
Last Revised: 6/9/2019 1

EE 457 Lab 3 Pipelined Processor

1 Introduction
You will apply your knowledge of the basic 5-stage pipeline by converting a single-
cycle CPU datapath and control to a 5-stage pipelined implementation and add
various additional units, including a Hazard Detection Unit and Flushing Unit.

2 What you will learn
This lab will help you:

• Understand the detailed implementation of a 5-stage pipelined processor

• Understand internal forwarding in the register file

• Understand the inputs and output control associated with the Hazard
Detection Unit

• Further develop your Verilog description skills

3 Background Information and Notes
Refer to the Single-Cycle CPU Lecture Notes and related Pipelining Lecture Notes.
We will provide you with a working single-cycle CPU datapath and control unit.
Because we are simulating memory, Be sure to fully understand

Lab Organization: You will be implementing your CPU using Verilog to describe it
and Modelsim to simulate it.

System Inputs/Outputs: The inputs to your CPU are ‘clk’, ‘rst’ (active-high), and the
memory interface signals. We will also bring out the interface signals to the register
file so that they can be easily viewed. Any other signals can be viewed in the
Modelsim Simulator by drilling down in the Objects Pane to find the internal signals
in the UUT (Unit-under-Test = CPU). The provided testbench will instantiate your
CPU design and a memory model and connect them together. This is depicted in the
Figure 1 below.

EE 457 Lab 3 Pipelined Processor - Multicycle CPU

2 Last Revised: 6/9/2019

Figure 1 - System Block Diagram

Provided Components: We have implemented (either fully or partially) several
components for you to make the task more manageable. These have been
instantiated in the provided CPU skeleton design.

ee457_regfile_2r1w.v: Implements a 2 read-port, 1 write-port, 32x32 register
file. The initial register file DOES NOT IMPLEMENT INTERNAL FORWARDING. The
I/O is defined below. It is complete and need not be modified by you.

Signal I/O Description

ra[4:0], rb[4:0] Input Read register select port a and
port b

radata[31:0],
rbdata[31:0]

Output Read data from selected registers
(from ra and rb)

wa[4:0] Input Write register select

wdata Input Data to write to selected register

regwrite Input Write enable for register selected
by wa.

ee457_scpu

(your design)

dmem_addr[31:0]

dmem_wdata[31:0]

dmem_rdata[31:0]

dmem_read

dmem_write

re
g

_
ra

[4
:0

]

re
g

_
rb

[4
:0

]

re
g

_
ra

d
a

ta
[3

1
:0

]

re
g

_
rb

d
a

ta
[3

1
:0

]

re
g

_
w

a
[4

:0
]

re
g

_
w

d
a

ta
[3

1
:0

]

re
g

w
ri
te

ee457_mem

Data Mem.

(256x32 mem)
dmem_addr[7:0]

dmem_wdata[31:0]

dmem_rdata[31:0]

dmem_read

dmem_write

Initial Memory

Contents read

from user-

provided text

file:

datamem.txt

clk

rst

For checking

purposes

For checking purposes

ee457_scpu_tb

(Testbench)

clk

rst

clk

mem_addr[9:2]

ee457_mem

Instruc. Mem.

(256x32 mem)
imem_addr[7:0]

imem_wdata[31:0]

imem_rdata[31:0]

imem_read

imem_write

clk

imem_addr[31:0]

imem_wdata[31:0]

imem_rdata[31:0]

imem_read

imem_write

clk

For checking

purposes

Initial Memory

Contents read

from user-

provided text

file:

progmem.txt

 EE 457 Lab 3 Pipelined Processor - Multicycle CPU

Last Revised: 6/9/2019 3

ee457_alu.v: This file is complete and takes in a 6-bit function code to indicate
the operation. The function code is shown below and matches the function
codes used by R-Type instructions in the MIPS ISA.

Operation FUNC[5:0] RES[31:0] UOV
(unsigned
overflow)

SOV
(signed
overflow)

ADD 100000 OPA + OPB * *
SUB 100010 OPA – OPB * *
AND 100100 OPA & OPB 0 0
OR 100101 OPA | OPB 0 0
XOR 100110 OPA ^ OPB 0 0
NOR 100111 ~(OPA | OPB) 0 0
SLT 101010 1 if OPA < OPB (signed),

0 otherwise
* *

‘*’ = output as traditionally defined

One important aspect of this project is the size of the memory. While your
processor will implement a byte-addressable 32-bit address, we will only interface it
to much smaller 256x32 instruction and data memories (i.e. 256 words) to limit the
amount of initialization and make simulation faster. To this end, while your
processor will generate mem_addr[31:0], we will only connect 8 bits of the address
to the memory (since it has 256 locations). Those 8-bits will be mem_addr[9:2].
mem_addr[1:0] are unneeded since we will always do word accesses. [In an actual
design these bits would be converted to “byte enable” signals that would select the
appropriate bytes from the word.]

Testbench and Initial Memory Contents: A Verilog testbench has been provided for
you that will generate the rst signal and hold it active for the first few clock cycles. It
also generates the clock signal. You will use Modelsim simulator to simulate your
CPU fetching and executing instructions from instruction memory. This requires that
the instruction memory be initialized with the machine code of some instructions
before simulation begins. The memory component provided to you will initialize
itself with the values in ‘progmem.txt’ in your project folder. The format of this file
assumes a single 32-bit word per line, specified in hex. The provided ‘progmem.txt’
file has a few instructions. The value of the PC at reset will be address 0, thus your
instructions should start at address 0 in memory. To test certain features of your
CPU you will need to convert some instruction sequences to machine code and fill in
this progmem.txt file by hand. Initial data for access by LW's can be placed in the
'datamem.txt' file. The testbench will initialize the data memory with the contents
of this file.

EE 457 Lab 3 Pipelined Processor - Multicycle CPU

4 Last Revised: 6/9/2019

Program 1 in progmem.txt
 addi $9,$0,0x0084

 xor $8,$0,$0

 nor $8,$0,$0

L1: lw $4,-4($9)

data at addr 0x80 = 0x12345678

 lw $5,0($9)

data at addr 0x84 = 0xfffffffe

 add $17,$4,$5

 sub $18,$4,$5

 and $16,$4,$5

 or $16,$4,$5

 slt $16,$17,$18

 slt $19,$8,$0

 beq $19,$0,L2

 sw $16,0($9)

 addi $8,$8,1

 beq $0,$0,L1

L2: beq $0,$0,L2 # inf. loop

When hand-assemblying instructions, use the machine code format below:

R-Type: 31:26 25:21 20:16 15:11 10:6 5:0

ADD $rd,$rs,$rt 000000 rs rt rd 00000 100000

SUB $rd,$rs,$rt 000000 rs rt rd 00000 100010

AND $rd,$rs,$rt 000000 rs rt rd 00000 100100

OR $rd,$rs,$rt 000000 rs rt rd 00000 100101

XOR $rd,$rs,$rt 000000 rs rt rd 00000 100110

NOR $rd,$rs,$rt 000000 rs rt rd 00000 100111

SLT $rd,$rs,$rt 000000 rs rt rd 00000 101010

I-Type: 31:26 25:21 20:16 15:0

LW $rt,disp16($rs) 100011 rs rt disp16

SW $rt,disp16($rs) 101011 rs rt disp16

ADDI $rt,$rs,imm16 001000 rs rt imm16

BEQ $rs,$rt,disp16 000100 rs rt disp16

*Note: BEQ adds two 0’s to the LSB’s of the displacement and adds that value to the already
incremented PC (i.e. target addr. = addr. of BEQ + 4 + (disp.*4)). Make sure you remove the
two 0’s when you calculate the stored disp. value.

J-Type: 31:26 25:0

J addr26 000010 addr26

*Note: J adds two 0’s to the LSB’s of the jump address. Thus, you should store the desired
address with the two 0’s removed.

 EE 457 Lab 3 Pipelined Processor - Multicycle CPU

Last Revised: 6/9/2019 5

When you simulate your design you will be able to see the signals that have been
brought out as outputs. To determine if your design is working or not, it is likely
easiest to look at the memory address, read and write values as well as register read
and write values to see if they match expectation [obviously you will need to
calculate the expected values from each instruction and ensure the actual values
match your expectation]. Once an error is found, you can drill down into the design
hierarchy in the Workspace pane to find the component and internal signals that
you’d like to view and drag the desired signal name to the waveform window.
Restart the simulation [restart -f] and re-run the simulation [run XXXns].

4 Prelab
None.

5 Procedure

5.1 Part 0:
Download the “Single Cycle Reference Code”. This file is complete. Run the
simulation of the test bench “ee457_scpu_tb.v” for about 1000 ns and observe
the behavior of the single cycle CPU. It is essential that you thoroughly understand
the code “ee457_scpu.v” for the following parts. The TA will run through this code
during the discussion.

Add support for the ADDI instruction: Modify the Control Unit
(“ee457_scpu_cu.v”) and add/modify the datapath in “ee457_scpu.v” as
necessary.

5.2 Part 1:
You will now take the single cycle CPU design and modify it to create a 5 stage
pipelined CPU WITHOUT forwarding or hazard detection. To do this:

Modify the single cycle CPU into a 5 stage pipeline processor by adding pipeline
registers (modeled as always blocks that take one set of input signals, register
them and output them to the next stage. Reminder you do not need to consider
data forwarding, flushing and hazards.

The 5 stages are:

• Instruction Fetch: Consisting of the PC (a register itself!) and the instruction
memory

• Instruction Decode: Consisting of the register file and all control logic that
outputs control signals. Unconditional jumps commits at this stage

EE 457 Lab 3 Pipelined Processor - Multicycle CPU

6 Last Revised: 6/9/2019

• Execution: Consisting of the ALU, branch target is computed in this stage,
branch decisions are computed, but not made here

• Memory: Consisting of the data memory, branch decisions are propagated to
this stage from the execution stage, and decisions are being carried out at
this stage

• Write-Back: Writes back to the register file, does not consist of any big
modules.

Update the register file without forwarding to now allow for internal forwarding
(i.e. when one of the read register IDs matches the write register ID and there is
intent to write, then pass the new write data, not the old value of the read register).

Test your design by simulating it. Note that if you use the contents of the
instruction memory (i.e. the earlier given assembly program) it will not function
properly because of the lack of forwarding, but the first couple instructions will. You
are strongly advised to hand-assemble your own instruction sequence where there
are no dependencies (i.e. no need for forwarding), type their hexadecimal values
into the instruction memory text file, and verify your Verilog is working.

Submit your part 1 tested code by following the instructions on the website.

5.3 Part 2
Forwarding Logic
Implement the forward logic described in class and add forwarding muxes to the EX
stage logic. You do not have to create a separate Verilog module for the forwarding
unit but can describe it in the same Verilog file as your CPU. Similarly, implement
the HDU. You can make this a separate module or implement it in the top-level
design file. Test your design with an appropriate sequence of instructions (you may
hand assemble some instructions that have data dependencies that will exercise
your forwarding logic and HDU).

Branch hazard detection and resolution.
We will implement "late" (MEM-Stage) Branch outcome determination. Implement
the flushing logic. Do you flush all stages or particular stages? How to flush the IF
stage? Add logic to flush appropriate instructions in the pipeline when a successful
branch is executed. You can zero the control signals or simply reset an entire
pipeline registers. Your new pipelined CPU should be able to handle the original
progmem.txt program that exercises stalling and flushing.

5.4 What to turn in
You will turn in your part 1 and part 2 at separate due dates. See website for more
info and be sure to submit all of your working Verilog code files and memory files
(see instructions on the website) in a .ZIP file.

