
1

EE 457 Unit 10

Parallel Processing

Cache Coherency

2

Parallel Processing Paradigms

• SISD = Single Instruction, Single Data

– Uniprocessor

• SIMD = Single Instruction, Multiple Data

– Multimedia/Vector Instruction Extensions, Graphics Processor Units (GPU’s)

• MIMD = Multiple Instruction, Multiple Data

– CMP, CMT, Parallel Programming

CU PE MU CU PE MU

PE

PE

MU

MU

CU PE
Shared

MU

PE

PE

CU

CU

Instruc. Stream Data Stream

SISD SIMD MIMD

3

SIMD Execution

• Given 4 processing elements we

can use the same code to

perform only ____________

iterations

– Addressing is managed separately

for each processing element so

that it receives different data

elements to operate on

for(i=0; i < 10,000; i++)

A[i] = B[i] + C[i];

for(i=0; i < _______; i++)

for(j=0; j < ___; j++)

A[4*i+j] = B[4*i+j] + C[4*i+j];

#pragma vectorize v=[0..3]

for(i=0; i < ________; i=i++)

A[4*i+v] = B[4*i+v] + C[4*i+v];

Sequential Execution
(10,000 iterations)

Equivalent Execution – Still 10,000 iterations
(j Processing Elements)

Vectorized Execution
(Each PE operates in parallel

requiring only ________ iterations)

4

SIMT Execution

• Each thread uses its unique ID

to execute the same code but

on different data

– Each thread has its own register

set / addressing scheme

• Partial sums can be generated

independently

• When all threads are done

(synchronization!) we can

combine results

– Requires _____________

between units

for(i=0; i < 10,000; i++)

sum = sum + A[i];

for(t=0; t < 10; t++)

for(i=0; i < 1,000; i++)

sum = sum + A[1000*t + i];

#pragma parallel t=[0..9]

for(i=0; i < 1,000; i++)

sum[t] = sum[t] + A[1000*t + i];

// combine each threads results

// requires communication between threads

for(t=0; t < 10; t++)

sum += sum[t];

Sequential Execution
(10000 iterations)

Equivalent Execution
(10 * 1000 iterations)

Parallel Execution in 10 Threads
each with its own value of t
(1000 iterations per thread)

5

SIMT Example: NVIDIA Tesla GPU

H&P, CO&D 4th Ed. Chapter 7 — Multicores, Multiprocessors, and Clusters — 5

Streaming
multiprocessor

8 × Streaming
processors

8 processing

elements

execute the

same

stream but

operate on

separate ____

partitions

Lock-Step Execution

6

MIMD

• An MIMD machine consisting of several SISDs yields higher

performance when different tasks require execution

• How do parallel processors…

– Share data?

– Coordinate and synchronize?

• In MIMD, we no longer run in lock-step but execute different tasks at their own rate

requiring coordination through synchronization

• Two communication paradigms

– ______________ (can each access the same address space)

– ______________ (private address spaces per process/thread with

explicit messages passed between them)

7

Typical CMP Organization

L1

Main Memory

P

L2
Bank/

L2
Bank

L2
Bank/

L2
Bank

Interconnect (On-Chip Network)

L1

P

L1

P

L1

P
For EE 457 this is just a shared

bus

Chip Multi-
Processor

For EE457, just one bank.

Private L1's require

maintaining coherency via

________.

8

Definitions

• Multiprogramming

– Running multiple independent programs using time-sharing on the

same processor

• Multiprocessing

– Running multiple independent programs on a multiprocessor

• Multitasking

– Splitting a single application into multiple tasks which can be run on a

time-shared uniprocessor or on a multiprocessor

• Multithreading

– Same as multitasking; however tasks are executed by “lightweight”

processes or “threads” within a single process

ISCA ‘90 Tutorial “Memory System Architectures for Tightly-coupled Multiprocessors”, Michel Dubois and Faye A. Briggs © 1990.

9

Programming Model

• Applications are partitioned into a set of cooperating processes

• Processes can be seen as “virtual processors”

– Usually there are many more processes than processors and time-sharing is

required

• Processes may communicate by passing messages

– Usually done by shared mailboxes (shared memory variables) or shared

regions of memory in a shared memory system

– Interprocessor interrupts or network I/O in a message passing system

• For shared memory systems, synchronization protocols must be careful

followed to avoid read-modify-write race conditions

• Scheduling: Binding processes to processors

ISCA ‘90 Tutorial “Memory System Architectures for Tightly-coupled Multiprocessors”, Michel Dubois and Faye A. Briggs © 1990.

10

Difficulties in Exploiting MIMD

• _________________

– Synchronization, locks, race conditions, etc

• In many cases, parallel programming requires a fair amount of

knowledge of the underlying ____________ to achieve

• Limitation of speedup due to ___________ (i.e. the portion of

code that is NOT parallelized)

– Sequential job take 100 Time Units

– 80 Time units are parallelized to 10 processors

– New Exec. Time = ___________________

– Speedup = _________________

• Compared to linear speedup expectation of 10 proc. => 10x speedup)

11

Synchronization

• Example: Suppose we need to sum 10,000 numbers on

10 processors. Each processor sums 1,000 at its own

pace and then need to combine results

• We need to wait until the 10 threads have completed

to combine results

• This is an example of a _______ synchronization where

all threads must check in and reach the “________”

sync point before any thread may continue

– No one shall execute beyond the barrier until all others

reach that point

• To implement this we keep a count and increment it

atomically

_______(N)

{

count = count+1;

if(count == N)

- resume all

processes

- count = 0

else

- block task and

place in

barrier queue

}

_________ must be performed

atomically.

12

Problem of Atomicity

• Sum an array, A, of numbers {5,4,6,7,1,2,8,5}

• Sequential method

for(i=0; i < 7; i++) { sum = sum + A[i]; }

• Parallel method (2 threads with ID=0 or 1)

for(i=ID*4; i < (ID+1)*4; i++) {

local_sum = local_sum + A[i]; }

sum = sum + local_sum;

• Problem

– Updating a shared variable (e.g. sum)

– Both threads read sum=0, perform sum=sum+local_sum, and

write their respective values back to sum

– Sum ends up with only a partial sum

– Any read/modify/write of a shared variable is susceptible

• Solution

– Atomic updates accomplished via some form of locking

5
4
6
7

1
2
8

5

Sequential

5
4
6
7

1
2
8

5

Parallel

A

0 => 38

Sum

0 => ??

Sum

22

local_sum

16

local_sum

13

Atomic Operations

• Read/modify/write sequences are usually done

with separate instructions

• Possible Sequence:

– P1 Reads sum (lw)

– P1 Modifies sum (add)

– P2 Reads sum (lw)

– P1 Writes sum (sw)

– P2 uses old value…

• Partial Solution: Have a separate flag/“lock”

variable (0=Lock is free/unlocked, 1 = Locked)

• Lock variable is susceptible to same problem as

sum (read/modify/write)

• Hardware has to support some kind of instruction

to implement atomic operations usually by not

releasing bus between read and write

P

$

P

$

M

Shared Bus

Thread 1:

Lock L

Update sum

Unlock L

Thread 2:

Lock L

Update sum

Unlock L

14

Locking/Atomic Instructions

• TSL (Test and Set Lock)

– tsl reg, addr_of_lock_var

– Atomically stores const. ‘1’ in lock_var

value & returns lock_var in reg

• Atomicity is ensured by HW not releasing

the bus during the RMW cycle

• LL and SC (MIPS & others)

– Lock-free atomic RMW

– LL = Load Linked

• Normal lw operation but tells HW to track any

external accesses to addr.

– SC = Store Conditional

• Like sw but only stores if no other writes since LL

& returns 0 in reg. if failed, 1 if successful

LOCK: TSL $4,lock_addr

BNE $4,$zero,LOCK

return;

UNLOCK: sw $zero,lock_addr

LA $t1,sum

UPDATE: LL $5,0($t1)

ADD $5,$5,local_sum

SC $5,0($t1)

BEQ $5,$zero,UPDATE

LA $8,lock_addr

LOCK: ADDI $9,$0,1

LL $4,0($8)

SC $9,0($8)

BEQ $9,$zero,LOCK

BNE $4,zero,LOCK

15

Solving Problem of Atomicity

• Sum an array, A, of numbers {5,4,6,7,1,2,8,5}

• Sequential method

for(i=0; i < 7; i++) { sum = sum + A[i]; }

• Parallel method (2 threads with ID=0 or 1)

lock L;

for(i=ID*4; i < (ID+1)*4; i++) {

local_sum = local_sum + A[i]; }

getlock(L);

sum = sum + local_sum;

unlock(L);

5
4
6
7

1
2
8

5

Sequential

5
4
6
7

1
2
8

5

Parallel

A

0 => 38

Sum

0 => ??

Sum

22

local_sum

16

local_sum

16

Cache Coherency

• Most multi-core processors are shared memory systems where

each processor has its own cache

• Problem: Multiple cached copies of same memory block

– Each processor can get their own copy, change it, and perform

calculations on their own different values…INCOHERENT!

• Solution: __________ caches…

P1

$

P2

$

M

P1

$

P2

$

M

P1

$

P2

$

M

P1

$

P2

$

M

P1

$

P2

$

M

1 2 3 4aP1 Reads X

Block X

P2 Reads X P1 ______ X

if P2 ______ X it
will be using a
“stale” value of X 4b

if P2 ______ X we
now have two
versions. How do we
reconcile them?

Example of incoherence

17

Snoopy or Snoopy

18

Solving Cache Coherency
• If no writes, multiple copies are fine

• Two options: When a block is modified

– Go out and update everyone else’s copy

– Invalidate all other sharers and make them come back to you to get a fresh copy

• “Snooping” caches using invalidation policy is most common

– Caches monitor activity on the bus looking for invalidation messages

– If another cache needs a block you have the latest version of, forward it to mem & others

P1

$

P2

$

M

P1

$

P2

$

M

P1

$

P2

$

M

P1

$

P2

$

M

1 2 3P1 & P2 Reads X

P1 wants to writes X,
so it first sends
“invalidation” over
the bus for all sharers

Now P1 can safely
write X 4

if P2 attempts to
read/write x, it will
miss, & request the
block over the bus

Coherency using “snooping” & invalidation

Invalidate
block X if
you have
it

Block X

5

P1

$

P2

$

M

P1 forwards data to
to P2 and memory
at same time

19

Coherence Definition

• A memory system is coherent if the value returned on a Load

instruction is always the value given by the latest Store

instruction with the same address

• This simple definition allows to understand the basic

problems of private caches in MP systems

ISCA ‘90 Tutorial “Memory System Architectures for Tightly-coupled Multiprocessors”, Michel Dubois and Faye A. Briggs © 1990.

P

X

X

P

X

P

X’

X’

P

X

P

X’

X

P

X

Original State Write-Through Cache Write-Back Cache

20

Write Through Caches

• The bus interface unit of each processor “watches”

the bus address lines and invalidates the cache when

the cache contains a copy of the block with modified

word

• The state of a memory block b in cache i can be

described by the following state diagram

– State INV: there is no copy of block b in cache i or if there

is, it is invalidated

– State VAL: there is a valid copy of block b in cache i

ISCA ‘90 Tutorial “Memory System Architectures for Tightly-coupled Multiprocessors”, Michel Dubois and Faye A. Briggs © 1990.

21

Write Through Snoopy Protocol

• R(k): Read of block b by processor k

• W(k): Write into block b by processor k

• Solid lines: action taken by the local processor

• Dotted lines: action taken by a remote processor

(incoming bus request)

INV VAL R(i)
W(i)

R(i), W(i)

W(j)

i = Local cache

j = Remote cache

22

Bus vs. Processor Actions

• Cache block state (state and transitions maintained for each

cache block)

– Format of transitions: Input Action / Output Action

– Pr = Processor Initiated Action

– Bus = Consequent action on the bus

VAL INV BusWrite / --
BusReadX / --

BusWrite / --
BusReadX / --

PrRd / BusRd
PrWr / BusRdX

PrWr / BusWrite
PrRd / --

RdX = Since I do not have the block, I
need to read the block. But since my
intent is to write, I ask that others invalid
their copies

Bus = Action (initiated by another
processor) appearing on the bus and
noticed by our snoopy cache control unit

Michel Dubois, Murali Annavaram and Per Stenström © 2011.

23

Action Definitions

Acronyms Description

PrRd Processor Read

PrWr Processor Write

BusRd Read request for a block

BusWrite Write a word to memory and invalidate other copies

BusUpgr _____________________________

BusUpdate Update other copies

BusRdX _____________________________

Flush Supply a block to a requesting cache

S Shared line is activated

~S Shared line is deactivated

Michel Dubois, Murali Annavaram and Per Stenström © 2011.

24

Cache Block State Notes

• Note that these state diagrams

are high-level
– A state transition may take multiple clock

cycles

– The state transition conditions may violate

all-inclusive or mutually-exclusive

requirements

– There may be several other intermediate

states

– Events such as replacements may not have

been covered

VAL

25

Coherence Implementation

L1

P

L2
Bank/

L2
Bank

L2
Bank/

L2
Bank

Shared Bus
Dual directory of

tags is maintained

to facilitate

snooping

L1 Data
L1

Tags

Snoop
Tag

Replica

L1

P

L1 Data
L1

Tags

Snoop
Tag

Replica

…

26

Write Back Caches

• Write invalidate protocols (“Ownership Protocols”)

• Basic 3-state (MSI) Protocol
– I = INVALID: Replaced (not in cache) or invalidated

– RO (Read-Only) = __________: Processors can read their copy.

Multiple copies can exist. Each processing having a copy is called a

“Keeper”

– RW (Read-Write) = __________: Processors can read/write its copy.

Only one copy exists. Processor is the “Owner”

ISCA ‘90 Tutorial “Memory System Architectures for Tightly-coupled Multiprocessors”, Michel Dubois and Faye A. Briggs © 1990.

27

Write Invalidate Snoopy Protocol

ISCA ‘90 Tutorial “Memory System Architectures for Tightly-coupled Multiprocessors”, Michel Dubois and Faye A. Briggs © 1990.

RW RO

W(i)

INV

_____W(i)

R(i)
R(i)

R(i)W(i)

28

Remote Read

RW RO

W(i)

W(j)

INV

R(j)W(i)

R(i)
R(i)

W(j)

R(i)W(i)

RW RO

W(i)

W(j)

INV

R(j)W(i)

R(i)
R(i)

W(j)

R(i)W(i)

If you have the

only couple and

another processor

wants to read the

data

The other

processor goes

from ___ to ___

Local View

Remote View

29

Local Write

RW RO

W(i)

W(j)

INV

R(j)W(i)

R(i)
R(i)

W(j)

R(i)W(i)

RW RO

W(i)

W(j)

INV

R(j)W(i)

R(i)
R(i)

W(j)

R(i)W(i)

Upgrade your

access

_______ others’

copy so no one

else has the block

Local View

Remote View

30

Remote Read

RW RO

W(i)

W(j)

INV

R(j)W(i)

R(i)
R(i)

W(j)

R(i)W(i)

RW RO

W(i)

W(j)

INV

R(j)W(i)

R(i)
R(i)

W(j)

R(i)W(i)

Local View

Remote View

31

Write Invalidate Snoopy Protocol

Acronyms Description

PrRd Processor Read

PrWr Processor Write

BusRd Read request for a block

BusWrite Write a word to memory and invalidate

other copies

BusUpgr Invalid other copies

BusUpdate Update other copies

BusRdX Read block and invalidate other copies

Flush Supply a block to a requesting cache

S Shared line is activated

~S Shared line is deactivated

M
(RW)

I
(INV)

S
(RO)

PrRd / --
PrWr / --

PrWr/

BusRd / --
BusUpgr / --
BusRdX / --

BusRdX /
Flush

PrWr /

BusRd /

BusUpgr / --
BusRdX /-- PrRd /

BusRd

PrRd / --
BusRd / --

Michel Dubois, Murali Annavaram and Per Stenström © 2011.

32

Remote Read

M
(RW)

I
(INV)

S
(RO)

PrRd / --
PrWr / --

PrWr/
BusRdX

BusRd / --
BusUpgr / --
BusRdX / --

BusRdX /
Flush

PrWr /
BusUpgr

BusRd /
Flush

BusUpgr / --
BusRdX /-- PrRd /

BusRd

PrRd / --
BusRd / --

M
(RW)

I
(INV)

S
(RO)

PrRd / --
PrWr / --

PrWr/
BusRdX

BusRd / --
BusUpgr / --
BusRdX / --

BusRdX /
Flush

PrWr /
BusUpgr

BusRd /
Flush

BusUpgr / --
BusRdX /-- PrRd /

BusRd

PrRd / --
BusRd / --

Michel Dubois, Murali Annavaram and Per Stenström © 2011.

I demote myself from M to ____ to let you promote yourself from ______ to _____

Local View Remote View

33

Local Write

M
(RW)

I
(INV)

S
(RO)

PrRd / --
PrWr / --

PrWr/
BusRdX

BusRd / --
BusUpgr / --
BusRdX / --

BusRdX /
Flush

PrWr /
BusUpgr

BusRd /
Flush

BusUpgr / --
BusRdX /-- PrRd /

BusRd

PrRd / --
BusRd / --

M
(RW)

I
(INV)

S
(RO)

PrRd / --
PrWr / --

PrWr/
BusRdX

BusRd / --
BusUpgr / --
BusRdX / --

BusRdX /
Flush

PrWr /
BusUpgr

BusRd /
Flush

BusUpgr / --
BusRdX /-- PrRd /

BusRd

PrRd / --
BusRd / --

Michel Dubois, Murali Annavaram and Per Stenström © 2011.

I promote myself from S to ____. Sorry, please demote yourself from ___ to ___

Local View Remote View

34

Write Invalid Snoopy Protocol

• Read miss:

– If the block is not present in any other cache, or if it is

present as a Shared copy, then the _____________ and all

copies remain ________

– If the block is present in a different cache in Modified

state, then that cache ____________________ and

______________ at the same time; both copies become

• Read Hit

– No action is taken

35

Write Invalid Snoopy Protocol

• Write hit:

– If the local copy is Modified then no action is taken

– If the local copy is Shared, then an ____________ must be

sent to all processors which have a copy

36

Write Invalid Snoopy Protocol

• Write miss:

– If the block is Shared in other cache or not present

in other caches, memory responds in both cases,

and in the first case all _______ copies are

– If the block is Modified in another cache, that

cache responds, then ________ its copy

• Replacement

– If the block is Modified, then ________ must be

updated

37

Coherency Example

Processor

Activity

Bus Activity P1 $

Content

P1 Block

State

(M,S,I)

P2 $

Content

P2 Block

State

(M,S,I)

Memory

Contents

- - - - A

P1 reads

block X
BusRd

P2 reads

block X
BusRd

P1 writes

block X=B

P2 reads

block X

38

Updated Coherency Example

Processor

Activity

Bus Activity P1 $

Content

P1 Block

State

(M,S,I)

P2 $

Content

P2 Block

State

(M,S,I)

Memory

Contents

- - - - A

P1 reads

block X
BusRd

P1 writes

X=B

P2 writes

X=C

P1 reads

block X

39

Problem with MSI

• Read miss followed

by write causes two

bus accesses

• Solution: MESI

– New “Exclusive” state

that indicates you

have the _____ copy

and can _______

modify it

M
(RW)

I
(INV)

S
(RO)

PrRd / --
PrWr / --

PrWr/
BusRdX

BusRd / --
BusUpgr / --
BusRdX / --

BusRdX /
Flush

PrWr /
BusUpgr

BusRd /
Flush

BusUpgr / --
BusRdX /-- PrRd /

BusRd

PrRd / --
BusRd / --

40

Exclusive State & Shared Signal

• Exclusive state avoid need to perform BusUpgr when moving

from Shared to Modified even when no other copy exists

• New state definitions:

– Exclusive = only copy of (modified / unmodified) cache block

– Shared = multiple copies exist of (modified / unmodified) cache block

• New “Shared” handshake signal is introduced on the bus

– When a read request is placed on the bus, other snooping caches

assert this signal if they have a copy

– If signal is not asserted, the reader can assume __________ access

41

Updated MESI Protocol

• Convert RO to two states: Shared & Exclusive

RW
(M)

RO

W(i)

W(j)

INV
(I)

R(j)W(i)

R(i)
R(i)

W(j)

R(i)
W(i)

S

E R(i)

R(i)

W(j)

42

Updated MESI Protocol

• Final Resulting Protocol

M
(RW)

W(j)

I
(INV)

W(i)

R(i)

W(i)

S

E R(i)

R(i)
W(j)

R(i)••••S

R(j)

R(i)•••• ~S

W(j)

W(i)

W(i)

R(j)

43

MESI

Processor

Activity

Bus Activity P1 $

Content

P1 Block

State

(MESI)

P2 Block

State

(MESI)

P3 Block

State

(MESI)

Memory

Contents

- - - - A

P1 reads

block X

P1 writes

X=B

P2 reads X

P3 reads

block X

When P3 reads and the block is in the shared state, the slow memory supplies the data.

We can add an “Owned” state where one cache takes “ownership” of a shared block and supplies it quickly to

other readers when they request it. The result is MOESI.

44

Owned State

• In original MSI, lowering from M to S or I causes a flush of the

block

– This also causes an updating of main memory which is slow

• It is best to postpone updating main memory until absolutely

necessary

– The M=>S transition is replaced by M=>O

– Main memory is left in the stale state until the Owner needs to be

invalidated in which case it is flushed to main memory

– In the interim, any other cache read request is serviced by the owner

quickly

• Summary: Owner is responsible for…

– Supplying a copy of the block when another cache requests it

– Transferring ownership back to main memory when it is invalidated

45

MOESI

M

I

S

PrRd / --
PrWr / --

PrWr/
BusRdX

BusRd / --
BusUpgr / --
BusRdX / --

BusRdX /
Flush

PrWr /
BusUpgrBusRd /

Flush

BusUpgr / --
BusRdX /--

PrRd••••S /
BusRd

PrRd / --

O E

BusRd /
Flush

PrRd / --

PrWr/BusUpgr

BusUpgr / --
BusRdX/Flush

BusRd /
Flush

PrRd •••• ~S /
BusRd

BusRdX /
Flush

PrWr / --

No need to
do BusUpgr

BusRd /
Flush..or..

46

Characteristics of Cached Data

O
Shared, Modified

M

E

Exclusive, Modified

Exclusive, Unmodified

Shared, Unmodified

Invalid

I

Ownership

Validity

Exclusiveness

`

S

A Class of Compatible Cache Consistency Protocols and their Support by the IEEE Futurebus, P. Sweazy and A. J. Smith © 1986.

47

MOESI State Pairs

OM

E

I

S

A Class of Compatible Cache Consistency Protocols and their Support by the IEEE Futurebus, P. Sweazy and A. J. Smith © 1986.

“Intervenient”

“Data Matches
Owner”

“Only Cached Copy” “Shareable Data”

