• When EN=1, D value is
passed to the input and
thus Q will change at the
edge based on D

When EN=0, Q is

recycled back to the input

1

When EN=1, D input is

passed to FF input

D
D

D Q

CLR

D

Q
0

1

Y

S

EN

CLK

RST

0

Q
Q

1.16

Registers w/ Enables

• The D value is sampled at the clock edge only
if the enable is active

• Otherwise the current Q value is maintained

CLK

RST

EN

D[3:0]

Q[3:0] 0000 0101 0111 1000

0011 0100 0101 0110 0111 1000 1001 10100010

1.17

Register With or Without An Enable
Free-Running Register

When to use one vs. the other?

• Free-running register: Do you want to update the stored value EVERY edge

• Register w/ Enable: In all other cases…

D Q

CLR

RST

D Q

CLR

D Q

CLR

D Q

CLR

CLK

D3

D2

D1

D0

Q3

Q2

Q1

Q0
0

1

Y

S

0

1

Y

S

0

1

Y

S

0

1

Y

S

EN

D Q

CLR

RST

D Q

CLR

D Q

CLR

D Q

CLR

CLK

D3

D2

D1

D0

Q3

Q2

Q1

Q0

Register with Load (Data) Enable

1.18

Counters

• Increment (Add 1 to Q) at each
clock edge

– Up Counter: Q* = Q + 1

• Standard counter components
include other features

– Enables: Will not count at edge if
EN=0

– Resets: Reset count to 0

– Parallel Load Inputs: Can initialize
count to a value P (i.e. Q* = P rather
than Q+1)

R
e

g
is

te
r

1

A
d
d

e
r

(+
)

Q

RESET

CLK

1.19

Sample 4-bit Counter

• 4-bit Up Counter
– RST: synchronous reset input

– PE and Pi inputs: loads Q
with P when PE is active

– CE: Count Enable
• Must be active for the

counter to count up

– TC (Terminal Count) output
• Active when Q=1111 AND

counter is enabled

• TC = EN•Q3•Q2•Q1•Q0

• Indicates that on the next
edge it will roll over to 0000

• Used to create 8-, 12-, 16-
bit, etc. counters from these
4-bit building blocks

CLK RST PE CE Q*

0,1 X X X Q

↑ 1 X X 0

↑ 0 1 X P[3:0]

↑ 0 0 1 Q+1

↑ 0 0 0 Q

CLK

P0

P1

P2

P3

Q0

Q1

Q2

Q3

TC

PE

RST

4-bit

CNTR

CE

1.20

Counter Design

• Sketch the design of the 4-bit counter
presented on the previous slides

CLK

D[3:0] Q[3:0]

Reg

CLR

P[3:0]

PE

RST

CE

CLK

Q[3:0]

TC

+

0

1 0

1

0001

Q[3]

Q[2]

Q[1]

Q[0]

1.21

Counters

SR=active

at clock

edge, thus

Q=0

Q*=Q+1 Enable

= off,

thus Q

holds

PE =

active,

thus

Q=P

Q*=Q+1 Q*=Q+1 Q*=Q+1 Q*=Q+1

Mealy TC output:

EN•Q3•Q2•Q1•Q0

0000

CLK

RST

CE

PE

P3-P0

Q3-Q0 0001 0010 0011 1110 1111

TC

1110

1 0000

1.22

Reference Verilog

• Verilog description of a register with enable
and counter with load and count enable
module reg16e(

input clk,
input reset,
input en,
input [15:0] d,
output reg [15:0] q

);

always @(posedge clk)
begin
if(reset)

q <= 16'd0;
else if(en)

q <= d;
end

endmodule

module cntr16ce(
input clk,
input reset,
input load,
input ce,
input [15:0] d,
output reg [15:0] q

);

always @(posedge clk)
begin
if(reset == 1)

q <= 16'd0;
else if(load == 1)

q <= d;
else if(ce == 1)

q <= q+1;
end

endmodule
16-bit Register w/ Enable

16-bit Counter w/ Load

and Count Enable

1.23

Data Register Summary

• Understand the operation of a free-running
register, register w/ data/load enable, and a
counter with count enables, etc.

1.24

SYNCHRONOUS SYSTEM DESIGN
TECHNIQUES

Datapath and Control Unit Decomposition

1.25

Digital System Design

• Control (CU) and Datapath Unit (DPU) paradigm
– Separate logic into datapath elements that operate on data and

control elements that generate control signals for datapath elements

– Datapath: Adders, muxes, comparators, counters, registers (w/
enables), memories, FIFO’s

– Control Unit: State machines/sequencers

Datapath

Control

…

…

Control

Signals

Condition

Signals

Data

Inputs

Data

Outputs

clk

reset

1.26

Datapath + Control

• The control unit acts as scheduler and manager while
the datapath “does” the work

– Similar division of labor in many other areas

– Control signals include: mux selects, load enables, count
enables, output enables, etc.

Datapath

(DPU)

Control (CU)

Workers

Manager

Construction

Company

Puppeteer

Puppets

1.27

Datapath Design Example

• Design a datapath to support the following RTL (Register
Transfer Level) operations

– Identify the control signals & other datapath components

A P B Q

ALU

0 1 0 1

SUB/~ADD

C R

X Y

Z

L L

F F

G

F’ F

C A+B, if F,G=0,0
C A-B, if F,G=0,1
R P+Q, if F,G=1,0
R P-Q, if F,G=1,1

Desired Operations:

1.28

STATE MACHINE (CONTROL UNIT)
DESIGN

One-hot State Machine Design

1.29

Digital System Representation

Main Street

Turn

Sensor

S1

Turn

Sensor

S2

Overall sensor

output

S = S1 + S2

SSG

MSG

MTG
S =

S =

On Reset

(power on)

Input

Function

Logic

(IFL)
Next State

Logic

(NSL)

State

Memory

(SM)

Output Function

Logic

(OFL)

S
S1

S2

FF

inputs

FF

outputs

O
u

tp
u

ts

Raw inputs
Conditioned

inputs

State Diagram

1.30

State Machine Review
State Diagrams

1. States

2. Transition Conditions

3. Outputs

State Machine

1. State Memory => FF’s

– n-FF’s => 2n states

2. Next State Logic (NSL) +
Input Function Logic (IFL)

– combinational logic for FF inputs

3. Output Function Logic (OFL)

– MOORE: f(state)

– MEALY: f(state + inputs)

SM

NSL

OFLD Q

Q

D Q

Q

Q
0

Q
1

D
0

D
1

X

CLK

F

(Input) (Next State) (Current State)

(Output)

State Diagram for “101”

Sequence Detector

X=1

S101S10S1Sinit

X=0 X=1

X=0

X=1

F=1
X=1 X=0

X=0

On Reset

(power on)

F=0F=0F=0

State Machines require sequential logic to

remember the current state

(w/ just combo logic we could only look at the

current value of X, but now we can take 4 separate

actions when X=0)

1.31

State Assignment

• Design of the traffic light controller with main turn arrow

• Represent states with some binary code, but what kind?
– Encoded: 3 States => 2 bit code: 00=SSG, 01=MSG, 10=MTG

– One-hot: Separate FF per state: 100=SSG, 010=MSG, 001=MTG

Main Street

Turn

Sensor

S1

Turn

Sensor

S2

Overall sensor

output

S = S1 + S2

State

Diagram

SSG

MSG

MTG
S = 1

S = 0

On Reset

(power on)

1.32

NSL Implementation in 1-Hot Method

• In one-hot assignment, NSL is
designed by simple observation

• For each state, examine each
incoming transition

– Each incoming arrow will be one case in
our logic

– We can just OR each condition together

• Describe each transition as a
combination of what state it
originates from & any associated
conditions

• Ex. Two arrows converge on MS:
“QMS should be ‘1’ on the next clock
when…

– Current state is MT ...OR…

– Current stat is SS AND S=0

QSS QMT QMS

SS 1 0 0

MT 0 1 0

MS 0 0 1

SSG

MSG

MTG
S = 1

S = 0

On Reset

(power on)

One-hot State Assignment

D Q

CLR

SET

D Q

CLR

SET

D Q

CLR

SET

QSS

QMS

QMT

1.33

NSL Implementation in 1-Hot Method

• Two arrows converge on MS:
“QMS should be ‘1’ on the next
clock when…

– Current state is MT ...OR…

– Current stat is SS AND S=0

• Q*MS = DMS = QMT + QSS•S’

• Q*MT = DMT =

• Q*SS = DSS =

• What about initial state? Preset
the appropriate flop.

QSS QMT QMS

SS 1 0 0

MT 0 1 0

MS 0 0 1

SSG

MSG

MTG
S = 1

S = 0

On Reset

(power on)

One-hot State Assignment

D Q

CLR

SET

D Q

CLR

SET

D Q

CLR

SET

QSS

QMS

QMT

1.34

Illustrative Example

• Consider the following state diagram

Input

Function

Logic

(IFL)
Next State

Logic

(NSL)

State

Memory

(SM)

Output Function

Logic

(OFL)

S

1.35

State Assignment & NSL

• Let us choose a one-hot state assignment (one
FF per state)

• Next State Equations:

– DI = QI* =

– DP = QP* =

– DD = QD* =

D Q

CLK

/PRE

/CLR

/RESET

SYSCLK

D Q

CLK

/PRE

/CLR

D Q

CLK

/PRE

/CLR

1.36

IFL, NSL, & OFL

• Now we can draw the logic for each section

DI

DP

DD

NSL
IFL

OFL

L

1.37

Waveform

• Recall, X = A+B and Y = B + C

• L is a combinational function
of the current state

STATE

SYSCLK

/RESET

X

Y

L

1.38

State Assignment & NSL

• Let us choose a one-hot state assignment (one
FF per state)

• Next State Equations:

– DI = QI* = QI•(A+B) + QD

– DP = QP* = QP•(B+C) + QI•(A+B)’

– DD = QD* = QP•(B+C)’

D Q

CLK

/PRE

/CLR

/RESET

SYSCLK

D Q

CLK

/PRE

/CLR

Vdd

D Q

CLK

/PRE

/CLR

Vdd

Vdd

QDDDQPDPQIDI

1.39

IFL, NSL, & OFL

• Now we can easily draw the logic for each
section

IFL

A

B

C

X

Y

OFL

QI

QD
L

NSL

QI

QD

QI
*

DI

QP
*

DP

QD
*

DD

X

Y
QP

QI

X’

Y’
QP

D Q

CLK

/PRE

/CLR

/RESET

SYSCLK

D Q

CLK

/PRE

/CLR

Vdd

D Q

CLK

/PRE

/CLR

Vdd

Vdd

QDDDQPDPQIDI

1.40

Waveform

• Recall, X = A+B and Y = B + C

• L is a combinational function
of the current state

STATE Initial Process Done Initial Process

SYSCLK

/RESET

X

Y

L

1.41

State Machine Summary

• 4 sections of state machine circuitry: IFL, NSL, SM, OFL

• In one-hot state encoding, a system with 5 states requires 5
flip-flops (one flip-flop per state)

• In an encoded state encoding, a system with 5 states requires
3 flip-flops (log2n FF’s for n states)

• When designing the NSL for a state, enumerate the conditions
associated with the incoming transitions to that state

• To implement the power-on reset condition in a one-hot state
encoding, connect the RESET signal to the PRESET input for
the one FF associated with the initial state, and to the CLEAR
signals of the other FF(s).

1.42

STATE MACHINE OUTPUTS
Mealy- vs. Moore-style outputs

1.43

State Machine Outputs

• State Machine outputs can be classified
according to how the outputs are produced

– If Outputs = f(current state, other inputs)…
MEALY-Style

– If Outputs = f(current state)…
MOORE-Style

1.44

State 1
Z = 1

Moore-Style Outputs

• Moore-style outputs only depend on the current state

• Thus, they are valid early in the clock cycle and stay steady/valid
nearly the entire

• Often requires extra states compared to Mealy-style
implementations

The inputs do not feed into the OFL, thus Moore-Style

Next State Logic State

Memory

(Flip-

Flops)

Output

Function

Logic

inputs

outputs
next
state

current
state

clock

Qi
Di , Ji/Ki,

etc.

Moore output

Depends on state

(State1) only

1.45

State 1

if x>0, Z = 1

Mealy-Style Outputs

• Mealy-style outputs depend not only on the current state
but the external inputs

• Thus, they may not be valid until late in the clock cycle and
may change during the cycle if the inputs change

Notice the 3 sections of a state

machine drawn out here

Next State

Logic

State
Memory

(Flip-

Flops)

Output
Function

Logic

inputs

outputs
next

state

current

state

clock

The inputs feed into the output function logic, thus Mealy

Qi
Di , Ji/Ki,

etc.

Mealy output

Depends on state

(State1) & input (X)

1.46

Mealy vs. Moore Update

• Consider the update/loading of a register, X, with X-25

• Need to generate an X_LOAD signal
– Can be Moore or Mealy-style

Moore

Update

 X ← X-25

Moore

Check

Perform comp.

X ≥ 25

X < 25

Mealy

Check/Update

If X ≥ 25,

 X ← X-25

X ≥ 25

X < 25

1.47

Divider

• Consider design of a sequential divider, (X / Y)

• Algorithm:
– Repeatedly subtract Y from X while X-Y≥0 (or really X≥Y).

– Quotient, Q, is simply how many subtractions were performed (i.e.
count how many times we performed X=X-Y)

– Use a subtractor to compute X-Y (if subtractor needs to borrow, then
we know X-Y < 0 (or really X < Y)

• Sample Operation: X = 13, Y = 5
– Q = 0

– X = X – Y = 13 – 5 = 8, Q = 1

– X = X – Y = 8 – 5 = 3, Q = 2

– Remainder = X = 3

1.48

Divider Datapath

• Datapath for Divider

Y_Reg

Subtractor

X Y

Z

X_Reg

Borrow

X_LOAD Y_LOAD1 0

Y_INX_IN

1.49

Divider Control Unit

• Complete the state diagram
– What is the logic for X_Load

QC

X>=Y

(borrow)

QI

X_LOAD

1.50

Mealy vs. Moore Comparison

Moore Implementation

• We need to compare X with Y to
determine if we should increment
our quotient and update X

• If we want Moore-style enable and
increment signals, we need a
separate compare & update state

Mealy Implementation

• In a Mealy-style implementation
we can compare and use the result
to produce the enable and
increment signals in the same clock

Initial

On Reset

(power on)

X ← Xin

Y ← Yin

i ← 0

Compare
If X ≥ Y,

 X ← X-Y

 i ← i+1

Done

S

S X ≥ Y

X ≥ Y

ACK

ACK
Initial

On Reset

(power on)

X ← Xin

Y ← Yin

i ← 0

Compare

Done

S

S

X ≥ Y

X ≥ Y

ACK

Update

 X ← X-Y

 i ← i+1

ACK

1.51

Mealy Timing

• In Mealy-style implementation, we must
ensure the clock is long enough for control
signals to be produced

X-Y

SYSCLK

X

Y

X_LOAD

13 8 3

5

8 5

Subtractor

Delay
Subtractor

Delay

QC

X>=Y

(borrow)

QI

X_LOAD

1.52

Control Signal Timing

• When identifying control signals in the datapath, be sure to
consider if the signal should be valid

–“During the clock”
• Must be valid shortly after the beginning of the clock

(e.g. mux selects, etc.)

• Usually must be produced as Moore-style output or
fast, Mealy output

–“At the end of the clock”
• Must be valid by the end of the clock (e.g. register load

enables)

• Can be produced by combo logic in datapath

1.53

Datapath Design Example

• Design a datapath to support the following RTL (Register
Transfer Level) operations

– Identify the control signals & other datapath components

A P B Q

ALU

0 1 0 1

SUB/~ADD

C R

X Y

Z

L L

1.54

Divider Datapath

• Datapath for Divider

Y_Reg

Subtractor

X Y

Z

X_Reg

Borrow

X_LOAD Y_LOAD1 0

Y_INX_IN

1.55

MIN/MAX FINDER

1.56

Min/Max Finder Description

• Sixteen 4-bit unsigned numbers are stored in a
16x4 (16 rows/addresses of 4-bits each)

• Iterate over all numbers and determine the
maximum (largest) and minimum (smallest)
number

• First implement assuming (2) 4-bit comparators
are available

• Repeat the implementation assuming (1) 4-bit
comparator is available

• Remember in HW we try to perform as many
operations in parallel as possible to achieve
speed (e.g. perform iteration counter increment
in same clock as iteration)

• How many clocks do you think we need?

int min = data[0];
int max = data[0];
for(int i=1; i < N; i++)
{

if(data[i] < min)
min = data[i];

if(data[i] > max)
max = data[i];

}

30 51 52 53 54

0 1 2 3 4 5

10

6

data 21

1.57

Datapath Components

• The datapath requires…
– Two comparators (as per our first implementation description)

– A 16x4 memory

– (2) registers to store current min / max

– (1) 4-bit counter to counter iterations & address memory

MinRegMaxReg

Comp.
A B

GT EQ LT
Comp.
A B

GT EQ LT

16x4

Mem.

Addr

D
a
ta4-bit

Cntr.

CntEn Q

CLR

LDLD

1.58

Datapath Components

• Algorithm
– After a START signal is applied, load the zero-th (0-th) number in the memory

in both MAX and MIN registers.

– Enter an iterative loop for the first thru fifteenth numbers with both the
current known MAX and MIN values, updating the registers appropriately

– When all iterations are done (or about to be done?) go to a DONE state

• Draw a flow chart or state diagram

1.59

Flow Chart

i 0

Start

MAX M[i]

MIN M[i]

i i+1

Compare

M[i] w/ MAX

M[i] > MAX?

MAX M[i]

Compare

M[i] w/ MIN

M[i] < MIN?

MIN M[i]

i i+1

Compare

i w/ MAXCNT

i == MAXCNT

DONE

(back to START

NO YES

YESNO

NO

YES

NO

YES

1.60

MinMax Control Unit

i == MAXCNT

Initial

I

i ← 0

Load

L

Max ← M[i]

Min ← M[i]

i ← i+1

i ← i+1

If M[i] > Max

 Max ← M[i]

If M[i] < Min

 Min ← M[i]

Done

D

START

START

i == MAXCNT

Comp

C

1.61

Control Signal Timing Example

• Consider the following statement of building a
counter such that i increments
(i i+1) on each clock

– (During the clock / At the end of the clock) you enable the
counter so that (during the clock / at the end of the clock)
it actually increments

• Consider designing a minutes & seconds counter
circuit with separate counters for each

– Option 1: After 60 seconds (during 61st second) enable the
minutes counter

– Option 2: During the 60th second (after 59 seconds) enable
the minutes counter

1.62

Early or Late?

• Consider a counting loop to iterate MAX times

• In hardware we try to perform as many operations in parallel as possible

• To iterate MAX times, what should we compare with i?

Perform

process

i < MAX?

i = i+1

i = 0

YES

NO

i = 0

Perform

process

Prepare

i* = i+1
Compare

i < ____

NO

YES

S
o

ft
w

a
re

 S
ty

le

L
o

o
p

Hardware Style

Loop

1.63

1 Comparator Datapath

• The datapath requires…
– Two comparators (as per our first implementation description)

– A 16x4 memory

– (2) registers to store current min / max

– (1) 4-bit counter to counter iterations & address memory

MinRegMaxReg

Comp.
A B

GT EQ LT

16x4

Mem.

Addr

D
a
ta4-bit

Cntr.

CntEn Q

CLR

LDLD

0 1

1.64

1-Comparator Implementation

Initial

I

i ← 0

Load

L

Max ← M[i]

Min ← M[i]

i ← i+1

CompMax

CM

If M[i] > Max

 Max ← M[i]

CompMin

CN

i ← i+1

If M[i] < Min

 Min ← M[i]

Done

D

(M[i] > Max)&(i == MAXCNT)

M[i] > Max

i == MAXCNT

M[i] > Max) &

(i == MAXCNT)

START

START

1.65

Transition Conditions

• Is there any relationship between
conditions associated with incoming
transitions or outgoing transitions?

• Outgoing transitions must be
– Mutually Exclusive (< 2 conditions true)

– All-inclusive (> 0 conditions true)

A B

C

A
B C

1.66

Example: Vote Counting Machine

1.67

Vote State Machine Conditions

• Remain in C until…

– Find a NO vote…

• …then go to C1N

– Have enough YES votes to
guarantee victory…

• …then go to WON

C C1N

WON

Seeing a no vote

Neither of

the two

C

• Have seen 3 YES Votes

• Have seen 2 YES votes

an am seeing a YES

vote

WON

V

MC3

Why is this wrong?

MC3 means we are

looking at V3 and still in

state C (i.e. V0,1,2 = yes)

1.68

Control / Datapath Interaction

• We have used the analogy of the control unit as a manager
and datapath as workers

• Consider the DPU as individual workers (plumbers,
electricians,…) who need to be told what to do each hour
(each clock cycle)

• The control unit uses the current state (updated each clock
cycle) to determine what work (control signals) should be
performed each hour (clock cycle)

• Control signals generated by state machines may fall into one
of two sets:
– Mealy-style outputs

– Moore-style outputs

1.69

Control Output Summary

• A Mealy-style output is conditioned upon the
current state AND other input signals

• A Moore-style output is conditioned only
upon the current state

• In synchronous digital systems, you must
prepare a control signal during the clock so
the effect takes place at the end of the clock
(beginning of next clock)

1.70

TRI-STATE OUTPUTS & BUSES

1.71

Typical Logic Gate
• Gates can output two values: 0 & 1
– Logic ‘1’ (Vdd = 3V), or Logic ‘0’ (Vss = GND)

• Analogy: a sink faucet
– 2 possibilities: Hot (‘1’) or Cold (‘0’)

• Inputs cause EITHER a pathway from
output to VDD OR VSS

Hot Water = Logic 1

Cold Water = Logic 0

+3V

PMOS

NMOS

Output

Inputs

Vdd

Vss

Inputs

+3V

PMOS

NMOS

Output

Inputs

1.72

Output Connections

• Can we connect the output of two logic gates together?

• No! Possible short circuit (static, low-resistance pathway
from Vdd to GND)

• We call this situation “bus contention”

Src 1

Src 2

Src 3

Vdd

Vss

Inputs

Vdd

Vss

Inputs

Src 1

Src 2

1.73

Tri-State Buffers

• Gates can output two values: 0 & 1
1. Logic 0 = 0 volts

2. Logic 1 = 5 volts

• Tristate buffers can output a third
value:

3. Z = High-Impedance
(no connection to any voltage source)

• Analogy: a sink faucet
– 3 possibilities:

1.) Hot water,
2.) Cold water,
3.) NO water

Hot Water = Logic 1

Cold Water = Logic 0

NO Water = Z (High-Impedance)

+3V

PMOS

NMOS

OutputInputs

Z (high

impedance)

1.74

Tri-State Buffers

• Tri-state buffers have
an extra enable input

• When disabled, output
is Z

• When enabled, normal
buffer En In Out

0 x Z

1 0 0

1 1 1

In Out

Enable

Tri-State Buffer

E

1.75

Tri-State Buffers

• We use tri-state buffers to share one output
amongst several sources

• Rule: Only 1 buffer enabled at a time

E

E

E

Src 1

Src 2

Src 3

EN1

EN2

EN3

D Q

QCLK

D-FF

1.76

Tri-State Buffers

• We use tri-state buffers to share one output amongst several
sources

• Rule: Only 1 buffer enabled at a time
• When 1 buffer enabled, its output overpowers the Z’s (no

connection) from the other gates

0

1

0

1

0

0

Select source

1 to pass its

data

Disabled

buffers

output ‘Z’

Z

0

Z

output of 0

overpowers

the Z

0

E

E

E

D Q

QCLK

D-FF

1.77

Communication Connections

• Multiple entities need to communicate

• We could use

– Point-to-point connections

– A shared bus (set of wires)

Separate point to point

connections

Shared Bus

1.78

Bidirectional Bus

• 1 transmitter (otherwise bus contention)

• N receivers

• Each device can send (though 1 at a time) or
receive

0 1 0 0

1.79

Tri-State Buffer / Bussing Summary

• Provide a 3rd output value: Z (high impedance)

• Allows multiple outputs to be wired together

• Only one bus driver can be enabled at a time

1.80

MICROARCHITECTURE EXAMPLE

1.81

Digital Design Goals

• Digital systems seek to optimize a design
along these three axes:

– Area (size)

– Speed

– Power Consumption

• Can often only optimize one or two of
these without sacrificing the other(s)

– Just as in software design, there is a classic
time/space trade-off

– Microarchitecture can determine where a
design falls in this trade space

Area

Power

Speed

1.82

Different Architectures

R0

R1

Rn

Y Reg.

ALU

Z Reg.

Single Bus

Clock 1: Y = Rsrc1

Clock 2: Z = Rsrc2 + Y

Clock 3: Rdst = Z

R0

R1

Rn

Y Reg.

ALU

Z Reg.

Two-Bus

Clock 1: Z = Rsrc1 + Rsrc2

Clock 2: Rdst = Z

R0

R1

Rn

Y Reg.

ALU

Z Reg.

Three Bus

Clock 1: Rdst = Rsrc1 + Rsrc2

General Implications: Less Resources => More Clock Cycles (Time)

	Slide 1: EE 457 Unit 1
	Slide 2: Credits
	Slide 3: RegiSTERS & Data Enables
	Slide 4: Registers
	Slide 5: Example: Accumulator
	Slide 6: Synchronous vs. Asynchronous
	Slide 7: Registers
	Slide 8: Selective Loading/Registering of Data
	Slide 9: Clocking Option 1
	Slide 10: Clocking Option 2
	Slide 11: Glitches
	Slide 12: Successive Loading Clocks
	Slide 13: Option 3
	Slide 14: Option 4: Feedback mux
	Slide 15: Registers w/ Enables
	Slide 16: Registers w/ Enables
	Slide 17: Register With or Without An Enable
	Slide 18: Counters
	Slide 19: Sample 4-bit Counter
	Slide 20: Counter Design
	Slide 21: Counters
	Slide 22: Reference Verilog
	Slide 23: Data Register Summary
	Slide 24: Synchronous System Design Techniques
	Slide 25: Digital System Design
	Slide 26: Datapath + Control
	Slide 27: Datapath Design Example
	Slide 28: STATE MACHINE (Control Unit) DESIGN
	Slide 29: Digital System Representation
	Slide 30: State Machine Review
	Slide 31: State Assignment
	Slide 32: NSL Implementation in 1-Hot Method
	Slide 33: NSL Implementation in 1-Hot Method
	Slide 34: Illustrative Example
	Slide 35: State Assignment & NSL
	Slide 36: IFL, NSL, & OFL
	Slide 37: Waveform
	Slide 38: State Assignment & NSL
	Slide 39: IFL, NSL, & OFL
	Slide 40: Waveform
	Slide 41: State Machine Summary
	Slide 42: State Machine Outputs
	Slide 43: State Machine Outputs
	Slide 44: Moore-Style Outputs
	Slide 45: Mealy-Style Outputs
	Slide 46: Mealy vs. Moore Update
	Slide 47: Divider
	Slide 48: Divider Datapath
	Slide 49: Divider Control Unit
	Slide 50: Mealy vs. Moore Comparison
	Slide 51: Mealy Timing
	Slide 52: Control Signal Timing
	Slide 53: Datapath Design Example
	Slide 54: Divider Datapath
	Slide 55: MIN/MAX Finder
	Slide 56: Min/Max Finder Description
	Slide 57: Datapath Components
	Slide 58: Datapath Components
	Slide 59: Flow Chart
	Slide 60: MinMax Control Unit
	Slide 61: Control Signal Timing Example
	Slide 62: Early or Late?
	Slide 63: 1 Comparator Datapath
	Slide 64: 1-Comparator Implementation
	Slide 65: Transition Conditions
	Slide 66: Example: Vote Counting Machine
	Slide 67: Vote State Machine Conditions
	Slide 68: Control / Datapath Interaction
	Slide 69: Control Output Summary
	Slide 70: TRI-State Outputs & Buses
	Slide 71: Typical Logic Gate
	Slide 72: Output Connections
	Slide 73: Tri-State Buffers
	Slide 74: Tri-State Buffers
	Slide 75: Tri-State Buffers
	Slide 76: Tri-State Buffers
	Slide 77: Communication Connections
	Slide 78: Bidirectional Bus
	Slide 79: Tri-State Buffer / Bussing Summary
	Slide 80: Microarchitecture example
	Slide 81: Digital Design Goals
	Slide 82: Different Architectures

