
EE 457 Lab 4 Cache Controller  

1 Introduction 
In shared memory multi-core systems, a main challenge is to keep the memory system 

coherent among all the cores within the MPSoC (Multi-processor System-on-Chip). As a result, 

diverse types of cache coherency protocols have been introduced to maintain coherency. The 

MSI protocol is the cornerstone protocol that most of the cache coherency protocols are based 

on. In this lab assignment, we emulate the memory system of a single core in part 1 and then 

enhance our cache to MSI protocol in part 2 

2 What you will learn 
This lab will help you: 

• Apply cache mapping schemes to determine hit/miss. 

• Design an MSI cache coherency implementation 

• Further develop your Verilog description skills 

3 Procedure 

3.1 Part 1. Emulation of Cache (40 pts.) 
 

In this part, we will emulate the behavior of the single processor memory system. The address 

space of the main memory for a single core byte-addressable processor is assumed to be 64 

bytes. The internal data bus of the processor is 8 bits wide. Thus, 1 "word" is simply 1 byte.  The 

cache block size is 2-bytes (i.e. 2 words) and the processor is enhanced with a direct-mapped 

cache with 4 blocks (i.e. 8 bytes). As a result, the physical and cache addresses will follow the 

format as shown in the Fig. 1. To facilitate single access block transfers to and from memory, 

the main memory is 16-bits wide and always performs a read/write of that data size.  Thus, we 

only need the upper 5 bits of the processor address bus to address the 32 cache blocks (64 

bytes) that exist in main memory.  Cache organization is demonstrated in Fig. 2.  
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Fig. 1: Physical and Cache Address Format 
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Fig. 2: Direct-mapped Cache Organization 

The detailed explanation for signals used as cache ports are as follows: 

pr_din[7:0]: Data provided by the processor to be written in the cache. 

pr_dout[7:0]:  Cache data provided to processor. 

pr_addr[5:0]:  Address issued by the processor. 

pr_rd:  Processor memory read request, issued when dealing with LW instruction. 

pr_wr:  Processor memory write request, issued when dealing with SW instruction. 

pr_done: Cache operation is valid/complete.  On a read the data should be on pr_din 

when cvalid is asserted so that the processor can use it as an enable to capture 

data.  On a write cvalid indicates the cache operation has completed.  The 

processor will maintain pr_rd and pr_wr until cvalid is true at a clock edge. 

hit: Internal cache control signal indicating a valid block with matching tag 

comparison. 

bus_din[15:0]:  Full 2-byte cache block provided by the memory to be written in 

cache as a result of a cache miss.  

bus_addr[4:0]:  Block (2-byte) address provided to memory by cache in case of a 

cache miss (to be used for writeback or fetch of a block) 

bus_rd: Bus read request by cache in case of a need to fetch.  

bus_wr: Bus write request by cache in case of a replacement.  

bus_dout[15:0]: Full 2-byte cache block provided by the cache to be written in the 

main memory in case of a writeback. 



bus_done: The memory operation is complete. If a memory read, then the data 

on mem_dout is valid and may be captured by the cache.  There is a 

gap in the speed between memory and cache, which for the sake of 

this simulation we take to be 10 clocks in our test bench.  

CLK:   system clock 

Reset:   system reset (active high) 

To check whether the block residing in the cache is the same as the one requested by the 

processor, the cache is indexed with pr_addr[2:1] (i.e. the ‘cblk’ field) and then the TAG of the 

cache block is compared with pr_addr[5:3]. V and D are valid and dirty bits, respectively. C.C.U. 

stands for Cache Control Unit and oversees coordination between processor and the bus (i.e. main 

memory). If a block is missed in the cache, the CCU will request the block from the bus and waits 

until memory provides the data to the cache. When the memory finishes the transaction 

requested by the core, it sets bus_done signal high for a clock so the cache knows that the 

transaction is done. The cache that we implement here is a write-back cache; therefore, if a block 

is dirty in the cache and the processor wants to update it with another block, the dirty block needs 

to be written in the main memory first.  Note:  While the valid and TAG bits would generally be 

stored in a separate TAG RAM, we will just store them as a simple register array in the CCU (this 

is why those bits are shaded and lines drawn in Fig. 2 to indicate that TAG, V, and D are actually 

stored in the CCU). 

The memory has been designed completely and given to you as memory.v. Our memory is 10 

times slower than the cache meaning it handles the memory requests issued to it after 10 

processor clock cycles. If the request is a memory read, the data is read from it after 10 clocks. If 

the request is a write request, the data is written to it after 10 clocks. Once the request is 

performed by the memory, it sets the bus_done signal high for 1 CPU clock so the CCU knows the 

transaction is done. The memory initializes itself with a user provided text file as “datamem.txt”. 

Each line in this file represents a byte in the memory and the line number represents the memory 

address starting from address 0. The format of the data in each line is in hex and each line in the 

file is initialized with the line number in hex starting from 0 for sake of simplicity (i.e., mem[i]= i , 

for example: Mem[11 hex]=11 hex  = 8’b00010001)  

Steps required to be done for Part1:  

1. Complete the state diagram for CCU as provided in the Fig. 3 using the signals demonstrated 

for CCU ports in the Fig. 2. (10 pts) 

The description of the states in the Fig. 3 are as follows.  

Initial:  Initial is the power-on state of the system. We clear the valid and dirty bits of the cache 

blocks as well as the memory control signals. 

Monitor:   We want to support a single-clock read/write on hits.  Thus we need to handle hits 

completely in this state using a Mealy approach.  Only misses will cause us to transition to a 

new state.  If we do have a miss, we may need to write back a block (if it is dirty) before 

fetching the desired block.  If we indeed do have a miss, transition to an appropriate state 

where we can use a Moore-style approach to generate appropriate bus signals.  To be more 

specific: 

• On a read hit, we can read the data immediately.  The CCU need do nothing special 

and we can stay in the Monitor state. 



• On a write hit, we perform the write on the specified byte of the cache block and 

update any necessary state (you should think about what bit(s) need to be updated).  

We can stay in the Monitor state. 

• On a miss we must transition to either the WB or Fetch state.  We must check if the 

current block in cache is dirty and write it back if so.  We can initiate that operation 

by moving to the WB state where will generate the appropriate memory bus signals 

to write the block back and wait for the operation to complete.  If the block is not 

dirty, we can move to the Fetch state where we can generate the appropriate 

memory bus signals to read the desired block.   

WB:   In this state, we generate the bus signals for the write/flush and wait for the memory 

operation to complete.  However, once complete we need to start fetching the desired block 

from memory by moving to the Fetch state.   

Fetch:   In this state, we generate the bus signals to read/fetch the desired data (from the 

memory) until we see the bus_done signal asserted at which point we write the appropriate 

data into the cache.  If the processor intended to write, be sure that specific byte from the 

processor is placed alongside the other byte read from memory to effectively perform the 

write at the same time as the cache captures the data.  Also be sure to update the valid, tag, 

and dirty bits.   

After servicing a read or write miss via the (WB and) Fetch state, we return to the Monitor 

state where the current request will now be a hit and the data sent back to the processor 

during the cycle in which we return to the Monitor state (i.e. you do not have to forward the 

appropriate data to the processor when bus_done is true in the WB and/or Fetch state). 

2. Complete the Verilog skeleton provided to you as cache_p1.v based on the state diagram you 

designed for CCU.  Only the state machine portion is blank and requires completion, though if 

you feel you need to change other signals you may. (30 pts) 

 

3. The following memory references as shown in the Table 1 are included and show up in the 

testbench that we have provided to you. Fill in the Table 1 indicating the status of the cache 

upon each request and the required action taken by the CCU. (10 pts) 

 

4. Compile you’re your design as cache_p1.v . Then simulate it with the given test bench and 

verify the behavior of the cache you designed. To do so, simply use the .do file that we have 

provided to you as cache_p1.do.  Note:  Most transactions in our testbench will wait for the 

pr_done signal.  Thus, if in the waveform you do not see new transactions happening after a 

certain point it is likely that you have not correctly implemented the logic for that transaction.   

Table 1. Test bench memory references 

 

 

 

 

 

 

Instruction Hit Miss Dirty CCU Transaction 

LW @1     
SW @9, data=12     
SW @9, data=13     
SW @1, data=14     
LW@9     
LW@8     
SW@4, data=17     
LW@9     
LW@13     



Initial:
      V<= 4'b0000;
      D<=4'b0000;
      bus_rd<=0;
      bus_wr<=0;

Fetch :

Monitor:

WB:

~bus_done

~bus_done

bus_done

bus_done

Uncond

if(hit && pr_wr)
   

Combinational actions
  bus_rd = __
  bus_wr = __   
    

Combinational actions:
  bus_addr = ____________________
  bus_wr = __
  bus_rd = __
  bus_dout = _____________________

if(bus_done)
  tag[____________] <= _____________
  valid[___________] <= ___
  if(pr_rd) 

  else if(pr_wr )

Combinational actions:
  bus_addr = ___________
  bus_wr = __
  bus_rd = __

__________

__________

__________

 
 

Fig. 3: CCU State Diagram 

  



3.2 Part 2: Cache coherency protocol (60 pts) 
In order to maintain a coherent memory system, we now enhance our cache control unit to 

implement an MSI cache coherency protocol. The MSI protocol and updated CCU diagram are 

shown in the Fig. 4 and Fig. 5, respectively.  
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Fig. 4: MSI protocol state diagram   Fig. 5: MSI Finite State Machine Block Diagram 

Now we will have both an input and output version of signals now referred to as “bus_addr_in” and 

“bus_addr_out”. In addition, we add 3-bit bus operation input/outputs to indicate the kind of bus 

operation (BusRd, BusRdX, Flush, BusUpgr, None} being perform by remote caches (bus_op_in) and 

by this local cache (bus_op_out).   

Note that the MSI state diagram is PER cache block.  We will still need the overall state machine 

developed in part 1 to control the operation sequence of WB, fetching, etc.  But then for each cache 

block we will maintain its M, S, I state by using the Dirty and Valid bits.  To do this we will use a 2-bit 

state encoding of the Dirty and Valid bits.  (i.e. M = {D,V} = 11;  S = {D,V} = 01; and I = {D, V} = 0,0).  

However, we will now call these 2-bits “msi_state” rather than dirty and valid.   

Since we may receive requests from both the processor and the bus at the same time we will CHOOSE 

to give priority to bus requests over processor requests.  Thus, if the bus operation is anything other 

than None you should handle it and ignore processor read and write requests until the bus operation 

is complete.  To handle bus operations you will need to index the desired cache block using the bus 

address (in) and then compare the tags based on the desired bus address (in), as well as ensuring the 

block’s state is valid.  Our code skeleton will implement a pr_hit and bus_hit signal that you can use 

to help you.  Your main task is to fill in the operations to be performed in each state 

The Monitor state allows us to handle processor read and write hits and incoming BusUpgrades (i.e. 

bus requests to invalidate a cache block).  If an incoming bus request requires us to flush modified 

data we can move to the Flush state (where we assume we can flush our cache data to the bus for a 

single cycle (setting the bus_op_out to BusFlush) and asserting the bus_done_out signal in the Flush 

State so that we stay for only one cycle (we mave modified the memory to write in a single cycle).  In 

both of these states (Monitor and Flush) the processor may still make a new request that causes a 

cache miss causing us to request the bus. This request signal can be a Mealy-style output of the 

Monitor and Flush states.  We should stay in one of these two states until a bus_grant is given.  From 



there, we may need to evict the current block, writing it back if modified and then moving to the 

appropriate state to perform the desired bus operation.  If we need to perform a BusUpgrade to 

invalidate others' version of a cache block, we assume that it can be done in a single cycle once the 

bus is granted (meaning we only need to stay in the BusUpgr state for 1 cycle and then return to 

Monitor).  However, for BusRd and BusRdX we must wait until the bus_done_in signal is asserted 

before returning to Monitor. 

Coherency operations are shown the Table 2 along with their encoding used in the skeleton provided 

to you. These transactions are used for bus_op_in, and bus_op_out signals. 

Table 2. Coherency Transactions 

Coherency  
Transactions 

Description Encoding 

None Nothing 3’b000 

BusRd  Read request for a block 3’b001 

BusUpgr  Invalid other copies 3’b010 

Flush  Our cache flushes/writesback a block on the bus 3’b011 

BusRdX  Read block and invalidate other copies 3’b100 

 

A state diagram for your controller is shown on the next page.  You can use it as scratch work to plan 

what actions need to be taken in each step, but writing a full, exhaustive description of what to do in 

each state is likely less helpful and you can just pull up the code skeleton.  

In the diagram below we define certain conditions (A, B, C, D, etc.) that should be used to transition 

to a new state to make the state diagram appear uncluttered. In the skeleton file we have defined 

signals with more meaningful names like needToServiceBusReq or startBusRd that you will need 

to complete.  We use those signals to provide you some of the next state logic in the state machine 

implementation. You will need to add other actions to the state, but please read over the skeleton 

code and this handout a few times to start to see the connections before you begin coding in earnest.   

You are free to alter the approach we've given in the skeleton as long as you implement a general 

design that works for any sequence of transactions. So if you don't like the way we've started the 

skeleton code, you can alter it. 



Initial:
      V<= 4'b0000;
      D<=4'b0000;
      Mem_Rd<=0;
      Mem_Wr<=0;

Monitor: BusRd

Uncond.

Flush:

BusRdX

BusUpgr

WBEvict

C

bus_done_in   C

C

D

D

E

A

B

B

!(
B

+C
+D

+E
)

!(
B

+C
+D

+E
)

bus_done_in   D

bus_done_in   E

!bus_done_in

!bus_done_in

b
us

_d
o

ne
_i

n
b

u
s_

d
o

n
e

_
in

 

 

  



Steps required to be done for Part2:  

1. Complete the Verilog skeleton provided to you as cache_msi.v. Update the CCU state 

machine in the previous part so your cache supports MSI protocol (msi_state rather than 

valid and dirty bits). (50 pts) 

2. The following memory references as shown in the following are included in the testbench that 

we have provided to you. Fill in the table indicating status of the each cache block upon each 

request and the required action to be taken on the bus. (10 pts) 

Transaction # 1 2 3 4 5 6 7 

Instruction by Local 
Core 

LW @1 SW @9 − − SW @9 SW @1 − 

BUS_Req_in by a 
Remote Core 

− − BusRd BusRd − − BusRdx 

 
BUS_addr_in 
(Block addr)             

{byte addresses} 
− − 

0                 
{0,1} 

8                   
{8,9} 

− − 
8                      

{8, 9} 

Local Cache 
BLOCK 0, MSI        

Local Cache 
BLOCK 1, MSI        

Local Cache   BLOCK 
2, MSI        

Local Cache  BLOCK 
3, MSI        

 
BUS_Req_out        

 

  

Transaction # 8 9 10 11 12 13 14 15 

Instruction − LW @9 LW  @9 − LW @3 LW @2 − − 

BUS_Req_in BusRdx − − BusRdx − − BusRd BusUpgr 

 
BUS_addr_in 
(Block addr) 

{byte 
addresses} 

0         
{0,1} 

− − 8 {8,9} − − 
2        

{2, 3} 
2 

{2,3} 

Local Cache 
BLOCK 0, MSI         

Local Cache 
BLOCK 1, MSI         

Local Cache 
BLOCK 2, MSI         

Local Cache 
BLOCK 3, MSI         

 
BUS_Req_out         



3. Compile your design as cache_msi.v. Then simulate it with the given test bench and verify the 

behavior of the cache you designed. To do so, simply use the .do file that we have provided 

to you as cache_p2.do.  You may (should) add more test cases to the end of the testbench.  

Again note that our testbench will not go on to another transaction until it verifies a previous 

transaction is correct (usually by looking at cvalid or the internal block state to check if it is the 

expected MSI value).  If your testbench is not producing new transactions it is likely due to an 

error in your logic.  We have added an integer counter to the waveform (signal i) so you can 

track which transaction the testbench is currently testing.  

 

 


