
0.1

EE 457 Unit 0

Class Introduction

Basic Hardware Organization

0.2

EE 457 – Computer Systems Organization

• Computer Architecture class

• Focus on CPU Design

– Microarchitecture

– General Digital System Design

• Focus on Memory Hierarchy

– Cache

– Virtual Memory

• Focus on Computer Arithmetic

– Fast Adders

– Fast Multipliers

0.3

Course Info
• Lecture:

– Prof. Redekopp (redekopp@usc.edu)

• Discussion:
– TA: See website

• Website:
http://bytes.usc.edu/ee457
https://courses.uscden.net/d2l/home

• Midterm (30%):

• Final (31%):

• Homework Assignments (14%): Individual

• Lab Assignments (25%): Individual and Teams of 2
– Contact TA

mailto:redekopp@usc.edu
http://bytes.usc.edu/ee457
https://courses.uscden.net/d2l/home

0.4

Prerequisites

• EE 354L “Introduction to Digital Circuits”

– Logic design

– State machine implementation

– Datapath/control unit implementation

– Verilog HDL

• EE 109/354 “Basic Computer Organization”

– Assembly language programming

– Basic hardware organization and structures

• C or similar high-level programming knowledge

• Familiarity with Verilog HDL

0.5

EE 109/354 Required Knowledge

• You must know and understand the following terms and
concepts; please review them as necessary
– Bit, Nibble (four bit word), Byte, Word (16- or 32-bit value)

– CPU, ALU, CU (Control Unit), ROM, RAM (RWM), Word length of a
computer, System Bus (Address, Data, Control)

– General Purpose Registers, Instruction Register (IR), Program Counter
(PC), Stack, Stack Pointer (SP) Subroutine calls, Flag register (or
Condition Code Register or Processor Status Word),
Microprogramming

– Instruction Set, Addressing Modes, Machine Language, Assembly
Language, Assembler, High Level Language, Compiler, Linker, Object
code, Loader

– Interrupts, Exceptions, Interrupt Vector, Vectored Interrupts, Traps

0.6

EE 354L Requisite Knowledge

• You must know and understand the following terms and
concepts; please review them as necessary
– Combinational design of functions specified by truth tables and

function tables

– Design of adders, comparators, multiplexers, decoders, demultiplexers

– Tri-state outputs and buses

– Sequential Logic components: D-Latches and D-Flip-Flops, counters,
registers

– State Machine Design: State diagrams, Mealy vs. Moore-style outputs,
Input Function Logic, Next State Logic, State Memory, Output Function
Logic, power-on reset state

– State Machine Design using encoded state assignments vs. one-hot
state assignment

– Drawing, interpretation, and analysis of waveform diagrams

0.7

Computer Arithmetic Requisite Knowledge

• You must know and understand the following terms and
concepts; please review them as necessary
– Unsigned and Signed (2’s complement representation) Numbers

– Unsigned and signed addition and subtraction

– Overflow in addition and subtraction

– Multiplication

– Booth’s algorithm for multiplications of signed numbers

– Restoring or Non-Restoring Division for unsigned numbers

– Hardware implementations for adders and multipliers

0.8

Levels of Architecture

• System architecture

– High-level HW org.

• Instruction Set Architecture

– A contract or agreement about what the
HW will support and how the programmer
can write SW for the HW

– Vocabulary that the HW understands and
SW is composed of

• Microarchitecture

– HW implementation for executing
instructions

– Usually transparent to SW programs but not
program performance

– Example: Intel and AMD have different
microarchitectures but support essentially
the same instruction set

C / C++ /

Java

Logic Gates

Transistors

HW

SW

Voltage / Currents

Applications

LibrariesOS

Processor / Memory /

I/O

Functional Units

(Registers, Adders, Muxes)

Assembly /

Machine Code

Microarchitecture

Virtualization

Layer

Programmer’s Model

(Instruction Set Architecture)

0.9

Why is Architecture Important

• Enabling ever more capable computers
• Different systems require different architectures

– PC’s
– Servers
– Embedded Systems

• Simple control devices like ATM’s, toys, appliances
• Media systems like game consoles and MP3 players
• Robotics

0.10

Digital System Spectrum

• Key idea: Any “algorithm” can be implemented in HW or
SW or some mixture of both

• A digital systems can be located anywhere in a spectrum
of:
– ALL HW: (a.k.a. Application-Specific IC’s)

– ALL SW: An embedded computer system

• Advantages of application specific HW
– Faster, less power

• Advantages of an embedded computer system (i.e.
general purpose HW for executing SW)
– Reprogrammable (i.e. make a mistake, fix it)

– Less expensive than a dedicated hardware system (single
computer system can be used for multiple designs)

• Phone: System-on-Chip (SoC) approach
– Some dedicated HW for sound, graphics, and other

operations

– Programmable processor for UI & other simple tasks
C

o
m

p
u

ti
n

g
 S

y
s

te
m

S
p

e
c

tr
u

m

Application

Specific Hardware

(no software)

General Purpose

HW w/ Software

F
le

x
ib

il
it

y,
 D

e
s

ig
n

 T
im

e

P
e

rf
o

rm
a

n
c

e

C
o

s
t

This Photo by Unknown Author is licensed under CC BY-SA-NC

http://www.htxt.co.za/2017/09/12/iphone-x-all-glass-full-screen-no-home-button-and-the-best-chip-in-the-world/
https://creativecommons.org/licenses/by-nc-sa/3.0/

0.11

Computer Components

• Processor
– Executes the program and

performs all the operations

• Main Memory
– Stores data and program

(instructions)

– Different forms:
• RAM = read and write but

volatile (lose values when power
off)

• ROM = read-only but non-volatile
(maintains values when power
off)

– Significantly slower than the
processor speeds

• Input / Output Devices
– Generate and consume data from

the system

– MUCH, MUCH slower than the
processor

Arithmetic +

Logic +

Control

Circuitry

Program

(Instructions)

Data

(Operands)

Output

Devices

Input

Devices

Data

Software

Program

Memory (RAM)

Processor

Combine 2c. Flour

Mix in 3 eggs
Instructions

Data
Processor

(Reads instructions,

operates on data)

Disk Drive

0.12

ARCHITECTURE OVERVIEW
Drivers and Trends

0.13

Architecture Issues

• Fundamentally, architecture is all about the different
ways of answering the question:

“What do we do with the ever-increasing number of
transistors available to us”

• Goal of a computer architect is to take increasing
transistor budgets of a chip (i.e. Moore’s Law) and
produce an equivalent increase in computational
ability

0.14

Moore’s Law, Computer Architecture & Real-
Estate Planning

• Moore’s Law = Number of
transistors able to be
fabricated on a chip grows
exponentially with time

• Computer architects decide,
“What should we do with all
of this capability?”

• Similarly real-estate
developers ask, “How do we
make best use of the land
area given to us?”

USC University Park Development Master Plan
http://re.usc.edu/docs/University%20Park%20Development%20Project.pdf

0.15

Transistor Physics

• Cross-section of transistors
on an IC

• Moore’s Law is founded on
our ability to keep
shrinking transistor sizes

– Gate/channel width shrinks

– Gate oxide shrinks

• Transistor feature size is
referred to as the
implementation
“technology node”

0.16

Technology Nodes

0.17

Growth of Transistors on Chip

0.18

Implications of Moore’s Law

• What should we do with all these transistors

– Put additional simple cores on a chip

– Use transistors to make cores execute instructions
faster

– Use transistors for more on-chip cache memory

• Cache is an on-chip memory used to store data the
processor is likely to need

• Faster than main-memory which is on a separate chip
and much larger (thus slower)

0.19

Pentium 4

L2 Cache

L1 Data

L1 Instruc.

0.20

Increase in Clock Frequency

What happened here?

0.21

Intel Nehalem Quad Core

0.22

Progression to Parallel Systems

• If power begins to limit clock frequency, how can we
continue to achieve more and more operations per
second?

– By running several processor cores in parallel at lower
frequencies

– Two cores @ 2 GHz vs. 1 core @ 4 GHz yield the same
theoretical maximum ops./sec.

• We’ll end our semester by examining (briefly) a few
parallel architectures

– Chip multiprocessors (multicore)

– Graphics Processor Units (SIMT)

0.23

Flynn’s Taxonomy

• Categorize architectures based on relationship between
program (instructions) and data

SISD
Single-Instruction, Single-Data

SIMD / SIMT
Single Instruction, Multiple Data

(Single Instruction, Multiple Thread)

• Typical, single-threaded processor • Vector Units (e.g. Intel MMX, SSE,
SSE2)

• GPU’s

MISD
Multiple Instruction, Single-Data

MIMD
Multiple Instruction, Multiple-Data

• Less commonly used (some streaming
architectures may be considered in this
category)

• Multi-threaded processors
• Typical CMP/Multicore system (Task

parallelism with different threads
executing)

0.24

GPU Chip Layout

• 2560 Small
Cores

• Upwards of
7.2 billion
transistors

• 8.2 TFLOPS

• 320
Gbytes/sec

Photo: http://www.theregister.co.uk/2010/01/19/nvidia_gf100/

Source: NVIDIA

0.25

8th Gen Coffee-Lake Hex-Core Intel Processor

https://www.researchgate.net/figure/Die-Map-of-a-Hexa-Core-

Coffee-Lake-Processor_fig6_332543387

https://www.researchgate.net/figure/Die-Map-of-a-Hexa-Core-Coffee-Lake-Processor_fig6_332543387

0.26

COMPUTER SYSTEM TOUR
In case you need a review…Look these over on your own

0.27

Computer Systems Tour

• How does a SW
program get mapped
and executed on a
computer

• What components
make a computer
system and what are
their functions

• How does the
architecture affect
performance

C / C++ / Java

Logic Gates

Transistors

HW

SW

Voltage / Currents

Assembly /

Machine Code

Applications

LibrariesOS

Processor / Memory / I/O

Functional Units

(Registers, Adders, Muxes)

Start Here

0.28

Software Process

1110 0010 0101 1001

0110 1011 0000 1100

0100 1101 0111 1111

1010 1100 0010 1011

0001 0110 0011 1000

MOVE.W X,D0

CMPI.W #0,D0

BLE SKIP

ADD Y,D0

SUB Z,D0

SKIP MUL …

Software

Program

High Level

Language

Description

Assembly

(.asm/.s files)

Executable

Binary Image

if (x > 0)

x = x + y - z;

a = b*x;

MOVE.L X,D0

CMPI #0,D0

BLE SKIP

ADD Y,D0

SUB Z,D0

SKIP MUL …

1110 0010 0101 1001

0110 1011 0000 1100

0100 1101 0111 1111

1010 1100 0010 1011

0001 0110 0011 1000

.c/.cpp files
1110 0010 0101 1001

0110 1011 0000 1100

0100 1101 0111 1111

1010 1100 0010 1011

0001 0110 0011 1000

Object/Machine Code

(.o files)

Compiler Assembler

LinkerLoader /

OS

Program

Executing

In EE 357 you will be able to perform

all the tasks of the compiler…
A “compiler”

(i.e. gcc, VisualC++,

etc.) includes the

assembler & linker

http://images.google.com/imgres?imgurl=http://www.intel.com/pressroom/images/processors/p4_13micron_front.jpg&imgrefurl=http://www.intel.com/pressroom/archive/photos/p4_photos.htm&h=180&w=225&sz=13&tbnid=Z0oqhcwTtFEJ:&tbnh=81&tbnw=102&hl=en&start=14&prev=/images?q%3Dpentium%2B4%26svnum%3D10%26hl%3Den%26lr%3D
http://images.google.com/imgres?imgurl=http://www.canadiancomputer.com/sku_images/large/204.jpg&imgrefurl=http://www.canadiancomputer.com/product_details.php?id%3D218&h=480&w=626&sz=32&hl=en&start=2&tbnid=SdZTUGLFcNALkM:&tbnh=104&tbnw=136&prev=/images?q%3Dram%2Bdimm%26svnum%3D10%26hl%3Den%26lr%3D
http://images.google.com/imgres?imgurl=http://www.biosmagazine.co.uk/images/content/prodpics/200603/MHV2200BT.jpg&imgrefurl=http://www.biosmagazine.co.uk/article.php?id%3D3117&h=350&w=480&sz=40&hl=en&start=47&tbnid=9N4l4lruIlKqgM:&tbnh=94&tbnw=129&prev=/images?q%3Dhard%2Bdisk%26start%3D40%26ndsp%3D20%26svnum%3D10%26hl%3Den%26lr%3D%26sa%3DN

0.29

Compiler Process

• A compiler such as ‘gcc’ performs 3 tasks:
– Compiler

• Converts HLL (high-level language) files to assembly

– Assembler
• Converts assembly to object (machine) code

– Static Linker
• Links multiple object files into a single executable resolving references

between code in the separate files

– Output of a compiler is a binary image that can be loaded into
memory and then executed.

• Loader/Dynamic Linker
– Loads the executable image into memory and resolves dynamic calls

(to OS subroutines, libraries, etc.)

0.30

Hardware Components

• Processor
– Executes the program and performs all the

operations

– Examples: Pentium 4, PowerPC, M68K/Coldfire

• Main Memory
– Stores data and program (instructions)

– Different forms:
• RAM = read and write but volatile (lose values

when power off)

• ROM = read-only but non-volatile (maintains
values when power off)

– Significantly slower than the processor speeds

• Input / Output Devices
– Generate and consume data from the system

– Examples: Keyboard, Mouse, CD-ROM, Hard
Drive, USB, Monitor display

– MUCH, MUCH slower than the processor

Processor

Memory
Output

Devices

Input

Devices

Software

Program

Data

0.31

Processor

• Performs the same 3-step
process over and over again
– Fetch an instruction from

memory

– Decode the instruction
• Is it an ADD, SUB, etc.?

– Execute the instruction
• Perform the specified operation

• This process is known as the
Instruction Cycle

Processor

Memory

ADD

SUB

CMP

Arithmetic

Circuitry

Decode

Circuitry

1 Fetch

Instruction

It’s an ADD

Add the

specified values

2

3

System Bus

0.32

Processors

• Processors contain 4 subcomponents

1. ALU (Arithmetic & Logical Unit)

2. Registers

3. Control Circuitry & System-Bus Interface

4. Cache (Optional)

0.33

ALU

• Performs arithmetic
and logical
operations

• 2 inputs and 1
output value

• Control inputs to
select operation
(ADD, SUB, AND,
OR…)

ALU

Control

Processor

0.34

Registers

• Provide temporary storage
for data

• 2 categories of registers
– General Purpose Registers

(GPR’s)
• for program data

• can be used by
programmer as desired

• given names (e.g. D0-D7)

– Special Purpose Registers
• for internal processor

operation (not for program
data)

ALU

Control

Processor

MIPS Core

$0 - $31

32-bits

GPR’s

Special Purpose Registers

PC:

IR:

HI:

LO:

0.35

Registers

• GPR’s
– Faster to access than main

memory
– Keep data you are working with

in registers to speed up
execution

• Special Purpose Reg’s.
– Hold specific information that

the processor needs to operate
correctly

– PC (Program Counter)
• Pointer to (address of)

instruction in memory that will
be executed next

– IR (Instruction Register)
• Stores the instruction while it

is being executed

– SR (Status Register)
• Stores status/control info

ALU

Control

Processor

MIPS Core

$0 - $31

32-bits

GPR’s

Special Purpose Registers

PC:

IR:

HI:

LO:

0.36

Control Circuitry

• Decodes each
instruction

• Selects appropriate
registers to use

• Selects ALU
operation

• And more…

Registers

ALU

Control

Control

Circuitry

Processor

$0

…

$1

PC

IR

0.37

System Bus Interface

• System bus is the
means of
communication
between the processor
and other devices
– Address

• Specifies location of
instruction or data

– Data

– Control
Address

Data

Control

Registers

ALU

Control

Control

Circuitry

Processor

$0

…

$1

PC

IR

0.38

Memory

• Set of cells that each store a
group of bits (usually, 1 byte
= 8 bits)

• Unique address assigned to
each cell
– Used to reference the value in

that location

• Numbers and instructions
are all represented as a string
of 1’s and 0’s

11010010

01001011

10010000

11110100

01101000

11010001

…

00001011

0

1

2

3

4

5

FFFF

Address Data

Memory

Device

0.39

Memory Operations

• Memories perform 2 operations
– Read: retrieves data value in a

particular location (specified using
the address)

– Write: changes data in a location
to a new value

• To perform these operations a
set of address, data, and control
inputs/outputs are used
– Note: A group of wires/signals is

referred to as a ‘bus’
– Thus, we say that memories have

an address, data, and control bus.

11010010

01001011

10010000

11110100

01101000

11010001

…

00001011

0

1

2

3

4

5

FFFF

11010010

01001011

10010000

11110100

01101000

00000110

…

00001011

0

1

2

3

4

5

FFFF

2

10010000

Read

Addr.

Data

Control

Addr.

Data

Control

5

00000110

Write

A Write Operation

A Read Operation

0.40

Input / Output

• Keyboard, Mouse, Display, USB devices, Hard Drive, Printer, etc.

• Processor can perform reads and writes on I/O devices just as it
does on memory
– I/O devices have locations that contain data that the processor can

access

– These locations are assigned unique addresses just like memory

Keyboard

Interface

‘a’ = 61 hex

in ASCII

61400

Processor Memory

A D C

400

61

READ

…

0

3FF

0.41

Input / Output

• Writing a value to the video adapter can set a pixel on
the screen

Video

Interface

FE may

signify a

white dot at

a particular

location

…

800

Processor Memory

A D C

800

FE

WRITE

…

0

3FF

FE

01

Keyboard

Interface

61400

0.42

Computer Organization Issues

• Components run at different speeds
– Processor can perform operations very quickly (~ 1 ns)
– Memory is much slower (~ 50 ns) due to how it is

constructed & its shear size [i.e. it must select/look-up 1
location from millions]
• Speed is usually inversely proportional to size

(i.e. larger memory => slower)

– I/O devices are much slower
• Hard Drive (~ 1 ms)

– Intra-chip signals (signals w/in the same chip) run much
faster than inter-chip signals

• Design HW and allocate HW resources to
accommodate these inherent speed differences

