
1

EE 457 Unit 10

Parallel Processing

Cache Coherency

2

Parallel Processing Paradigms

• SISD = Single Instruction, Single Data

– Uniprocessor

• SIMD = Single Instruction, Multiple Data

– Multimedia/Vector Instruction Extensions, Graphics Processor Units (GPU’s)

• MIMD = Multiple Instruction, Multiple Data

– CMP, CMT, Parallel Programming

CU PE MU CU PE MU

PE

PE

MU

MU

CU PE
Shared

MU

PE

PE

CU

CU

Instruc. Stream Data Stream

SISD SIMD MIMD

3

SIMD Execution

• Given 4 processing elements we
can use the same code to
perform only 10,000/4=2,500
iterations
– Addressing is managed separately

for each processing element so
that it receives different data
elements to operate on

for(i=0; i < 10,000; i++)

A[i] = B[i] + C[i];

for(i=0; i < 2,500; i++)

for(j=0; j < 4; j++)

A[4*i+j] = B[4*i+j] + C[4*i+j];

#pragma vectorize v=[0..3]

for(i=0; i < 2,500; i=i++)

A[4*i+v] = B[4*i+v] + C[4*i+v];

Sequential Execution

(10,000 iterations)

Equivalent Execution – Still 10,000 iterations

(j Processing Elements)

Vectorized Execution

(Each PE operates in parallel

requiring only 2,500 iterations)

4

SIMT Execution

• Each thread uses its unique ID
to execute the same code but
on different data
– Each thread has its own register

set / addressing scheme

• Partial sums can be generated
independently

• When all threads are done
(synchronization!) we can
combine results
– Requires communication between

units

for(i=0; i < 10,000; i++)

sum = sum + A[i];

for(t=0; t < 10; t++)

for(i=0; i < 1,000; i++)

sum = sum + A[1000*t + i];

#pragma parallel t=[0..9]

for(i=0; i < 1,000; i++)

sum[t] = sum[t] + A[1000*t + i];

// combine each threads results

// requires communication between threads

for(t=0; t < 10; t++)

sum += sum[t];

Sequential Execution

(10000 iterations)

Equivalent Execution

(10 * 1000 iterations)

Parallel Execution in 10 Threads

each with its own value of t

(1000 iterations per thread)

5

SIMT Example: NVIDIA Tesla GPU

H&P, CO&D 4th Ed. Chapter 7 — Multicores, Multiprocessors, and Clusters — 5

Streaming

multiprocessor

8 × Streaming

processors

8 processing
elements

execute the
same

instruction
stream but
operate on

separate data
partitions

Lock-Step Execution

6

MIMD

• An MIMD machine consisting of several SISDs yields higher
performance when different tasks require execution

• How do parallel processors…
– Share data?

– Coordinate and synchronize?
• In MIMD, we no longer run in lock-step but execute different tasks at their own rate

requiring coordination through synchronization

• Two communication paradigms
– Shared memory (can each access the same address space)

– Message passing (private address spaces per process/thread with
explicit messages passed between them)

7

Typical CMP Organization

L1

Main Memory

P

L2

Bank/

L2

Bank

L2

Bank/

L2

Bank

Interconnect (On-Chip Network)

L1

P

L1

P

L1

P
For EE 457 this is just a shared

bus

Chip Multi-

Processor

For EE457, just one bank.

Private L1's require
maintaining coherency via

________.

8

Definitions

• Multiprogramming
– Running multiple independent programs using time-sharing on the

same processor

• Multiprocessing
– Running multiple independent programs on a multiprocessor

• Multitasking
– Splitting a single application into multiple tasks which can be run on a

time-shared uniprocessor or on a multiprocessor

• Multithreading
– Same as multitasking; however tasks are executed by “lightweight”

processes or “threads” within a single process

ISCA ‘90 Tutorial “Memory System Architectures for Tightly-coupled Multiprocessors”, Michel Dubois and Faye A. Briggs © 1990.

9

Programming Model

• Applications are partitioned into a set of cooperating processes

• Processes can be seen as “virtual processors”

– Usually there are many more processes than processors and time-sharing is
required

• Processes may communicate by passing messages

– Usually done by shared mailboxes (shared memory variables) or shared
regions of memory in a shared memory system

– Interprocessor interrupts or network I/O in a message passing system

• For shared memory systems, synchronization protocols must be careful
followed to avoid read-modify-write race conditions

• Scheduling: Binding processes to processors

ISCA ‘90 Tutorial “Memory System Architectures for Tightly-coupled Multiprocessors”, Michel Dubois and Faye A. Briggs © 1990.

10

Difficulties in Exploiting MIMD

• Correctness
– Synchronization, locks, race conditions, etc

• In many cases, parallel programming requires a fair amount of
knowledge of the underlying MIMD hardware to achieve good
performance

• Limitation of speedup due to Amdahl’s Law (i.e. the portion of
code that is NOT parallelized)
– Sequential job take 100 Time Units

– 80 Time units are parallelized to 10 processors

– New Exec. Time = 20 (seq.) + 8 (parallelized)

– Speedup = 100 / 28 = 3.57

• Compared to linear speedup expectation of 10 proc. => 10x speedup)

11

Synchronization

• Example: Suppose we need to sum 10,000 numbers on
10 processors. Each processor sums 1,000 at its own
pace and then need to combine results

• We need to wait until the 10 threads have completed
to combine results

• This is an example of a barrier synchronization where
all threads must check in and reach the “barrier” sync
point before any thread may continue

– No one shall execute beyond the barrier until all others
reach that point

• To implement this we keep a count and increment it
atomically

barrier(N)

{

count = count+1;

if(count == N)

- resume all

processes

- count = 0

else

- block task and

place in

barrier queue

}

Read-Modify-Write must be
performed atomically.

12

Problem of Atomicity
• Sum an array, A, of numbers {5,4,6,7,1,2,8,5}

• Sequential method
for(i=0; i < 7; i++) { sum = sum + A[i]; }

• Parallel method (2 threads with ID=0 or 1)
for(i=ID*4; i < (ID+1)*4; i++) {

local_sum = local_sum + A[i]; }

sum = sum + local_sum;

• Problem
– Updating a shared variable (e.g. sum)

– Both threads read sum=0, perform sum=sum+local_sum, and
write their respective values back to sum

– Sum ends up with only a partial sum

– Any read/modify/write of a shared variable is susceptible

• Solution
– Atomic updates accomplished via some form of locking

5

4

6

7

1
2

8

5

Sequential

5

4

6

7

1
2

8

5

Parallel

A

0 => 38

Sum

0 => ??

Sum

22

local_sum

16

local_sum

13

Atomic Operations

• Read/modify/write sequences are usually done
with separate instructions

• Possible Sequence:
– P1 Reads sum (lw)

– P1 Modifies sum (add)

– P2 Reads sum (lw)

– P1 Writes sum (sw)

– P2 uses old value…

• Partial Solution: Have a separate flag/“lock”
variable (0=Lock is free/unlocked, 1 = Locked)

• Lock variable is susceptible to same problem as
sum (read/modify/write)

• Hardware has to support some kind of instruction
to implement atomic operations usually by not
releasing bus between read and write

P

$

P

$

M

Shared Bus

Thread 1:

Lock L

Update sum

Unlock L

Thread 2:

Lock L

Update sum

Unlock L

14

Locking/Atomic Instructions

• TSL (Test and Set Lock)
– tsl reg, addr_of_lock_var

– Atomically stores const. ‘1’ in lock_var
value & returns lock_var in reg

• Atomicity is ensured by HW not releasing
the bus during the RMW cycle

• LL and SC (MIPS & others)
– Lock-free atomic RMW

– LL = Load Linked
• Normal lw operation but tells HW to track any

external accesses to addr.

– SC = Store Conditional
• Like sw but only stores if no other writes since LL

& returns 0 in reg. if failed, 1 if successful

LOCK: TSL $4,lock_addr

BNE $4,$zero,LOCK

return;

UNLOCK: sw $zero,lock_addr

LA $t1,sum

UPDATE: LL $5,0($t1)

ADD $5,$5,local_sum

SC $5,0($t1)

BEQ $5,$zero,UPDATE

LA $8,lock_addr

LOCK: ADDI $9,$0,1

LL $4,0($8)

SC $9,0($8)

BEQ $9,$zero,LOCK

BNE $4,zero,LOCK

15

Solving Problem of Atomicity
• Sum an array, A, of numbers {5,4,6,7,1,2,8,5}

• Sequential method
for(i=0; i < 7; i++) { sum = sum + A[i]; }

• Parallel method (2 threads with ID=0 or 1)
lock L;

for(i=ID*4; i < (ID+1)*4; i++) {

local_sum = local_sum + A[i]; }

getlock(L);

sum = sum + local_sum;

unlock(L);

5

4

6

7

1
2

8

5

Sequential

5

4

6

7

1
2

8

5

Parallel

A

0 => 38

Sum

0 => ??

Sum

22

local_sum

16

local_sum

16

Cache Coherency
• Most multi-core processors are shared memory systems where

each processor has its own cache

• Problem: Multiple cached copies of same memory block
– Each processor can get their own copy, change it, and perform

calculations on their own different values…INCOHERENT!

• Solution: Snoopy caches…

P1

$

P2

$

M

P1

$

P2

$

M

P1

$

P2

$

M

P1

$

P2

$

M

P1

$

P2

$

M

1 2 3 4aP1 Reads X

Block X

P2 Reads X P1 Writes X

if P2 Reads X it

will be using a

“stale” value of X 4b

if P2 Writes X we

now have two

versions. How do we

reconcile them?

Example of incoherence

17

Snoopy or Snoopy

18

Solving Cache Coherency
• If no writes, multiple copies are fine

• Two options: When a block is modified
– Go out and update everyone else’s copy

– Invalidate all other sharers and make them come back to you to get a fresh copy

• “Snooping” caches using invalidation policy is most common
– Caches monitor activity on the bus looking for invalidation messages

– If another cache needs a block you have the latest version of, forward it to mem & others

P1

$

P2

$

M

P1

$

P2

$

M

P1

$

P2

$

M

P1

$

P2

$

M

1 2 3P1 & P2 Reads X

P1 wants to writes X,

so it first sends

“invalidation” over

the bus for all sharers

Now P1 can safely

write X 4

if P2 attempts to

read/write x, it will

miss, & request the

block over the bus

Coherency using “snooping” & invalidation

Invalidate

block X if

you have

it

Block X

5

P1

$

P2

$

M

P1 forwards data to

to P2 and memory

at same time

19

Coherence Definition

• A memory system is coherent if the value returned on a Load
instruction is always the value given by the latest Store
instruction with the same address

• This simple definition allows to understand the basic
problems of private caches in MP systems

ISCA ‘90 Tutorial “Memory System Architectures for Tightly-coupled Multiprocessors”, Michel Dubois and Faye A. Briggs © 1990.

P

X

X

P

X

P

X’

X’

P

X

P

X’

X

P

X

Original State Write-Through Cache Write-Back Cache

20

Write Through Caches

• The bus interface unit of each processor “watches”
the bus address lines and invalidates the cache when
the cache contains a copy of the block with modified
word

• The state of a memory block b in cache i can be
described by the following state diagram

– State INV: there is no copy of block b in cache i or if there
is, it is invalidated

– State VAL: there is a valid copy of block b in cache i

ISCA ‘90 Tutorial “Memory System Architectures for Tightly-coupled Multiprocessors”, Michel Dubois and Faye A. Briggs © 1990.

21

Write Through Snoopy Protocol

• R(k): Read of block b by processor k

• W(k): Write into block b by processor k

• Solid lines: action taken by the local processor

• Dotted lines: action taken by a remote processor
(incoming bus request)

INV VAL R(i)

W(i)

R(i), W(i)

W(j)

i = Local cache

j = Remote cache

22

Bus vs. Processor Actions

• Cache block state (state and transitions maintained for each
cache block)
– Format of transitions: Input Action / Output Action

– Pr = Processor Initiated Action

– Bus = Consequent action on the bus

VAL INV BusWrite / --

BusReadX / --

BusWrite / --

BusReadX / --

PrRd / BusRd

PrWr / BusRdX

PrWr / BusWrite

PrRd / --

RdX = Since I do not have the block, I

need to read the block. But since my

intent is to write, I ask that others invalid

their copies

Bus = Action (initiated by another

processor) appearing on the bus and

noticed by our snoopy cache control unit

Michel Dubois, Murali Annavaram and Per Stenström © 2011.

23

Action Definitions

Acronyms Description

PrRd Processor Read

PrWr Processor Write

BusRd Read request for a block

BusWrite Write a word to memory and invalidate other copies

BusUpgr Invalid other copies

BusUpdate Update other copies

BusRdX Read block and invalidate other copies

Flush Supply a block to a requesting cache

S Shared line is activated

~S Shared line is deactivated

Michel Dubois, Murali Annavaram and Per Stenström © 2011.

24

Cache Block State Notes

• Note that these state diagrams
are high-level
– A state transition may take multiple clock

cycles

– The state transition conditions may violate
all-inclusive or mutually-exclusive
requirements

– There may be several other intermediate
states

– Events such as replacements may not have
been covered

VAL

25

Coherence Implementation

L1

P

L2

Bank/

L2

Bank

L2

Bank/

L2

Bank

Shared Bus
Dual directory of

tags is maintained
to facilitate

snooping

L1 Data
L1

Tags

Snoop

Tag

Replica

L1

P

L1 Data
L1

Tags

Snoop

Tag

Replica

…

26

Write Back Caches

• Write invalidate protocols (“Ownership Protocols”)

• Basic 3-state (MSI) Protocol
– I = INVALID: Replaced (not in cache) or invalidated

– RO (Read-Only) = Shared: Processors can read their copy. Multiple
copies can exist. Each processing having a copy is called a “Keeper”

– RW (Read-Write) = Modified: Processors can read/write its copy. Only
one copy exists. Processor is the “Owner”

ISCA ‘90 Tutorial “Memory System Architectures for Tightly-coupled Multiprocessors”, Michel Dubois and Faye A. Briggs © 1990.

27

Write Invalidate Snoopy Protocol

ISCA ‘90 Tutorial “Memory System Architectures for Tightly-coupled Multiprocessors”, Michel Dubois and Faye A. Briggs © 1990.

RW RO

W(i)

W(j)

INV

R(j)W(i)

R(i)
R(i)

W(j)

R(i)W(i)

28

Remote Read

RW RO

W(i)

W(j)

INV

R(j)W(i)

R(i)
R(i)

W(j)

R(i)W(i)

RW RO

W(i)

W(j)

INV

R(j)W(i)

R(i)
R(i)

W(j)

R(i)W(i)

If you have the
only couple and

another processor
wants to read the

data

The other
processor goes
from invalid to

read-only

Local View

Remote View

29

Local Write

RW RO

W(i)

W(j)

INV

R(j)W(i)

R(i)
R(i)

W(j)

R(i)W(i)

RW RO

W(i)

W(j)

INV

R(j)W(i)

R(i)
R(i)

W(j)

R(i)W(i)

Upgrade your
access

Invalidate others’
copy so no one

else has the block

Local View

Remote View

30

Remote Read

RW RO

W(i)

W(j)

INV

R(j)W(i)

R(i)
R(i)

W(j)

R(i)W(i)

RW RO

W(i)

W(j)

INV

R(j)W(i)

R(i)
R(i)

W(j)

R(i)W(i)

No change

Remote processor
gets a copy too

Local View

Remote View

31

Action Definitions

Acronyms Description

PrRd Processor Read

PrWr Processor Write

BusRd Read request for a block

BusWrite Write a word to memory and invalidate other copies

BusUpgr Invalid other copies

BusUpdate Update other copies

BusRdX Read block and invalidate other copies

Flush Supply a block to a requesting cache

S Shared line is activated

~S Shared line is deactivated

Michel Dubois, Murali Annavaram and Per Stenström © 2011.

32

Write Invalidate Snoopy Protocol

M
(RW)

I
(INV)

S
(RO)

PrRd / --

PrWr / --

PrWr/

BusRdX

BusRd / --

BusUpgr / --

BusRdX / --

BusRdX /

Flush

PrWr /

BusUpgr

BusRd /

Flush

BusUpgr / --

BusRdX /-- PrRd /

BusRd

PrRd / --

BusRd / --

Michel Dubois, Murali Annavaram and Per Stenström © 2011.

33

Remote Read

M
(RW)

I
(INV)

S
(RO)

PrRd / --

PrWr / --

PrWr/

BusRdX

BusRd / --

BusUpgr / --

BusRdX / --

BusRdX /

Flush

PrWr /

BusUpgr

BusRd /

Flush

BusUpgr / --

BusRdX /-- PrRd /

BusRd

PrRd / --

BusRd / --

M
(RW)

I
(INV)

S
(RO)

PrRd / --

PrWr / --

PrWr/

BusRdX

BusRd / --

BusUpgr / --

BusRdX / --

BusRdX /

Flush

PrWr /

BusUpgr

BusRd /

Flush

BusUpgr / --

BusRdX /-- PrRd /

BusRd

PrRd / --

BusRd / --

Michel Dubois, Murali Annavaram and Per Stenström © 2011.

I demote myself from Modified to Shared to let you promote yourself from Invalid to Shared

Local View Remote View

34

Local Write

M
(RW)

I
(INV)

S
(RO)

PrRd / --

PrWr / --

PrWr/

BusRdX

BusRd / --

BusUpgr / --

BusRdX / --

BusRdX /

Flush

PrWr /

BusUpgr

BusRd /

Flush

BusUpgr / --

BusRdX /-- PrRd /

BusRd

PrRd / --

BusRd / --

M
(RW)

I
(INV)

S
(RO)

PrRd / --

PrWr / --

PrWr/

BusRdX

BusRd / --

BusUpgr / --

BusRdX / --

BusRdX /

Flush

PrWr /

BusUpgr

BusRd /

Flush

BusUpgr / --

BusRdX /-- PrRd /

BusRd

PrRd / --

BusRd / --

Michel Dubois, Murali Annavaram and Per Stenström © 2011.

I promote myself from Shared to Modified. Sorry, please demote yourself from Shared to Invalid

Local View Remote View

35

Write Invalid Snoopy Protocol

• Read miss:

– If the block is not present in any other cache, or if it is
present as a Shared copy, then the memory responds and
all copies remain shared

– If the block is present in a different cache in Modified
state, then that cache responds, delivers the copy and
updates memory at the same time; both copies become
Shared

• Read Hit

– No action is taken

36

Write Invalid Snoopy Protocol

• Write hit:

– If the local copy is Modified then no action is taken

– If the local copy is Shared, then an invalidation signal must
be sent to all processors which have a copy

37

Write Invalid Snoopy Protocol

• Write miss:

– If the block is Shared in other cache or not present
in other caches, memory responds in both cases,
and in the first case all shared copies are
invalidated

– If the block is Modified in another cache, that
cache responds, then Invalidates its copy

• Replacement

– If the block is Modified, then memory must be
updated

38

Coherency Example

Processor
Activity

Bus Activity P1 $
Content

P1 Block
State
(M,S,I)

P2 $
Content

P2 Block
State
(M,S,I)

Memory
Contents

- - - - A

P1 reads
block X

BusRd A S - - A

P2 reads
block X

BusRd A S A S A

P1 writes
block X=B

BusUpgr B M - I A

P2 reads
block X

BusRd /
Flush

B S B S B

39

Updated Coherency Example

Processor
Activity

Bus Activity P1 $
Content

P1 Block
State
(M,S,I)

P2 $
Content

P2 Block
State
(M,S,I)

Memory
Contents

- - - - A

P1 reads
block X

BusRd A S - - A

P1 writes
X=B

BusUpgr B M - - A

P2 writes
X=C

BusRdX /
Flush

- I C M B

P1 reads
block X

BusRd C S C S C

40

Problem with MSI

• Read miss followed
by write causes two
bus accesses

• Solution: MESI

– New “Exclusive” state
that indicates you
have the only copy
and can freely modify

M
(RW)

I
(INV)

S
(RO)

PrRd / --

PrWr / --

PrWr/

BusRdX

BusRd / --

BusUpgr / --

BusRdX / --

BusRdX /

Flush

PrWr /

BusUpgr

BusRd /

Flush

BusUpgr / --

BusRdX /-- PrRd /

BusRd

PrRd / --

BusRd / --

41

Exclusive State & Shared Signal

• Exclusive state avoid need to perform BusUpgr when moving
from Shared to Modified even when no other copy exists

• New state definitions:
– Exclusive = only copy of unmodified (clean) cache block

– Shared = multiple copies exist of modified (clean) cache block

• New “Shared” handshake signal is introduced on the bus
– When a read request is placed on the bus, other snooping caches

assert this signal if they have a copy

– If signal is not asserted, the reader can assume exclusive access

42

Updated MESI Protocol

• Convert RO to two states: Shared & Exclusive

RW

(M)
RO

W(i)

W(j)

INV

(I)

R(j)W(i)

R(i)
R(i)

W(j)

R(i)
W(i)

S

E R(i)

R(i)

W(j)

R(i)S

R(j)

R(i) ~S

W(j)

43

Updated MESI Protocol

• Final Resulting Protocol

M

(RW)

W(j)

I

(INV)

W(i)

R(i)

W(i)

S

E R(i)

R(i)
W(j)

R(i)S

R(j)

R(i) ~S

W(j)

W(i)

W(i)

R(j)

44

MESI

Processor
Activity

Bus Activity P1 $
Content

P1 Block
State
(MESI)

P2 Block
State
(MESI)

P3 Block
State
(MESI)

Memory
Contents

- - - - A

P1 reads
block X

BusRdX A E - - A

P1 writes
X=B

- B M - - A

P2 reads X
BusRd /

Flush
B S S - B

P3 reads
block X

BusRd B S S S B

When P3 reads and the block is in the shared state, the slow memory supplies the data.

We can add an “Owned” state where one cache takes “ownership” of a shared block and supplies it quickly to
other readers when they request it. The result is MOESI.

45

Owned State

• In original MSI, lowering from M to S or I causes a flush of the
block
– This also causes an updating of main memory which is slow

• It is best to postpone updating main memory until absolutely
necessary
– The M=>S transition is replaced by M=>O

– Main memory is left in the stale state until the Owner needs to be
invalidated in which case it is flushed to main memory

– In the interim, any other cache read request is serviced by the owner
quickly

• Summary: Owner is responsible for…
– Supplying a copy of the block when another cache requests it

– Transferring ownership back to main memory when it is invalidated

46

MOESI

M

I

S

PrRd / --

PrWr / --

PrWr/

BusRdX

BusRd / --

BusUpgr / --

BusRdX / --

BusRdX /

Flush

PrWr /

BusUpgrBusRd /

Flush

BusUpgr / --

BusRdX /--

PrRdS /

BusRd

PrRd / --

O E

BusRd /

Flush

PrRd / --

PrWr/BusUpgr

BusUpgr / --

BusRdX/Flush

BusRd /

Flush

PrRd  ~S /

BusRd

BusRdX /

Flush

PrWr / --

No need to

do BusUpgr

BusRd /

Flush
..or..

47

Characteristics of Cached Data

O
Shared, Modified

M

E

Exclusive, Modified

Exclusive, Unmodified

Shared, Unmodified

Invalid

I

Ownership

Validity

Exclusiveness

`

S

A Class of Compatible Cache Consistency Protocols and their Support by the IEEE Futurebus, P. Sweazy and A. J. Smith © 1986.

48

MOESI State Pairs

OM

E

I

S

A Class of Compatible Cache Consistency Protocols and their Support by the IEEE Futurebus, P. Sweazy and A. J. Smith © 1986.

“Intervenient”

“Data Matches

Owner”

“Only Cached Copy” “Shareable Data”

49

BACKUP

50

Write Invalidate Snoopy Protocol

RW RO

W(i)

W(j)

INV

R(j)W(i)

R(i)
R(i)

W(j)

R(i)W(i)

RW RO

W(i)

W(j)

INV

R(j)W(i)

R(i)
R(i)

W(j)

R(i)W(i)

Dual directory of
tags is maintained

to facilitate
snooping

51

Write Through Caches

• The bus interface unit of each processor
“watches” the bus address lines and
invalidates the cache when the cache contains
a copy of the block with the modified word

52

Cache Hierarchy

• A hierarchy of cache can help mitigate
the cache miss penalty

• L1 Cache
– 64 KB

– 2 cycle access time

– Common Miss Rate ~ 5%

• L2 Cache
– 1 MB

– 20 cycle access time

– Common Miss Rate ~ 1%

• Main Memory
– 300 cycle access time

P

L1 Cache

L2 Cache

L3 Cache

Memory

53

Credits

• Some of the material in this presentation is taken from:
– Computer Architecture: A Quantitative Approach

• John Hennessy & David Patterson

• Some of the material in this presentation is derived from
course notes and slides from
– Prof. Michel Dubois (USC)

– Prof. Murali Annavaram (USC)

– Prof. David Patterson (UC Berkeley)

