
EE 457 HW1

© Copyright 2004 Gandhi Puvvada. Edited by Mark Redekopp with permission. 1

 EE 457 HW 1

Digital Design Review
Redekopp Puvvada

Name: ___
Due: See Website Score: ________

Please post any questions regarding HW problems on Piazza.

1. (25 pts.) Mealy machine Design

Design a simple (though inefficient) DIVIDER to divide X by Y to obtain

quotient Q and remainder R. All are 4-bit unsigned numbers. Y is a non-zero

number.

Method: Subtract Y from X repetitively until Y does not go through X anymore.

There shall be an INITIAL state I, COMPUTE state C, and a DONE state D.

Remain in the I state until the START command S is received. In the initial state,

clear the Q register. In the compute state, perform the subtraction (X - Y), and

based on borrow output from the subtractor, which indicates whether Y went

through X or not, update X with (X - Y) and increment Q. If Y did not go through

X, you should exit the compute state (without updating X or incrementing Q) and

go to the Done state. Remain in the done state while the END command is 0.

Once END is 1 then go back to the initial state. While in Done state, the register

X shall contain the remainder R and the register Q shall contain the quotient.

Use two 4-bit registers described in the datapath below for X and Y. Use

74LS163A counter for Q. Use one-hot state assignment and three D-FFs for your

state memory. If you do not know one-hot method for designing a control unit

please get help from your TA, the grader, or the instructor. State machine design

using one-hot state assignment will be covered in the first week of classes in

EE457.

Incomplete designs of the DPU (Datapath unit) and the CU (Control unit) are

provided on the next two pages. Complete the designs. All inputs to logic blocks

must be in terms of the primary inputs: XIN[3:0], YIN[3:0], START, END, RSTb

and the SYSCLK or other intermediate signals that you generate. You may tie

unused inputs to appropriate constants GND or VDD if desired. You should

define two intermediate signals: X_LOAD, Y_LOAD (data enables for the

respective registers), Q_INC (count enable), Q_CLR (counter reset), and

BORROW.

For sample values of X = 1101 (thirteen) and Y = 0011 (three), draw typical

waveforms for this divider showing the clock, the inputs S and E, the control

signals from the controller to the datapath unit such as X_LOAD, Q_INC

(increment counter), the values of X and Q over time, the state Flip-flop outputs,

QI, QC, and QD over time, etc.

EE 457 HW1

© Copyright 2004 Gandhi Puvvada. Edited by Mark Redekopp with permission. 2

Q1 Datapath:

OE

D
[3

:0
]

Q
[3

:0
]

EN

CLK

CLR

A0

A1

A2

A3

B0

B1

B2

B3

C0

S0

S1

S2

S3

C4

4
-b

it
 A

d
d

e
r

OE

D
[3

:0
]

Q
[3

:0
]

EN

CLK

CLR

XIN[3:0]

A
[3

:0
]

B
[3

:0
]

Y
[3

:0
]

S

2-to-1 Mux

(S=0, Y<=A,

 S=1 Y<=B)

YIN[3:0]

X_M_Y[3:0]

(X_Minus_Y)

X_M_Y[3:0]

(X_Minus_Y)

X_M_Y[0]

X_M_Y[3]

ENP

CLK

/CLR

X_M_Y[1]

X_M_Y[2]

P0

P1

P2

P3

/LOAD

Q0

Q1

Q2

Q3

RCO

ENT

74LS163A

(4-bit Counter)

Q_INC

74LS283

(4-bit Adder)

[C0=Carry-In,

C4=Carry-out]

4-bit Register with active-hi

Data Enable (EN) and

active-hi Tri-State Output

Control (OE)

VddSYSCLK

RSTb

Q[3:0]

R[3:0]

Q[3:0]

Q[0]

Q[3]

Q[1]

Q[2]

EE 457 HW1

© Copyright 2004 Gandhi Puvvada. Edited by Mark Redekopp with permission. 3

Q1 Control Unit:

D Q

CLK

/PRE

/CLR

DI QI

D Q

CLK

/PRE

/CLR

DC QC

D Q

CLK

/PRE

/CLR

DD QD

Q

Q

Q

SMNSL OFL

Use labels to make connections where appropriate rather

than drawing long, looping wires

SYSCLK

RSTb

(active-lo)

START

END

A
d

d
 o

th
e

r
in

p
u

ts

fr
o

m
 t

h
e

 d
a

ta
p

a
th

EE 457 HW1

© Copyright 2004 Gandhi Puvvada. Edited by Mark Redekopp with permission. 4

Q1 Sample Waveform:

SYSCLK

RSTb

START

END

X_IN 13 dec.

Y_IN 3 dec.

X

Y

X_M_Y

BORROW

Q (CNT)

QI

QC

QD

X_LOAD

Y_LOAD

Q_CLR

Q_INC

C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12

EE 457 HW1

© Copyright 2004 Gandhi Puvvada. Edited by Mark Redekopp with permission. 5

2. (25 Pts.) Datapath and Control Design

You are given two 4-bit unsigned numbers, P and Q. You need to compare them and

deposit the smaller in SMALL_REG and the bigger BIG_REG. The next page contains

a complete data path. Notice that you can bring either P or Q on bus #1 (B_ONE) or bus

#2 (B_TWO). SMALL_REG is only tied (i.e. connected) to B_ONE where as BIG_REG

is only tied to B_TWO.

2.1. 4-state State Machine

2.1.1. Complete the state diagram below by writing the state transition conditions.

I

/RESET

Initial

CPQ

Compare P (on

B_ONE) w/ Q

(B_TWO)

PQL
Load P (from B_ONE) into Small

Load Q (from B_TWO) into Big

1

S
T

A
R

T

1

QPL
Load Q (from B_ONE) into Small

Load P (from B_TWO) into Big

START

2.1.2. Complete the one-hot implementation of the above 4-state state machine on page

7. Before you produce the outputs, answer the following questions.

2.1.2.1. [Yes / No] (Circle one) Can we say that whenever we put P or Q on one of

the two buses, we may put the other on the other bus?

2.1.2.2. [Yes / No] (Circle one) Can we say that, in the initial state, we may drive

the buses even though it is not necessary?

2.1.2.3. [Yes / No] (Circle one) Can we say that we either load both

SMALL_REG and BIG_REG or load neither?

2.1.3. Complete the waveform on page 8.

EE 457 HW1

© Copyright 2004 Gandhi Puvvada. Edited by Mark Redekopp with permission. 6

Q2 Datapath. Note: This datapath is complete and is for your reference.

OE

D
[3

:0
]

Q
[3

:0
]

EN

CLK

CLR

P[3:0]

Q[3:0]

OE

D
[3

:0
]

Q
[3

:0
]

EN

CLK

CLR

SMALL[3:0]

BIG[3:0]

A
[3

:0
] AGTB

B
[3

:0
]

AEQB

ALTB

FGS
(First [B_ONE] Greater than

Second [B_TWO])
B_ONE[3:0]

B_TWO[3:0]

/P2B1

/Q2B1

/Q2B2

/P2B2

B_ONE[3:0]

B_TWO[3:0]

SYSCLK

SYSCLK

GND

4-bit Register with active-hi Data

Enable (EN) and active-hi Tri-State

Output Control (OE).

CLR is active-high

4-bit Register with active-hi Data

Enable (EN) and active-hi Tri-State

Output Control (OE).

CLR is active-high

VDD

GND

VDD

SMALL_LOAD

BIG_LOAD

EE 457 HW1

© Copyright 2004 Gandhi Puvvada. Edited by Mark Redekopp with permission. 7

Q2.1 Control Unit. Complete this.

D Q

CLK

/PRE

/CLR

QI

Q

Use labels to make connections where appropriate rather

than drawing long, looping wires

SYSCLK

D Q

CLK

/PRE

/CLR

QPQL

QSYSCLK

VDD

/RESET

D Q

CLK

/PRE

/CLR

QQPL

QSYSCLK

VDD

/RESET

D Q

CLK

/PRE

/CLR

QCPQ

QSYSCLK

START

QI

VDD

/RESET

SMALL_LOAD

BIG_LOAD

/P2B2

/Q2B1

/P2B1

/Q2B2

EE 457 HW1

© Copyright 2004 Gandhi Puvvada. Edited by Mark Redekopp with permission. 8

Q2.1 Waveform. Complete this based on your design.

SYSCLK

/RESET

START

QI

/P2B1

/Q2B1

/P2B2

QCPQ

QPQL

QQPL

/Q2B2

FGS

SMALL_LOAD

BIG_LOAD

C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11

P 03 dec.

Q 05 dec.

SMALL

BIG

06 dec.

02 dec.

02 dec.

06 dec.

XX

XX

03 dec.

05 dec.

EE 457 HW1

© Copyright 2004 Gandhi Puvvada. Edited by Mark Redekopp with permission. 9

2.2. 3-state State Machine

2.2.1. The previous 4-state state machine is a ____________ (Mealy / Moore) as the

outputs generated are not influenced by the current inputs. The outputs are

completely determined by the current state.

Let us now reduce the states by combining CPQ and PQL into CPQL "compare and

load". The load operation is conditional in the CPQL state as can be seen below.

2.2.2. This 3-state machine is a ____________ (Mealy / Moore).

Complete the state diagram below by correctly labelling the transitions.

I

/RESET

Initial

CPQL

Compare P (on B_ONE) w/ Q (B_TWO)

If appropriate:

 Load P (from B_ONE) into Small

 Load Q (from B_TWO) into Big

S
T

A
R

T

1

QPL
Load Q (from B_ONE) into Small

Load P (from B_TWO) into Big

START

2.2.3. Complete the one-hot implementation of the above 3-state state machine on page

10.

2.2.4. Complete the waveform on page 11.

EE 457 HW1

© Copyright 2004 Gandhi Puvvada. Edited by Mark Redekopp with permission. 10

Q2.2 Control Unit. Complete this.

D Q

CLK

/PRE

/CLR

QI

Q

Use labels to make connections where appropriate rather

than drawing long, looping wires

SYSCLK

D Q

CLK

/PRE

/CLR

QQPL

QSYSCLK

VDD

/RESET

D Q

CLK

/PRE

/CLR

QCPQL

QSYSCLK

START

QI

VDD

/RESET

SMALL_LOAD

BIG_LOAD

/P2B2

/Q2B1

/P2B1

/Q2B2

EE 457 HW1

© Copyright 2004 Gandhi Puvvada. Edited by Mark Redekopp with permission. 11

Q2.2 Waveform. Complete this.

SYSCLK

/RESET

START

QI

/P2B1

/Q2B1

/P2B2

QCPQL

QQPL

/Q2B2

FGS

SMALL_LOAD

BIG_LOAD

C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11

P 09 dec.

Q 01 dec.

SMALL

BIG

04 dec.

08 dec.

04 dec.

08 dec.

XX

XX

01 dec.

09 dec.

EE 457 HW1

© Copyright 2004 Gandhi Puvvada. Edited by Mark Redekopp with permission. 12

3. (13 pts.) Combinational Logic Design

We need an adder to perform Y = (X + 11 dec.) MOD 16. X and Y are 4-bit unsigned

numbers represented as X[3:0] and Y[3:0]. Note: 11 dec. = 1011 bin. Build this special

adder from SSI gates (Small Scale Integrated circuits such as INVERTER, AND, OR, XOR,

NAND, NOR, and XNOR). You may refer to full adder and half-adder designs in your book

if you wish. However you should use as few gates as possible.

The constant to be added is always 11 dec. and not a variable! This should make

optimization possible. Note: MOD 16 means modulo 16 so if X=12 dec. then 12 + 11 = 23;

23 MOD 16 = 7. Hence Y = 7 dec. Because of the MOD 16 operation you need not produce

a carry out (a.k.a. Y4) output.

X3 X2 X1 X0

Y3 Y2 Y1 Y0

EE 457 HW1

© Copyright 2004 Gandhi Puvvada. Edited by Mark Redekopp with permission. 13

4. (12 pts.) State Diagram Design

In previous problems we have seen "one-hot" coded data where only 1-bit can be a '1'. Here

the data is ”two-hot" coded. There shall be TWO ones and SIX zeros in any order.

Example: "01001000" is correctly coded. Design a state machine to verify whether an 8-bit

value: B[7:0] is correctly coded using "two-hot" coding. In the state diagram below, the

states C01, C11, C21 stand for "Counted 0 '1s'", "Counted 1 '1s'", and "Counted 2 '1s'",

respectively. Complete the state transition conditions. Use BIT or ~BIT together with

signals such as MC7, MC6, and MC5 as necessary.

ENP

CLK

/CLR

P0

P1

P2

P3

/LOAD

Q0

Q1

Q2

Q3

RCO

ENT

74LS163A

(4-bit Counter)

Y

S2

8-to-1

Mux

VDD

GND

GND

GND

GND

SYSCLK

QINI

QC01

QC11

QC21

D0

D1

D2

D3

D4

D5

D6

D7

B0

B1

B2

B3

B4

B5

B6

B7

S1
S0

Y

BIT

~BIT

I0

I1

I2

I0

I1

I2

MC7

I0

I1

I2

MC6

I0

I1

I2

MC5

I

/RESET

Initial

S
T

A
R

T

START C01

I <= I+1

C11

I <= I+1

C21

I <= I+1

WRONG
I <= I+1 I <= I+1

RIGHTACK

ACK ACK

ACK

EE 457 HW1

© Copyright 2004 Gandhi Puvvada. Edited by Mark Redekopp with permission. 14

5. (5 pts.) Datapath Design

Design a special down counter which counts down (7,6,5,…). However it shall always skip

4. So the sequence shall be 7,6,5,3,2,1,0,7,6,5,3,2,1,0,…. Use the mux to skip 4. Complete

all the connections and generate the select logic.

CLK

D0

D1

D2

Q0

Q1

Q2

Register

2-to-1, 3-bit

wide mux

A0

A1

A2

B0

B1

B2
S

BIT
Y0

Y1

Y2

SYSCLK

A0

A1

A2

B0

B1

B2

1

0

0
S

S0

S1

S2

3-bit (A-B)

Subtractor

6. (20 pts.) State Machine Design

6.1. Reproduced below is the state diagram for the divider from your classnotes. A student

has modified state transition conditions on the two diverging arrows on the "C" state as

shown.

Class Notes Design Modified Design

I

/RESET

Initial

S
T

A
R

T START
X <= XIN

Y <= YIN

Q <= 0

C
Compute &

Update
If X >= Y

 X <= X-Y

 Q <= Q+1

X>=Y

D
Done

END

END

X>=Y

C
Compute &

Update
If X >= Y

 X <= X-Y

 Q <= Q+1

X>Y

X>Y

START

Does it work? YES / NO (Circle one)

It if works, explain how it is better or worse in

performance? If it does not work, state why it

does not work.

EE 457 HW1

© Copyright 2004 Gandhi Puvvada. Edited by Mark Redekopp with permission. 15

6.2. In light of the above question, can you suggest an improvement to the Moore machine

for the divider (reproduced from the classnotes below) by modifying the state transition

conditions only?

Class Notes Design

I

/RESET

Initial

S
T

A
R

T START
X <= XIN

Y <= YIN

Q <= 0

C
Compute

X>=Y

D
Done

END

END

X>=Y

U
Update

 X <= X-Y

 Q <= Q+1

1

Explanation of improvement (if possible) or

why no improvement is possible:

6.3. Mr. Trojan suggested a better Moore machine for the divider (better than the one in the

classnotes and reproduced above) as shown below.

Class Notes Design

I

/RESET

Initial

S
T

A
R

T START
X <= XIN

Y <= YIN

Q <= 0

C

X>=Y

D
Done

END

END

U
Update

 X <= X+Y

 Q <= Q-1

1

Compute &

Update

 X <= X-Y

 Q <= Q+1

X>=Y

Note: The X+Y

and Q-1Note: The If is

removed

Using the example of 40 / 2 = 20, R=0,

explain why this is better than our classnotes

design.

EE 457 HW1

© Copyright 2004 Gandhi Puvvada. Edited by Mark Redekopp with permission. 16

6.4. Miss Trojan says that there is still a little more to improve by playing with the state

transition arrows and conditions! Can you guess what is in her mind by completing the

design below?

Class Notes Design

I

/RESET

Initial

S
T

A
R

T START
X <= XIN

Y <= YIN

Q <= 0

C

D
Done

END

END

U
Update

 X <= X+Y

 Q <= Q-1

1

Compute &

Update

 X <= X-Y

 Q <= Q+1

Note: The X+Y

and Q-1Note: The If is

removed

Using the example of 40 / 2 = 20, R=0,

explain why this is a little better than Mr.

Trojan's design.

6.5. Miss Trojan says that the resulting datapath of Mr. Trojan's design is more expensive.

Mr. Trojan says the opposite. Explain who is right and why.

__

__

__

__

__

__

