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EE 457 Unit 1

Overview of Digital System Design
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Credits

• These slides were derived from Gandhi 
Puvvada’s EE 457 Class Notes
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REGISTERS & DATA ENABLES
Clocking Strategies
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Registers

• A Register is a group of D-FF’s
tied to a common clock and 
clear (reset) input
– Clear can be asynchronous or 

synchronous

• Used to store multiple bit 
values on each clock cycle

CLK RST Di Qi*

1,0 X X Qi

↑ 1 X 0

↑ 0 0 0

↑ 0 1 1 4-bit Register
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CLR
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D Q

CLR

D Q

CLR
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CLR
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A0
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B0
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B2
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S0

S1

S2

S3

4-bit

Adder

X0

X1

X2

X3

D

CLR

Q

D Q

D Q

D Q

Clock

Y0

Y1

Y2
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Z1
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CLR

CLR

CLR
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Example: Accumulator

• Sum a time-based sequence of numbers

• A register usually stores a single logic value (i.e. a number)

Register

time

X 2

Clock

3 9

Reset

Y 2 5 14

Z 0 2 5 14

9, 3, 2
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Synchronous vs. Asynchronous

• The set/preset and clear inputs can be built to be synchronous
or asynchronous

• These terms refer to when the initialization takes place
– Asynchronous Reset (AR):  Initialization of Q takes effect immediately 

regardless of the CLK

– Synchronous Reset (SR):  Initialization of Q takes effect only at an edge 
(clear must be active at the edge) 

AsynchronousSynchronous

Clock

Q s

Clock

CLR

Q s

Synchronous SET or CLR 

means the signal must be 

active at a clock edge before 

Q will initialize

CLR

Asynchronous SET or CLR 

means Q will initialize as soon 

as the SET or CLR signal is 

activated
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Registers

• Whatever the D value is at the clock edge is sampled 
and passed to the Q output until the next clock edge

4-bit Register – On clock edge, D is passed to Q

CLK

RST

D[3:0]

Q[3:0] 0000

0011 0100 0101 0110 0111 1000 1001 10100010

0011 0100 0101 0110 0111 1000 1001?
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Selective Loading/Registering of Data

• What if we only want a register 
to capture data on selective 
clocks (and not on EVERY clock)

– Clocks are indicated with a “LOAD” 
signal

4-bit Register

SYSCLK

LOAD

Want to load the register on the indicated 

clock cycles and have it retain its value in the 

other cycles

D Q

CLR

RST

D Q

CLR

D Q

CLR

D Q

CLR

CLK

D3

D2

D1

D0

Q3

Q2

Q1

Q0
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Clocking Option 1

• Use Load as the clock signal

• Doesn’t Work. Clocks too early

LOAD =

SYSCLK

LOAD

Desired 

Load time

Actual Load 

time

D Q

CLR

RST

D Q

CLR

D Q

CLR

D Q

CLR

CLK

D3

D2

D1

D0

Q3

Q2

Q1

Q0
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Clocking Option 2

• Use ~Load (inverted Load) as the 
clock signal

• Doesn’t Work…Glitches or 
successive loading cycles

~LOAD =

Desired 

Load time

Actual Load 

time

SYSCLK

~LOAD

D Q

CLR

RST

D Q

CLR

D Q

CLR

D Q

CLR

CLK

D3

D2

D1

D0

Q3

Q2

Q1

Q0
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Glitches

• Temporary (transient) incorrect / toggling output values 
due to differing delay paths of the inputs
– Eventually output settles to correct value

– Unless a circuit is specially designed, glitches are possible on all 
circuits

A

B

F

1 ns delay

0 ns

A

B

F
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Successive Loading Clocks

• If load is held high on two successive clock 
cycles you may only see one edge

SYSCLK

LOAD
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Option 3

• Gate the clock with the load 
signal

• Also susceptible to glitches

4-bit Register

D Q

CLR

RST

D Q

CLR

D Q

CLR

D Q

CLR

CLK

D3

D2

D1

D0

Q3

Q2

Q1

Q0
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Option 4: Feedback mux

• Registers (D-FF’s) will sample the D 
bit every clock edge and pass it to Q

• Sometimes we may want to hold the 
value of Q and ignore D even at a 
clock edge

• We can add an enable input and 
some logic in front of the D-FF to 
accomplish this

FF with Data Enable

(Always clocks, but selectively 

chooses old value, Q, or new 

value D)

D Q

CLR

D

Q
0

1

Y

S

EN

CLK

RST

CLK AR EN Di Qi*

X 1 X X 0

0,1 0 X X Qi

↑ 0 0 X Qi

↑ 0 1 0 0

↑ 0 1 1 1

AR
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D Q

CLR

D

Q
0

1

Y

S

EN

CLK

RST

Registers w/ Enables

• When EN=0, Q value is 
passed back to the input 
and thus Q will maintain its 
value at the next clock edge

• When EN=1, D value is 
passed to the input and 
thus Q will change at the 
edge based on D

When EN=0, Q is 

recycled back to the input

1

When EN=1, D input is 

passed to FF input

D
D

D Q

CLR

D

Q
0

1

Y

S

EN

CLK

RST

0

Q
Q
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Registers w/ Enables

• The D value is sampled at the clock edge only 
if the enable is active

• Otherwise the current Q value is maintained

CLK

RST

EN

D[3:0]

Q[3:0] 0000 0101 0111 1000

0011 0100 0101 0110 0111 1000 1001 10100010
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Register With or Without An Enable
Free-Running Register

When to use one vs. the other?

• Free-running register: Do you want to update the stored value EVERY edge

• Register w/ Enable: In all other cases…
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S
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Counters

• Increment (Add 1 to Q) at each 
clock edge

– Up Counter:  Q* = Q + 1

• Standard counter components 
include other features

– Enables: Will not count at edge if 
EN=0

– Resets: Reset count to 0

– Parallel Load Inputs:  Can initialize 
count to a value P (i.e. Q* = P rather 
than Q+1)

R
e

g
is

te
r

1

A
d
d

e
r 

(+
)

Q

RESET

CLK
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Sample 4-bit Counter

• 4-bit Up Counter
– RST:  synchronous reset input

– PE and Pi inputs: loads Q 
with P when PE is active

– CE: Count Enable 
• Must be active for the 

counter to count up

– TC (Terminal Count) output 
• Active when Q=1111 AND 

counter is enabled 

• TC = EN•Q3•Q2•Q1•Q0

• Indicates that on the next 
edge it will roll over to 0000

• Used to create 8-, 12-, 16-
bit, etc. counters from these 
4-bit building blocks

CLK RST PE CE Q*

0,1 X X X Q

↑ 1 X X 0

↑ 0 1 X P[3:0]

↑ 0 0 1 Q+1

↑ 0 0 0 Q

CLK

P0

P1

P2

P3

Q0

Q1

Q2

Q3

TC

PE

RST

4-bit

CNTR

CE
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Counter Design

• Sketch the design of the 4-bit counter 
presented on the previous slides

CLK

D[3:0] Q[3:0]

Reg

CLR

P[3:0]

PE

RST

CE

CLK

Q[3:0]

TC

+

0

1 0

1

0001

Q[3]

Q[2]

Q[1]

Q[0]
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Counters

SR=active 

at clock 

edge, thus 

Q=0

Q*=Q+1 Enable 

= off, 

thus Q 

holds

PE = 

active, 

thus 

Q=P

Q*=Q+1 Q*=Q+1 Q*=Q+1 Q*=Q+1

Mealy TC output:

EN•Q3•Q2•Q1•Q0

0000

CLK

RST

CE

PE

P3-P0

Q3-Q0 0001 0010 0011 1110 1111

TC

1110

1 0000
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Reference Verilog

• Verilog description of a register with enable 
and counter with load and count enable
module reg16e(    

input clk,
input reset,
input en,
input [15:0] d,
output reg [15:0] q    

);

always @(posedge clk)
begin
if(reset) 

q <= 16'd0;
else if(en) 

q <= d;
end

endmodule

module cntr16ce(
input clk,
input reset,
input load,
input ce,
input [15:0] d,
output reg [15:0] q

);

always @(posedge clk)
begin
if(reset == 1)

q <= 16'd0;
else if(load == 1)

q <= d;
else if(ce == 1)

q <= q+1;
end

endmodule
16-bit Register w/ Enable

16-bit Counter w/ Load 

and Count Enable
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Data Register Summary

• Understand the operation of a free-running 
register, register w/ data/load enable, and a 
counter with count enables, etc.
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SYNCHRONOUS SYSTEM DESIGN 
TECHNIQUES

Datapath and Control Unit Decomposition
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Digital System Design

• Control (CU) and Datapath Unit (DPU) paradigm
– Separate logic into datapath elements that operate on data and 

control elements that generate control signals for datapath elements

– Datapath:  Adders, muxes, comparators, counters, registers (w/ 
enables), memories, FIFO’s

– Control Unit:  State machines/sequencers

Datapath

Control

…

…

Control 

Signals

Condition 

Signals

Data 

Inputs

Data 

Outputs

clk

reset



1.26

Datapath + Control

• The control unit acts as scheduler and manager while 
the datapath “does” the work

– Similar division of labor in many other areas 

– Control signals include: mux selects, load enables, count 
enables, output enables, etc.

Datapath

(DPU)

Control (CU)

Workers

Manager

Construction 

Company

Puppeteer

Puppets
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Datapath Design Example

• Design a datapath to support the following RTL (Register 
Transfer Level) operations

– Identify the control signals & other datapath components

A P B Q

ALU

0 1 0 1

SUB/~ADD

C R

X Y

Z

L L

F F

G

F’ F

C  A+B, if F,G=0,0
C  A-B, if F,G=0,1
R  P+Q, if F,G=1,0
R  P-Q, if F,G=1,1

Desired Operations:
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STATE MACHINE (CONTROL UNIT) 
DESIGN

One-hot State Machine Design
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Digital System Representation

Main Street

Turn 

Sensor

S1

Turn 

Sensor

S2

Overall sensor 

output

S = S1 + S2

SSG

MSG

MTG
S = 

S = 

On Reset 

(power on)

Input 

Function 

Logic

(IFL)
Next State 

Logic

(NSL)

State 

Memory

(SM)

Output Function 

Logic

(OFL)

S
S1

S2

FF 

inputs

FF 

outputs

O
u

tp
u

ts

Raw inputs
Conditioned 

inputs

State Diagram
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State Machine Review
State Diagrams

1. States

2. Transition Conditions

3. Outputs

State Machine

1. State Memory => FF’s

– n-FF’s => 2n states

2. Next State Logic (NSL) + 
Input Function Logic (IFL)

– combinational logic for FF inputs

3. Output Function Logic (OFL)

– MOORE:  f(state)

– MEALY: f(state + inputs)

SM

NSL

OFLD Q

Q

D Q

Q

Q
0

Q
1

D
0

D
1

X

CLK

F

(Input) (Next State) (Current State)

(Output)

State Diagram for “101” 

Sequence Detector

X=1

S101S10S1Sinit

X=0 X=1

X=0

X=1

F=1
X=1 X=0

X=0

On Reset

(power on)

F=0F=0F=0

State Machines require sequential logic to 

remember the current state

(w/ just combo logic we could only look at the 

current value of X, but now we can take 4 separate 

actions when X=0)
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State Assignment

• Design of the traffic light controller with main turn arrow

• Represent states with some binary code, but what kind?
– Encoded:  3 States => 2 bit code: 00=SSG, 01=MSG, 10=MTG

– One-hot:  Separate FF per state: 100=SSG, 010=MSG, 001=MTG

Main Street

Turn 

Sensor

S1

Turn 

Sensor

S2

Overall sensor 

output

S = S1 + S2

State 

Diagram

SSG

MSG

MTG
S = 1 

S = 0

On Reset 

(power on)
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NSL Implementation in 1-Hot Method

• In one-hot assignment, NSL is 
designed by simple observation 

• For each state, examine each 
incoming transition

– Each incoming arrow will be one case in 
our logic

– We can just OR each condition together

• Describe each transition as a 
combination of what state it 
originates from & any associated 
conditions

• Ex.  Two arrows converge on MS:  
“QMS should be ‘1’ on the next clock 
when…

– Current state is MT    ...OR…

– Current stat is SS AND S=0 

QSS QMT QMS

SS 1 0 0

MT 0 1 0

MS 0 0 1

SSG

MSG

MTG
S = 1 

S = 0

On Reset 

(power on)

One-hot State Assignment

D Q

CLR

SET

D Q

CLR

SET

D Q

CLR

SET

QSS

QMS

QMT



1.33

NSL Implementation in 1-Hot Method

• Two arrows converge on MS:  
“QMS should be ‘1’ on the next 
clock when…

– Current state is MT    ...OR…

– Current stat is SS AND S=0 

• Q*MS = DMS = QMT + QSS•S’

• Q*MT = DMT = 

• Q*SS = DSS =

• What about initial state?  Preset 
the appropriate flop.

QSS QMT QMS

SS 1 0 0

MT 0 1 0

MS 0 0 1

SSG

MSG

MTG
S = 1 

S = 0

On Reset 

(power on)

One-hot State Assignment

D Q

CLR

SET

D Q

CLR

SET

D Q

CLR

SET

QSS

QMS

QMT
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Illustrative Example

• Consider the following state diagram

Input 

Function 

Logic

(IFL)
Next State 

Logic

(NSL)

State 

Memory

(SM)

Output Function 

Logic

(OFL)

S
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State Assignment & NSL

• Let us choose a one-hot state assignment (one 
FF per state)

• Next State Equations:

– DI = QI* = 

– DP = QP* =

– DD = QD* =

D Q

CLK

/PRE

/CLR

/RESET

SYSCLK

D Q

CLK

/PRE

/CLR

D Q

CLK

/PRE

/CLR
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IFL, NSL, & OFL

• Now we can draw the logic for each section 

DI

DP

DD

NSL
IFL

OFL

L
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Waveform

• Recall, X = A+B and Y = B + C

• L is a combinational function
of the current state

STATE

SYSCLK

/RESET

X

Y

L
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State Assignment & NSL

• Let us choose a one-hot state assignment (one 
FF per state)

• Next State Equations:

– DI = QI* = QI•(A+B) + QD

– DP = QP* = QP•(B+C) + QI•(A+B)’

– DD = QD* = QP•(B+C)’

D Q

CLK

/PRE

/CLR

/RESET

SYSCLK

D Q

CLK

/PRE

/CLR

Vdd

D Q

CLK

/PRE

/CLR

Vdd

Vdd

QDDDQPDPQIDI
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IFL, NSL, & OFL

• Now we can easily draw the logic for each 
section 

IFL

A

B

C

X

Y

OFL

QI

QD
L

NSL

QI

QD

QI
*

DI

QP
*

DP

QD
*

DD

X

Y
QP

QI

X’

Y’
QP

D Q

CLK

/PRE

/CLR

/RESET

SYSCLK

D Q

CLK

/PRE

/CLR

Vdd

D Q

CLK

/PRE

/CLR

Vdd

Vdd

QDDDQPDPQIDI
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Waveform

• Recall, X = A+B and Y = B + C

• L is a combinational function
of the current state

STATE Initial Process Done Initial Process

SYSCLK

/RESET

X

Y

L
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State Machine Summary

• 4 sections of state machine circuitry: IFL, NSL, SM, OFL

• In one-hot state encoding, a system with 5 states requires 5 
flip-flops (one flip-flop per state)

• In an encoded state encoding, a system with 5 states requires 
3 flip-flops (log2n FF’s for n states)

• When designing the NSL for a state, enumerate the conditions 
associated with the incoming transitions to that state

• To implement the power-on reset condition in a one-hot state 
encoding, connect the RESET signal to the PRESET input for 
the one FF associated with the initial state, and to the CLEAR 
signals of the other FF(s).
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STATE MACHINE OUTPUTS
Mealy- vs. Moore-style outputs



1.43

State Machine Outputs

• State Machine outputs can be classified 
according to how the outputs are produced

– If Outputs = f(current state, other inputs)…   
MEALY-Style

– If Outputs = f(current state)… 
MOORE-Style
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State 1
Z = 1

Moore-Style Outputs

• Moore-style outputs only depend on the current state

• Thus, they are valid early in the clock cycle and stay steady/valid
nearly the entire

• Often requires extra states compared to Mealy-style 
implementations

The inputs do not feed into the OFL, thus Moore-Style

Next State Logic State

Memory

(Flip-

Flops)

Output

Function

Logic

inputs

outputs
next
state

current
state

clock

Qi
Di , Ji/Ki, 

etc.

Moore output

Depends on state 

(State1) only
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State 1

if x>0, Z = 1

Mealy-Style Outputs

• Mealy-style outputs depend not only on the current state 
but the external inputs

• Thus, they may not be valid until late in the clock cycle and 
may change during the cycle if the inputs change

Notice the 3 sections of a state 

machine drawn out here

Next State 

Logic

State
Memory

(Flip-

Flops)

Output
Function

Logic

inputs

outputs
next

state

current

state

clock

The inputs feed into the output function logic, thus Mealy

Qi
Di , Ji/Ki, 

etc.

Mealy output

Depends on state 

(State1) & input (X)
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Mealy vs. Moore Update

• Consider the update/loading of a register, X, with X-25

• Need to generate an X_LOAD signal
– Can be Moore or Mealy-style

Moore 

Update

    X ← X-25

     

Moore 

Check

Perform comp.

X ≥ 25

X < 25

Mealy 

Check/Update

If X ≥ 25,

    X ← X-25

X ≥ 25

X < 25
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Divider

• Consider design of a sequential divider, (X / Y)

• Algorithm:
– Repeatedly subtract Y from X while X-Y≥0 (or really X≥Y).  

– Quotient, Q, is simply how many subtractions were performed (i.e.
count how many times we performed X=X-Y)

– Use a subtractor to compute X-Y (if subtractor needs to borrow, then 
we know X-Y < 0 (or really X < Y)

• Sample Operation: X = 13, Y = 5
– Q = 0

– X = X – Y = 13 – 5 = 8,  Q = 1

– X = X – Y = 8 – 5 = 3, Q = 2

– Remainder = X = 3
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Divider Datapath

• Datapath for Divider

Y_Reg

Subtractor

X Y

Z

X_Reg

Borrow

X_LOAD Y_LOAD1 0

Y_INX_IN
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Divider Control Unit

• Complete the state diagram
– What is the logic for X_Load

QC

X>=Y

(borrow)

QI

X_LOAD
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Mealy vs. Moore Comparison

Moore Implementation

• We need to compare X with Y to 
determine if we should increment 
our quotient and update X

• If we want Moore-style enable and 
increment signals, we need a 
separate compare & update state

Mealy Implementation

• In a Mealy-style implementation 
we can compare and use the result 
to produce the enable and 
increment signals in the same clock

Initial

On Reset 

(power on)

X ← Xin

Y ← Yin

i ← 0

Compare
If X ≥ Y,

    X ← X-Y

     i ← i+1

Done

S

S X ≥ Y

X ≥ Y

ACK

ACK
Initial

On Reset 

(power on)

X ← Xin

Y ← Yin

i ← 0

Compare

Done

S

S

X ≥ Y

X ≥ Y

ACK

Update

    X ← X-Y

     i ← i+1

ACK
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Mealy Timing

• In Mealy-style implementation, we must 
ensure the clock is long enough for control 
signals to be produced

X-Y

SYSCLK

X

Y

X_LOAD

13 8 3

5

8 5

Subtractor 

Delay
Subtractor 

Delay

QC

X>=Y

(borrow)

QI

X_LOAD
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Control Signal Timing

• When identifying control signals in the datapath, be sure to 
consider if the signal should be valid

–“During the clock”
• Must be valid shortly after the beginning of the clock 

(e.g. mux selects, etc.)

• Usually must be produced as Moore-style output or 
fast, Mealy output

–“At the end of the clock”
• Must be valid by the end of the clock (e.g. register load 

enables)

• Can be produced by combo logic in datapath



1.53

Datapath Design Example

• Design a datapath to support the following RTL (Register 
Transfer Level) operations

– Identify the control signals & other datapath components

A P B Q

ALU

0 1 0 1

SUB/~ADD

C R

X Y

Z

L L
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Divider Datapath

• Datapath for Divider

Y_Reg

Subtractor

X Y

Z

X_Reg

Borrow

X_LOAD Y_LOAD1 0

Y_INX_IN
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MIN/MAX FINDER
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Min/Max Finder Description

• Sixteen 4-bit unsigned numbers are stored in a 
16x4 (16 rows/addresses of 4-bits each)

• Iterate over all numbers and determine the 
maximum (largest) and minimum (smallest) 
number

• First implement assuming (2) 4-bit comparators 
are available

• Repeat the implementation assuming (1) 4-bit 
comparator is available

• Remember in HW we try to perform as many 
operations in parallel as possible to achieve 
speed (e.g. perform iteration counter increment 
in same clock as iteration)

• How many clocks do you think we need?

int min = data[0];
int max = data[0];
for(int i=1; i < N; i++)
{

if(data[i] < min) 
min = data[i];

if(data[i] > max)
max = data[i];

}

30 51 52 53 54

0 1 2 3 4 5

10

6

data 21
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Datapath Components

• The datapath requires…
– Two comparators (as per our first implementation description)

– A 16x4 memory

– (2) registers to store current min / max

– (1) 4-bit counter to counter iterations & address memory

MinRegMaxReg

Comp.
A B

GT EQ LT
Comp.
A B

GT EQ LT

16x4

Mem.

Addr

D
a
ta4-bit

Cntr.

CntEn Q

CLR

LDLD
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Datapath Components

• Algorithm
– After a START signal is applied, load the zero-th (0-th) number in the memory 

in both MAX and MIN registers.

– Enter an iterative loop for the first thru fifteenth numbers with both the 
current known MAX and MIN values, updating the registers appropriately

– When all iterations are done (or about to be done?) go to a DONE state

• Draw a flow chart or state diagram
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Flow Chart

i  0

Start

MAX  M[i]

MIN  M[i]

i  i+1

Compare

M[i] w/ MAX

M[i] > MAX?

MAX  M[i]

Compare

M[i] w/ MIN

M[i] < MIN?

MIN  M[i]

i  i+1

Compare

i w/ MAXCNT

i == MAXCNT

DONE

(back to START

NO YES

YESNO

NO

YES

NO

YES
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MinMax Control Unit

i == MAXCNT

Initial

I

i ← 0

Load

L

Max ← M[i]

Min ← M[i]

i ← i+1

i ← i+1

If M[i] > Max

  Max ← M[i]

If M[i] < Min

  Min ← M[i]

Done

D

START

START

i == MAXCNT

Comp

C
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Control Signal Timing Example

• Consider the following statement of building a 
counter such that i increments 
(i i+1) on each clock

– (During the clock / At the end of the clock) you enable the 
counter so that (during the clock / at the end of the clock) 
it actually increments

• Consider designing a minutes & seconds counter 
circuit with separate counters for each

– Option 1: After 60 seconds (during 61st second) enable the 
minutes counter

– Option 2: During the 60th second (after 59 seconds) enable 
the minutes counter
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Early or Late?

• Consider a counting loop to iterate MAX times

• In hardware we try to perform as many operations in parallel as possible

• To iterate MAX times, what should we compare with i?

Perform 

process 

i < MAX?

i = i+1

i = 0

YES

NO

i = 0

Perform 

process 

Prepare

i* = i+1
Compare

i < ____

NO

YES

S
o

ft
w

a
re

 S
ty

le
 

L
o

o
p

Hardware Style 

Loop
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1 Comparator Datapath

• The datapath requires…
– Two comparators (as per our first implementation description)

– A 16x4 memory

– (2) registers to store current min / max

– (1) 4-bit counter to counter iterations & address memory

MinRegMaxReg

Comp.
A B

GT EQ LT

16x4

Mem.

Addr

D
a
ta4-bit

Cntr.

CntEn Q

CLR

LDLD

0 1
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1-Comparator Implementation

Initial

I

i ← 0

Load

L

Max ← M[i]

Min ← M[i]

i ← i+1

CompMax

CM

If M[i] > Max

  Max ← M[i]

CompMin

CN

i ← i+1

If M[i] < Min

  Min ← M[i]

Done

D

(M[i] > Max)&(i == MAXCNT)

M[i] > Max

i == MAXCNT

M[i] > Max) & 

(i == MAXCNT)

START

START
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Transition Conditions

• Is there any relationship between 
conditions associated with incoming 
transitions or outgoing transitions?

• Outgoing transitions must be 
– Mutually Exclusive (< 2 conditions true)

– All-inclusive (> 0 conditions true)

A B

C

A
B C
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Example: Vote Counting Machine
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Vote State Machine Conditions

• Remain in C until…

– Find a NO vote…

• …then go to C1N

– Have enough YES votes to 
guarantee victory…

• …then go to WON

C C1N

WON

Seeing a no vote

Neither of 

the two

C

• Have seen 3 YES Votes

• Have seen 2 YES votes 

an am seeing a YES 

vote

WON

V

MC3

Why is this wrong?

MC3 means we are 

looking at V3 and still in 

state C (i.e. V0,1,2 = yes)
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Control / Datapath Interaction

• We have used the analogy of the control unit as a manager 
and datapath as workers

• Consider the DPU as individual workers (plumbers, 
electricians,…) who need to be told what to do each hour 
(each clock cycle)

• The control unit uses the current state (updated each clock 
cycle) to determine what work (control signals) should be 
performed each hour (clock cycle)

• Control signals generated by state machines may fall into one 
of two sets:
– Mealy-style outputs

– Moore-style outputs
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Control Output Summary

• A Mealy-style output is conditioned upon the 
current state AND other input signals

• A Moore-style output is conditioned only 
upon the current state

• In synchronous digital systems, you must 
prepare a control signal during the clock so 
the effect takes place at the end of the clock 
(beginning of next clock)
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TRI-STATE OUTPUTS & BUSES



1.71

Typical Logic Gate
• Gates can output two values: 0 & 1
– Logic ‘1’ (Vdd = 3V), or Logic ‘0’ (Vss = GND)

• Analogy: a sink faucet
– 2 possibilities:  Hot (‘1’) or Cold (‘0’)

• Inputs cause EITHER a pathway from 
output to VDD OR VSS

Hot Water = Logic 1

Cold Water = Logic 0

+3V

PMOS

NMOS

Output

Inputs

Vdd

Vss

Inputs

+3V

PMOS

NMOS

Output

Inputs
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Output Connections

• Can we connect the output of two logic gates together?

• No!  Possible short circuit (static, low-resistance pathway 
from Vdd to GND)

• We call this situation “bus contention”

Src 1

Src 2

Src 3

Vdd

Vss

Inputs

Vdd

Vss

Inputs

Src 1

Src 2
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Tri-State Buffers

• Gates can output two values: 0 & 1
1. Logic 0 = 0 volts

2. Logic 1 = 5 volts

• Tristate buffers can output a third 
value:

3. Z = High-Impedance 
(no connection to any voltage source)

• Analogy: a sink faucet
– 3 possibilities:  

1.) Hot water,  
2.) Cold water, 
3.) NO water

Hot Water = Logic 1

Cold Water = Logic 0

NO Water = Z (High-Impedance)

+3V

PMOS

NMOS

OutputInputs

Z (high 

impedance)
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Tri-State Buffers

• Tri-state buffers have 
an extra enable input

• When disabled, output 
is Z

• When enabled, normal 
buffer En In Out

0 x Z

1 0 0

1 1 1

In Out

Enable

Tri-State Buffer

E
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Tri-State Buffers

• We use tri-state buffers to share one output 
amongst several sources

• Rule:  Only 1 buffer enabled at a time

E

E

E

Src 1

Src 2

Src 3

EN1

EN2

EN3

D Q

QCLK

D-FF
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Tri-State Buffers

• We use tri-state buffers to share one output amongst several 
sources

• Rule:  Only 1 buffer enabled at a time
• When 1 buffer enabled, its output overpowers the Z’s (no 

connection) from the other gates

0

1

0

1

0

0

Select source 

1 to pass its 

data

Disabled 

buffers 

output ‘Z’

Z

0

Z

output of 0 

overpowers 

the Z

0

E

E

E

D Q

QCLK

D-FF
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Communication Connections

• Multiple entities need to communicate

• We could use 

– Point-to-point connections

– A shared bus (set of wires)

Separate point to point 

connections

Shared Bus
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Bidirectional Bus

• 1 transmitter (otherwise bus contention)

• N receivers

• Each device can send (though 1 at a time) or 
receive

0 1 0 0
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Tri-State Buffer / Bussing Summary

• Provide a 3rd output value:  Z (high impedance)

• Allows multiple outputs to be wired together

• Only one bus driver can be enabled at a time
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MICROARCHITECTURE EXAMPLE
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Digital Design Goals

• Digital systems seek to optimize a design 
along these three axes:

– Area (size)

– Speed

– Power Consumption

• Can often only optimize one or two of 
these without sacrificing the other(s)

– Just as in software design, there is a classic 
time/space trade-off

– Microarchitecture can determine where a 
design falls in this trade space

Area

Power

Speed
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Different Architectures

R0

R1

Rn

Y Reg.

ALU

Z Reg.

Single Bus

Clock 1: Y = Rsrc1

Clock 2: Z = Rsrc2 + Y

Clock 3: Rdst = Z

R0

R1

Rn

Y Reg.

ALU

Z Reg.

Two-Bus

Clock 1: Z = Rsrc1 + Rsrc2

Clock 2: Rdst = Z

R0

R1

Rn

Y Reg.

ALU

Z Reg.

Three Bus

Clock 1: Rdst = Rsrc1 + Rsrc2

General Implications:  Less Resources =>  More Clock Cycles (Time)
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