
Last Revised: 6/4/2015 1

EE 457 Lab 2 - FIFO

1 1-Introduction:
A FIFO stands for First In First Out and as the name suggests, the first data to be
written (in) is the first data that will be read (out). This hardware structure is
widely used in producer-consumer applications. As the relative speed of producer
and consumer might be different, a FIFO allows the producer to deposit an item and
continue working without waiting for the consumer. Later, the items will be read
from the FIFO and consumed by the consumer when it is ready to do so. For
instance, consider the CPU and I/O modules. I/O modules (such as printer) are
much slower than CPU, so the CPU puts the data in the I/O module FIFO and later
the data is consumed by the I/O module.

In this lab you will design a basic FIFO module in part 1 and then update it for a
slightly different behavior in part 2.

2 FIFO Overview (Part 1 = 40 pts.)
In this Lab, you will design a generic DxW (depth x width)-bit FIFO, using Verilog. D
is the depth of FIFO buffer (i.e., the number of components in the buffer) and each
entry in the buffer consists of W bits. The Block diagram of FIFO is shown in the Fig.
1.

W-bits

D
 l
o

c
a

ti
o

n
s

Control

WPTR RPTR

Register Array

DIN[W-1:0] DOUT[W-1:0]

REn

Empty

WEn

Full

CLK RST

cntEncntEn
wen

waddr raddr

Fig. 1: FIFO Architecture

EE 457 Lab 2 - FIFO

2 Last Revised: 6/4/2015

Signal Description

 DIN[W-1:0], DOUT[W-1:0]: Data to be written and output read data,
respectively

 WEn: Write Enable instructs the FIFO to write the data on DIN to the next
available location in the register array if sufficient space will be available.
Note the user can assert this signal even when sufficient space will not be
available and your FIFO logic must NOT write/update the register array in
that case (i.e. Don't assume the user will only assert this signal under
appropriate conditions.

 REn: Read Enable indicates that the consumer is about to consume the data
on DOUT and the FIFO can eventually overwrite the current data item and
begin to output the next available data on the next clock edge.

 Full: Indicates the FIFO is currently full
 Empty: Indicates the FIFO is currently empty
 RST: Active-high reset signal

Read & Write Pointers: You should access the register array using two
pointers/addresses: 1- RP (Read Pointer), 2- WP (Write Pointer). RP points to the
next item to be read from the memory array. WP points to the next location to be
written to the memory array. Initially, both pointers start at 0. After a successful
Write or Read (triggered by the user asserting WEn or REn and sufficient conditions
exist to carry-out the operation), the respective pointers should increment,
wrapping to 0 after the last location.

Full & Empty Conditions: One complicating issue is to decipher when your FIFO is
empty or full. Both conditions occur when WP = RP. For example, WP=RP=0
initially when the FIFO is empty. But if you wrote values to the FIFO, completely
filling it, then WP would wrap back to 0 while RP would not have changed from 0.
Thus WP=RP is an insufficient condition to decipher when the FIFO is empty or full.
While several strategies exist to distinguish whether the FIFO is full or empty when
RP=WP (some of which require only minimal additional logic), we suggest that you
simply keep track of the number of items in your FIFO as a separate counter value
and assert the Full and Empty signals appropriately using this counter value.

Sufficient Write and Read Conditions: When the FIFO is full, producer should no
longer be allowed to write into the FIFO even if WEn is asserted. Similarly, when the
FIFO is empty, an asserted REn signal should be disregarded.

Reset: When reset, initialize the necessary control logic, but we do not generally
initialize the register array contents since they must be written with good data
before a user can legally read any data.

Verilog Considerations: We want our FIFO design to work for any number of
locations (DEPTH) and bit-width (WIDTH). To do this we can declare certain

 EE 457 Lab 2 - FIFO

Last Revised: 6/4/2015 3

"generic parameters" (not actual physical inputs/outputs but "meta-inputs" that
determine what FIFO logic is generated). In Verilog these are known as
"parameters" while in VHDL they are known as "generics". Parameters can be
specified when the module is instantiated and are used to create a different version
of the code. In our FIFO we make the WIDTH and DEPTH parameters, in that order.
Thus we can instantiate an 8-bit, 4-deep FIFO as:

ee457_fifo #(8, 4) fifo4x8(clk, rst, din, wen, full, dout, ren, empty);

A 16-bit, 6-deep FIFO can be instantiated as:

ee457_fifo #(16, 6) fifo6x16(clk, rst, din, wen, full, dout, ren, empty);

Note: Local Parameters (localparams) cannot be set when the module is instantiated
and are effectively symbolic constants (like a #define in C/C++).

3 Verification of your Design
We have provided a testbench for you that runs one sample sequence of operations
(some legal, some illegal). You are welcome to use it as is but are STRONGLY
ENCOURAGED to add/modify it to test certain aspects/corner cases of your design if
our testbench does not exercise your design appropriately. You should be able to
visually examine the waveform and determine if it matches the desired behavior. If
not, you need to find the bug in your description and fix it.

4 Updated Design (Part 2 = 40 pts.)
Once you get your initial (part 1) FIFO design working, consider a modification.
Currently, if the FIFO is FULL a write can only occur AFTER a read because space
needs to be freed. However, if the FIFO is FULL but a read is taking place (REN=1)
then a new location will be available at the start of the next clock. Thus, we might
consider allowing a write to actually occur if WEN=1 at the end of this current clock
(even though the FIFO is currently FULL it won't be at the next clock edge and thus
we could write). This process can continue for any number of successive clocks,
meaning if the FIFO is FULL we can continue to write clock after clock as long as we
also continue to read clock after clock.

Copy your original file to ee457_fifo_p2.v and modify your design. Leave the module
name the same so that when you compile your testbench it will just use whatever
FIFO design you compiled last.

5 Procedure
1. Download the skeleton FIFO file (ee457_fifo.v) and completed testbench

fie (ee457_fifo_tb.v).
2. With your understanding of the Part 1 FIFO design, complete the Verilog

description.

EE 457 Lab 2 - FIFO

4 Last Revised: 6/4/2015

3. Compile and simulate using the provided testbench which will
instantiate an 8-bit, 4-deep FIFO, comparing the waveform to that of
what you know in your mind to be the correct behavior. Remember in
the objects pane of the simulation window you can click on the fifo
instance and drag internal FIFO signals to the waveform window and
then run the simulation (220 ns should be enough) so that you can see
internal signals like 'rptr', 'wptr', etc. Feel free to modify the testbench
to test any cases of input/state that are not reached from the current
code.

4. Go back and change the test bench to instantiate a deeper FIFO (say, 6-
deep) and ensure your design still works by simulating again.

5. Copy your ee457_fifo.v to ee457_fifo_p2.v.
6. Update ee457_fifo_p2.v to implement the updated FIFO design that

allows for writing when the FIFO is full but REN is enabled.
7. Recompile and simulate using your new file and ensure the design now

works under these new circumstances. Feel free to modify the testbench
to test any cases of input/state that are not reached from the current
code.

6 Review Questions (20 pts.)
1. (5 pts.) Some FIFO users prefer to replace the "Full" and "Empty" signals

with "Space Available" and "Data Available" signals to indicate there is
room to write a new value or there is a value available to read,
respectively. Given that you can NOT change your original design, what
additional logic could you add at the periphery of your FIFO to adapt it to
this new set of signals?

2. (10 pts.) In your part 1 FIFO design, were your FULL and EMPTY signals

Mealy or Moore style outputs? Support your answer with 2-3 sentences
of explanation:

3. (5 pts.) In the original part 1 FIFO design, if the producer asserts WEN

when the FIFO is full, it would know that its request would be denied
and thus would have to wait to write the value. Essentially, the producer
could just look at FULL to know if its write would be accepted. In your
part 2 FIFO design, can the producer continue just look at FULL to know
if its write request was processed? If so, please explain briefly. If not,
suggest what the producer would use (examine) to know if its write
request was processed.

 EE 457 Lab 2 - FIFO

Last Revised: 6/4/2015 5

7 Submission
Submit a .ZIP file with your two design files and the provided testbench (or
testbenches if you created others). Also submit a PDF or text file with your
answers and explanations to the Review Questions.

