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EE 457 Unit 0

Class Introduction

Basic Hardware Organization
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EE 457 – Computer Systems Organization

• Computer Architecture class

• Focus on CPU Design

– Microarchitecture

– General Digital System Design

• Focus on Memory Hierarchy

– Cache

– Virtual Memory

• Focus on Computer Arithmetic

– Fast Adders

– Fast Multipliers
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Course Info
• Lecture: 

– Prof. Redekopp (redekopp@usc.edu)

• Discussion:
– TA: See website

• Website:
http://bytes.usc.edu/ee457
https://courses.uscden.net/d2l/home

• Midterm (30%):

• Final (31%): 

• Homework Assignments (14%): Individual

• Lab Assignments (25%): Individual and Teams of 2
– Contact TA

mailto:redekopp@usc.edu
http://bytes.usc.edu/ee457
https://courses.uscden.net/d2l/home
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Prerequisites

• EE 354L “Introduction to Digital Circuits”

– Logic design

– State machine implementation

– Datapath/control unit implementation

– Verilog HDL

• EE 109/354 “Basic Computer Organization”

– Assembly language programming

– Basic hardware organization and structures

• C or similar high-level programming knowledge

• Familiarity with Verilog HDL
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EE 109/354 Required Knowledge

• You must know and understand the following terms and 
concepts; please review them as necessary
– Bit, Nibble (four bit word), Byte, Word (16- or 32-bit value)

– CPU, ALU, CU (Control Unit), ROM, RAM (RWM), Word length of a 
computer, System Bus (Address, Data, Control)

– General Purpose Registers, Instruction Register (IR), Program Counter 
(PC), Stack, Stack Pointer (SP) Subroutine calls, Flag register (or 
Condition Code Register or Processor Status Word), 
Microprogramming

– Instruction Set, Addressing Modes, Machine Language, Assembly 
Language, Assembler, High Level Language, Compiler, Linker, Object 
code, Loader

– Interrupts, Exceptions, Interrupt Vector, Vectored Interrupts, Traps
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EE 354L Requisite Knowledge

• You must know and understand the following terms and 
concepts; please review them as necessary
– Combinational design of functions specified by truth tables and 

function tables

– Design of adders, comparators, multiplexers, decoders, demultiplexers

– Tri-state outputs and buses

– Sequential Logic components: D-Latches and D-Flip-Flops, counters, 
registers

– State Machine Design: State diagrams, Mealy vs. Moore-style outputs, 
Input Function Logic, Next State Logic, State Memory, Output Function 
Logic, power-on reset state

– State Machine Design using encoded state assignments vs. one-hot 
state assignment

– Drawing, interpretation, and analysis of waveform diagrams
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Computer Arithmetic Requisite Knowledge

• You must know and understand the following terms and 
concepts; please review them as necessary
– Unsigned and Signed (2’s complement representation) Numbers

– Unsigned and signed addition and subtraction

– Overflow in addition and subtraction

– Multiplication

– Booth’s algorithm for multiplications of signed numbers

– Restoring or Non-Restoring Division for unsigned numbers

– Hardware implementations for adders and multipliers
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Levels of Architecture

• System architecture

– High-level HW org.

• Instruction Set Architecture

– A contract or agreement about what the 
HW will support and how the programmer 
can write SW for the HW

– Vocabulary that the HW understands and 
SW is composed of

• Microarchitecture

– HW implementation for executing 
instructions

– Usually transparent to SW programs but not 
program performance

– Example:  Intel and AMD have different 
microarchitectures but support essentially 
the same instruction set

C / C++ / 

Java

Logic Gates

Transistors

HW

SW

Voltage / Currents

Applications

LibrariesOS

Processor / Memory / 

I/O

Functional Units

(Registers, Adders, Muxes)

Assembly / 

Machine Code

Microarchitecture

Virtualization

Layer

Programmer’s Model

(Instruction Set Architecture)
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Why is Architecture Important

• Enabling ever more capable computers
• Different systems require different architectures

– PC’s
– Servers
– Embedded Systems

• Simple control devices like ATM’s, toys, appliances
• Media systems like game consoles and MP3 players
• Robotics
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Digital System Spectrum

• Key idea:  Any “algorithm” can be implemented in HW or 
SW or some mixture of both

• A digital systems can be located anywhere in a spectrum 
of:
– ALL HW:  (a.k.a. Application-Specific IC’s)

– ALL SW:  An embedded computer system

• Advantages of application specific HW
– Faster, less power

• Advantages of an embedded computer system (i.e.
general purpose HW for executing SW)
– Reprogrammable (i.e. make a mistake, fix it)

– Less expensive than a dedicated hardware system (single 
computer system can be used for multiple designs)

• Phone:  System-on-Chip (SoC) approach
– Some dedicated HW for sound, graphics, and other 

operations

– Programmable processor for UI & other simple tasks
C
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This Photo by Unknown Author is licensed under CC BY-SA-NC

http://www.htxt.co.za/2017/09/12/iphone-x-all-glass-full-screen-no-home-button-and-the-best-chip-in-the-world/
https://creativecommons.org/licenses/by-nc-sa/3.0/


0.11

Computer Components

• Processor
– Executes the program and 

performs all the operations

• Main Memory
– Stores data and program

(instructions)

– Different forms: 
• RAM = read and write but 

volatile (lose values when power 
off)

• ROM = read-only but non-volatile 
(maintains values when power 
off)

– Significantly slower than the 
processor speeds

• Input / Output Devices
– Generate and consume data from 

the system

– MUCH, MUCH slower than the 
processor

Arithmetic + 

Logic + 

Control 

Circuitry

Program

(Instructions)

Data

(Operands)

Output 

Devices

Input 

Devices

Data

Software 

Program

Memory (RAM)

Processor

Combine 2c. Flour

Mix in 3 eggs
Instructions

Data
Processor

(Reads instructions, 

operates on data)

Disk Drive
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ARCHITECTURE OVERVIEW
Drivers and Trends
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Architecture Issues

• Fundamentally, architecture is all about the different 
ways of answering the question:

“What do we do with the ever-increasing number of 
transistors available to us”

• Goal of a computer architect is to take increasing 
transistor budgets of a chip (i.e. Moore’s Law) and 
produce an equivalent increase in computational 
ability
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Moore’s Law, Computer Architecture & Real-
Estate Planning

• Moore’s Law = Number of 
transistors able to be 
fabricated on a chip grows 
exponentially with time

• Computer architects decide, 
“What should we do with all 
of this capability?”

• Similarly real-estate 
developers ask, “How do we 
make best use of the land 
area given to us?”

USC University Park Development Master Plan
http://re.usc.edu/docs/University%20Park%20Development%20Project.pdf
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Transistor Physics

• Cross-section of transistors 
on an IC

• Moore’s Law is founded on 
our ability to keep 
shrinking transistor sizes 

– Gate/channel width shrinks

– Gate oxide shrinks

• Transistor feature size is 
referred to as the 
implementation 
“technology node”
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Technology Nodes
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Growth of Transistors on Chip
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Implications of Moore’s Law

• What should we do with all these transistors

– Put additional simple cores on a chip

– Use transistors to make cores execute instructions 
faster

– Use transistors for more on-chip cache memory

• Cache is an on-chip memory used to store data the 
processor is likely to need

• Faster than main-memory which is on a separate chip 
and much larger (thus slower)
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Pentium 4

L2 Cache

L1 Data

L1 Instruc.
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Increase in Clock Frequency

What happened here?
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Intel Nehalem Quad Core
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Progression to Parallel Systems

• If power begins to limit clock frequency, how can we 
continue to achieve more and more operations per 
second?

– By running several processor cores in parallel at lower 
frequencies

– Two cores @ 2 GHz vs. 1 core @ 4 GHz yield the same 
theoretical maximum ops./sec.

• We’ll end our semester by examining (briefly) a few 
parallel architectures

– Chip multiprocessors (multicore)

– Graphics Processor Units (SIMT)
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Flynn’s Taxonomy 

• Categorize architectures based on relationship between 
program (instructions) and data

SISD
Single-Instruction, Single-Data

SIMD / SIMT
Single Instruction, Multiple Data 

(Single Instruction, Multiple Thread)

• Typical, single-threaded processor • Vector Units (e.g. Intel MMX, SSE, 
SSE2)

• GPU’s

MISD
Multiple Instruction, Single-Data

MIMD
Multiple Instruction, Multiple-Data

• Less commonly used (some streaming 
architectures may be considered in this 
category)

• Multi-threaded processors
• Typical CMP/Multicore system (Task

parallelism with different threads 
executing)
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GPU Chip Layout

• 2560 Small 
Cores

• Upwards of 
7.2 billion 
transistors

• 8.2 TFLOPS

• 320 
Gbytes/sec

Photo: http://www.theregister.co.uk/2010/01/19/nvidia_gf100/

Source: NVIDIA
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8th Gen Coffee-Lake Hex-Core Intel Processor 

https://www.researchgate.net/figure/Die-Map-of-a-Hexa-Core-

Coffee-Lake-Processor_fig6_332543387

https://www.researchgate.net/figure/Die-Map-of-a-Hexa-Core-Coffee-Lake-Processor_fig6_332543387
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COMPUTER SYSTEM TOUR
In case you need a review…Look these over on your own
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Computer Systems Tour

• How does a SW 
program get mapped 
and executed on a 
computer

• What components 
make a computer 
system and what are 
their functions

• How does the 
architecture affect 
performance

C / C++ / Java

Logic Gates

Transistors

HW

SW

Voltage / Currents

Assembly / 

Machine Code

Applications

LibrariesOS

Processor / Memory / I/O

Functional Units

(Registers, Adders, Muxes)

Start Here
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Software Process

1110 0010 0101 1001

0110 1011 0000 1100

0100 1101 0111 1111

1010 1100 0010 1011

0001 0110 0011 1000

MOVE.W X,D0

CMPI.W  #0,D0

BLE        SKIP

ADD       Y,D0

SUB       Z,D0

SKIP  MUL       …

Software 

Program

High Level 

Language 

Description

Assembly 

(.asm/.s files)

Executable 

Binary Image

if (x > 0)

x = x + y - z;

a = b*x;

MOVE.L X,D0

CMPI     #0,D0

BLE       SKIP

ADD       Y,D0

SUB       Z,D0

SKIP  MUL       …

1110 0010 0101 1001

0110 1011 0000 1100

0100 1101 0111 1111

1010 1100 0010 1011

0001 0110 0011 1000

.c/.cpp files
1110 0010 0101 1001

0110 1011 0000 1100

0100 1101 0111 1111

1010 1100 0010 1011

0001 0110 0011 1000

Object/Machine Code

(.o files)

Compiler Assembler

LinkerLoader / 

OS

Program 

Executing

In EE 357 you will be able to perform 

all the tasks of the compiler…
A “compiler”

(i.e. gcc, VisualC++, 

etc.) includes the 

assembler & linker

http://images.google.com/imgres?imgurl=http://www.intel.com/pressroom/images/processors/p4_13micron_front.jpg&imgrefurl=http://www.intel.com/pressroom/archive/photos/p4_photos.htm&h=180&w=225&sz=13&tbnid=Z0oqhcwTtFEJ:&tbnh=81&tbnw=102&hl=en&start=14&prev=/images?q%3Dpentium%2B4%26svnum%3D10%26hl%3Den%26lr%3D
http://images.google.com/imgres?imgurl=http://www.canadiancomputer.com/sku_images/large/204.jpg&imgrefurl=http://www.canadiancomputer.com/product_details.php?id%3D218&h=480&w=626&sz=32&hl=en&start=2&tbnid=SdZTUGLFcNALkM:&tbnh=104&tbnw=136&prev=/images?q%3Dram%2Bdimm%26svnum%3D10%26hl%3Den%26lr%3D
http://images.google.com/imgres?imgurl=http://www.biosmagazine.co.uk/images/content/prodpics/200603/MHV2200BT.jpg&imgrefurl=http://www.biosmagazine.co.uk/article.php?id%3D3117&h=350&w=480&sz=40&hl=en&start=47&tbnid=9N4l4lruIlKqgM:&tbnh=94&tbnw=129&prev=/images?q%3Dhard%2Bdisk%26start%3D40%26ndsp%3D20%26svnum%3D10%26hl%3Den%26lr%3D%26sa%3DN
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Compiler Process

• A compiler such as ‘gcc’ performs 3 tasks:
– Compiler

• Converts HLL (high-level language) files to assembly

– Assembler
• Converts assembly to object (machine) code

– Static Linker
• Links multiple object files into a single executable resolving references 

between code in the separate files

– Output of a compiler is a binary image that can be loaded into 
memory and then executed.

• Loader/Dynamic Linker
– Loads the executable image into memory and resolves dynamic calls 

(to OS subroutines, libraries, etc.)
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Hardware Components

• Processor
– Executes the program and performs all the 

operations

– Examples:  Pentium 4, PowerPC, M68K/Coldfire

• Main Memory
– Stores data and program (instructions)

– Different forms: 
• RAM = read and write but volatile (lose values 

when power off)

• ROM = read-only but non-volatile (maintains 
values when power off)

– Significantly slower than the processor speeds

• Input / Output Devices
– Generate and consume data from the system

– Examples:  Keyboard, Mouse, CD-ROM, Hard 
Drive, USB, Monitor display

– MUCH, MUCH slower than the processor

Processor

Memory
Output 

Devices

Input 

Devices

Software 

Program

Data
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Processor

• Performs the same 3-step 
process over and over again
– Fetch an instruction from 

memory

– Decode the instruction
• Is it an ADD, SUB, etc.?

– Execute the instruction
• Perform the specified operation

• This process is known as the 
Instruction Cycle

Processor

Memory

ADD

SUB

CMP

Arithmetic

Circuitry

Decode

Circuitry

1 Fetch 

Instruction

It’s an ADD

Add the 

specified values

2

3

System Bus
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Processors

• Processors contain 4 subcomponents

1. ALU (Arithmetic & Logical Unit)

2. Registers

3. Control Circuitry & System-Bus Interface

4. Cache (Optional)
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ALU

• Performs arithmetic 
and logical 
operations

• 2 inputs and 1 
output value

• Control inputs to 
select operation 
(ADD, SUB, AND, 
OR…)

ALU

Control

Processor



0.34

Registers

• Provide temporary storage 
for data

• 2 categories of registers
– General Purpose Registers 

(GPR’s)
• for program data

• can be used by 
programmer as desired

• given names (e.g. D0-D7)

– Special Purpose Registers
• for internal processor 

operation (not for program 
data)

ALU

Control

Processor

MIPS Core

$0 - $31

32-bits

GPR’s

Special Purpose Registers

PC:

IR:

HI:

LO:
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Registers

• GPR’s
– Faster to access than main 

memory
– Keep data you are working with 

in registers to speed up 
execution

• Special Purpose Reg’s.
– Hold specific information that 

the processor needs to operate 
correctly

– PC (Program Counter)
• Pointer to (address of) 

instruction in memory that will 
be executed next

– IR (Instruction Register)
• Stores the instruction while it 

is being executed

– SR (Status Register)
• Stores status/control info

ALU

Control

Processor

MIPS Core

$0 - $31

32-bits

GPR’s

Special Purpose Registers

PC:

IR:

HI:

LO:
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Control Circuitry

• Decodes each 
instruction

• Selects appropriate 
registers to use

• Selects ALU 
operation 

• And more…

Registers

ALU

Control

Control 

Circuitry

Processor

$0

…

$1

PC

IR
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System Bus Interface

• System bus is the 
means of 
communication 
between the processor 
and other devices
– Address

• Specifies location of 
instruction or data

– Data

– Control
Address

Data

Control

Registers

ALU

Control

Control 

Circuitry

Processor

$0

…

$1

PC

IR
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Memory

• Set of cells that each store a 
group of bits (usually, 1 byte 
= 8 bits)

• Unique address assigned to 
each cell
– Used to reference the value in 

that location

• Numbers and instructions 
are all represented as a string 
of 1’s and 0’s

11010010

01001011

10010000

11110100

01101000

11010001

…

00001011

0

1

2

3

4

5

FFFF

Address Data

Memory 

Device
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Memory Operations

• Memories perform 2 operations
– Read:  retrieves data value in a 

particular location (specified using 
the address)

– Write:  changes data in a location 
to a new value

• To perform these operations a 
set of address, data, and control
inputs/outputs are used
– Note: A group of wires/signals is 

referred to as a ‘bus’
– Thus, we say that memories have 

an address, data, and control bus.

11010010

01001011

10010000

11110100

01101000

11010001

…

00001011

0

1

2

3

4

5

FFFF

11010010

01001011

10010000

11110100

01101000

00000110

…

00001011

0

1

2

3

4

5

FFFF

2

10010000

Read

Addr.

Data

Control

Addr.

Data

Control

5

00000110

Write

A Write Operation

A Read Operation



0.40

Input / Output

• Keyboard, Mouse, Display, USB devices, Hard Drive, Printer, etc.

• Processor can perform reads and writes on I/O devices just as it 
does on memory
– I/O devices have locations that contain data that the processor can 

access

– These locations are assigned unique addresses just like memory

Keyboard 

Interface

‘a’ = 61 hex 

in ASCII

61400

Processor Memory

A D C

400

61

READ

…

0

3FF
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Input / Output

• Writing a value to the video adapter can set a pixel on 
the screen

Video 

Interface

FE may 

signify a 

white dot at 

a particular 

location

…

800

Processor Memory

A D C

800

FE

WRITE

…

0

3FF

FE

01

Keyboard 

Interface

61400
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Computer Organization Issues

• Components run at different speeds
– Processor can perform operations very quickly (~ 1 ns)
– Memory is much slower (~ 50 ns) due to how it is 

constructed & its shear size [i.e. it must select/look-up 1 
location from millions] 
• Speed is usually inversely proportional to size 

(i.e. larger memory => slower)

– I/O devices are much slower
• Hard Drive (~ 1 ms)

– Intra-chip signals (signals w/in the same chip) run much 
faster than inter-chip signals

• Design HW and allocate HW resources to 
accommodate these inherent speed differences


