
 EE 457 Midterm
Summer ’14 ● Redekopp

Name: ___

Closed Book / 105 minutes No CALCULATORS Score: ________ / 100

1. (17 pts.) Short Answer [Fill in the blanks or select the correct answer]

a. If a control signal must be valid during the majority of the clock cycle it is advisable to

use a _____ (Mealy / Moore)-style signal.

b. A single-cycle CPU sets as constant the ______ (CPI / clock cycle time) while letting

the other vary based on the design and instruction set.

c. Perform the indicated arithmetic operations, showing your work, for the specified

representation system. Answers are limited to 8-bits (not 9-bits). (Do not use the borrow

method for subtraction, use the 2’s complement method of subtraction.) Finally, state

whether overflow has occurred and briefly explain why or why not.

a.) 2’s comp. system b.) Unsigned system

 100100012

 – 011111112

10010001

10000000

+ 1

00010010

 101010112

 + 011010102

00010101

Overflow: Y / N Overflow: Y / N

d. A processor with a 32-bit _____ (address / data) bus would necessarily limit memory to

4 GB.

e. ____ True / False: State machines built using one-hot encoding use more flip-flops than

other encoding mechanisms.

f. Branch instructions perform the following operation: __PC = PC+d__________

g. A processor with a 16-bit data bus would generally imply ____ (0 / 1 / 2 / 4) Byte Enable

signals and allow the lower ___ (0 / 1 / 2 / 4) bits of the address bus to be unused.

h. Amdahl's law would argue that HW optimization of a processor should focus on _____

1.) The most frequently executed instruction

2.) The slowest instruction

3.) The fastest instruction

i. Ideal CPI of a pipelined processor is ___1___ (fill in the blank) while in practice it will

be _____ (higher / lower) due to hazards.

Page 2 / 9

2. (26 pts.) State Machine Design. Consider a memory containing 8 data values. Tommy

Trojan needs to find the smallest two values (i.e. min1=smallest and min2=next smallest)

in the data values. You may assume that all values are unique and there are no duplicates in

the data.

Memory

Contents

Address 0 1 2 3 4 5 6 7

MEM 10 8 7 6 3 5 1 11

For the particular values shown above, then after the computation MIN1=1, MIN2=3.

To solve this problem we will iterate/scan over the data only once with two registers: MIN1

(stores the smallest) and MIN2 (stores the second smallest). We will also only have one

comparator as shown.

a. Study the partial datapath below and complete the connection (adding any additional logic

components) to produce the B input of the comparator as well as I1 of the MSEL mux.

Do NOT try to complete the control signals now. Answer the questions on the bottom of

the page and then go on to page 3 and complete the state diagram first.

MEM
(10x8)

Addr

Dout

i

CNTR

SYSCLK
CLR

EN

A<B

A>B

A

B

MIN1

CLR

EN

QD

MIN1

Comp

MIN2

SYSCLK
CLR

EN

MIN2

S
Y

S
C

L
K

M1EN

M2EN

QD

M[i]

S

0

1

LT

GT

QI

QI

MSEL

QI

IEN

S

0

1

CSEL

QCM3

 LT (QCM1 + QCM2)

MIN1

See next pages

See next pages

See next pages

A=B
EQ

Page 3 / 9

b. State machine implementation. Given below is a partially completed state diagram. The

Initial, Load, and Finish states are completed w/ transitions. Please complete the transition

and operations for the remaining 3 states. Their names mean:

CM1=CompareMin1 = Update register(s) based on the value of M[1]

CM2=CompareMin2 = Compare M[i] with MIN1

CM3=CompareMin3 = For you to figure out…

Complete all the state transitions from CM2 and CM3 and indicate what operations should be

performed in CM1, CM2, and CM3 using register-transfer level descriptions.

On Reset

(power on)

Initial

i ← 0

Load

i ← i+1

CM1

CM2

CM3

i ← i+1

MIN1←M[i]

If M[i] < MIN1

 MIN1←M[i]

 MIN2←MIN1

Else

 MIN2←M[i]

Finish

true
true

true

ACK

! ACK

i
!=

 7

GT

 LT and

i==7

 i==7

 LT and

i != 7

If M[i] < MIN1

 MIN1←M[i]

 MIN2←MIN1

 i←i+1

i←i+1

If M[i] < MIN2

 MIN2←M[i]

c. Given the content of the memory as shown below, show a sample execution of your state

machine. Complete the following table for the value of i (the memory address counter) and

STATE (which state you are in) during that clock cycle (i.e. each column in the table

represents a clock cycle. Note: Not all columns/clock cycles may be needed…leave them

blank.

Memory

Contents

Address 0 1 2 3 4 5 6 7

MEM 10 8 7 6 3 5 1 11

I X 0 1 2 3 4 5 5 6 7 7 8

STATE I L CM1 CM2 CM2 CM2 CM2 CM3 CM2 CM2 CM3 F

Page 4 / 9

d. Complete the next state logic and state memory connections.

• First connect the appropriate signals to all the /CLR and /SET inputs to the flip-flops

(Assume GND and VDD are available for connection).

• Next use the blank area below the box to draw the logic for the D-inputs

(DI, DL, DC, …, DF) to each flip-flop. Please write equations next to the inputs of the

buffers driving the corresponding D-input rather than drawing gates (which gets too

messy). Note: (i==15) is a signal that is generated for you and will be '1' when i

equals 15, '0' otherwise

D Q

CLR

SET
D Q

CLR

SET

D Q

CLR

SET

QL QCM1

QF
D Q

CLR

SET
QCM3

SYSCLK

SYSCLK

NSL & SM

SYSCLK

SYSCLK

i==15

SYSCLK

/RST

(Active low)

D Q

CLR

SET QCM2

SYSCLK

D Q

CLR

SET QI

SYSCLK
LT

GT

DL DCM1

DFDCM3DCM2

DI

ACK

e. Now write logic equations for the D-Input of the following flops using AND/OR/NOT

sybmols.

DCM1 = QL

DCM2 = QCM1 + QCM3·(I != 7) + QM2·LT·(I != 7)

DCM3 = QCM2·(!LT)

DF = QCM2·(LT)·(I==7) + CM3·(I==7) + QF!·ACK

f. Now write logic equations for the control signals to the datapath back on page 2:

IEN = QL + QCM1 + LT·QCM2 + QCM3

M1EN = LT(QCM1 + QCM2) + QL

M2EN = LT(QCM2 + QCM3) + QCM1

MSEL = LT (QCM1 + QCM2)

Any other control signals you added that we did not show in the datapath need to have their

logic defined here:

CSEL = QCM3

Page 5 / 9

3. (15 pts.) ISA and Single-Cycle CPU Datapath: Recall the basic branch instruction. We want

to add a new instruction ‘BRDMN’ (Branch using Register for Displacement if Memory value is

Negative), while not affecting any other instructions. It loads a value given by the address in $rs

(just like a LW but without an offset). If that value is negative then the PC should be updated

with the sum of its current value plus four plus the value of $rt (PC = PC + 4 + $rt). Implement

any changes to the datapath and control signals to support this new, ‘brdmn’ instruction on the

single-cycle CPU. Assume when this instruction executes a BRDMN control signal will be ‘1’

BRDMN $rt,($rs) instruction description:

if(M[rs] is neg.) # load memory from addr $rs

 # and check if its negative

 PC = PC+4+$rt # store PC+4+rt into PC

This instruction will use the machine code I-format:

brdmn: opcode

6

rs

5

rt

5

Unused

16-bits [Assume Will be Set to 0’s]

I-Cache

0

1

P
C

+

Addr.

Instruc.

Register File

Read

Reg. 1 #

Read

Reg. 2 #

Write

Reg. #

Write

Data

Read

data 1

Read

data 2

Sign

Extend

A
L

U Res.

Zero

0

1

Sh.

Left

2

+

D-Cache

Addr.

Read

Data

Write

Data

A

B

4

0

1

16 32

5

5

0

1

RegDst

ALUSrc

5

MemtoReg

MemWrite

MemRead

ALU control

RegWrite

Branch

INST[5:0]

[25:21]

[20:16]

[15:11]

[1
5
:0

]

ALUOp[1:0]

BRDMN

M
S

B

0

1

BRDMN

OR Gate

a. Sketch the additions/changes to the datapath above that would be needed to support

this new instructions and its operations (provide a brief description below if the sketch is

unclear):

__

We add one mux to choose the $rt value to add to PC+4 to produce the new target address

and we update the Branch mux select logic to also trigger if BRDMN is true and the result

from memory is negative (i.e. MSB = 1).

__

b. Show the control values of the following control signals to implement this new

instruction.

 BRDMN MemRead MemWrite MemToReg RegWrite Branch ALUSrc

Value

(0,1,X)

 1 1 0 X 0 0 1

Page 6 / 9

4. (12 pts.) Performance, Pipelining, and Hazards

Tommy Trojan decides that LW and SW rarely use offsets for address calculation and thus DO

NOT need to use the ALU/adder to compute its effective address but instead just use the contents

of the base register. He then proposes to swap the order of the EX and MEM pipeline stages.

Thus the pipeline order is now as shown in the table below along with the stage delay. Assume

branches are NOT resolved using EARLY DETERMINATION in the DECODE stage but still

require the ALU in the EX stage for comparison.

Fetch Decode MEM EX/ALU WB

10 ns 6 ns 10 ns 12 ns 5 ns

a. Tommy Trojan’s partner, Miss Bruin, says that since SW and LW no longer use the EX/ALU

stage that the clock cycle time of the pipelined processor can be reduced to only 10 ns. Do

you agree? Explain your reasoning either way in 1-2 sentences.

No, the delay must be set for the worst case stage delay (i.e. EX/ALU which is still used by

other instructions). The cycle time would remain at 12 ns.

b. Assume NO EARLY branch determination (i.e. branches are resolved in the stage AFTER

the EX/ALU stage. This new organization will require flushing of how many instructions?

4 instructions (the branch updates the PC at the end of the WB stage requiring flush of

everyone behind him in F, D, E, M)

c. In the original pipeline organization even with forwarding we required a stall when a

LW was followed by a dependent instruction. Given the basic 4 instructions: LW, SW,

BEQ, and ALUType list all the sequences of 2 instructions that would necessitate stall

cycle(s) to be inserted (even with forwarding available), giving an instruction sequence

example, and indicating how many stall cycles must be inserted by the hardware between the

two instructions.

ADD $4, $0,$0

SW $4, 0($3)

(insert 1 stall cycles)

ADD $4, $0,$0

LW $3, 0($4)

(insert 1 stall cycles)

Page 7 / 9

5. (15 pts.) Pipelining: Examine the 5-stage pipeline with forwarding unit in its original location

(forwarding takes place in the EX stage) and LATE branch determination (MEM stage). Finally

assume internal forwarding register file. Given the instruction sequence shown below,

complete the time-space diagram below showing which stage each instruction is in for each

clock cycle until 7 instructions have been completed (i.e. STOP when the 7th instruction

reaches the WB stage and DON'T complete any more rows/cycles).

In
s
tr

u
c
ti
o
n

 R
e
g

is
te

r

Register File

Read

Reg. 1 #

Read

Reg. 2 #

Write

Reg. #

Write

Data

Read

data 1

Read

data 2

Sign

Extend

P
ip

e
lin

e
 S

ta
g

e
 R

e
g

is
te

r
A

L
U Res.

Zero

0

1

Sh.

Left

2

+

P
ip

e
lin

e
 S

ta
g

e
 R

e
g

is
te

r

D-Cache

Addr.

Read

Data

Write

Data

P
ip

e
lin

e
 S

ta
g

e
 R

e
g

is
te

r

0

1

16 32

5

5

0

1

rs

rt

rs

rt

rd

0

1

2

0

1

2

Forwarding

Unit

ALUSrc
ALUSelB

ALUSelA

Regwrite &
WriteReg# Regwrite,

WriteReg#

D
a

ta
 M

e
m

.
o

r
A

L
U

 r
e

s
u

lt

P
ri

o
r

A
L

U

R
e

s
u

lt

I-
C

a
c
h

e

P
C

.

PCWrite

IRWrite

Hazard

Detection

Unit

Control

E
x

M
e
m

W
B

EX.RegWrite

Stall
EX.RegDst

(i.e. LW)

M
e
m

W
B

W
B

T = Taken and should

 cause the CPU

 to go to the labeled

 instruction (eg. L1)

 rather than

 continuing

 sequentially

Instruc. Sequence

 lw $2, 0($3)

 bne $2, $0, L3 (NT)

L2: lw $6, 0($7)

 add $6, $6, $5

 sw $6, 0($7)

L1: beq $2, $0, L2 (T,NT)

L3: and $2, $2, $2

 lw $5, 0($2)

 or $2, $2, $2

Cycle IF ID EX MEM WB

1 LW

2 BNE LW

3 LW BNE LW

4 LW BNE X LW

5 ADD LW BNE X LW

6 SW ADD LW BNE X

7 SW ADD X LW BNE

8 BEQ SW ADD X LW

9 AND BEQ SW ADD X

10 LW AND BEQ SW ADD

11 OR LW AND BEQ SW

12 LW X X X BEQ

13 ADD LW X X X

14 SW ADD LW X X

15 SW ADD X LW X

16 BEQ SW ADD X LW

17

IF

ID

EX

MEM WB

Page 8 / 9

6. [15 pts.] Consider the traditional pipeline organization shown in the previous question. Recall

that originally we did not have the forwarding unit but only the hazard detection unit in the

Decode stage which would simply stall the pipeline until the hazard resolved. We then added the

forwarding unit to reduce stalls. Again, remember the register file supports internal

forwarding, with or without forwarding logic.

a. [For this page, assume only the HDU; No forwarding logic]

Fill in the blanks below.

WITHOUT the forwarding unit an instruction immediately followed by a

dependent instruction (see to the right) would require __2____ stall cycles.

Similarly, if 1 or more independent instructions sit in between the producer

(ADD) and dependent instruction (SUB) it would require _______

(fewer / more / the same) stall cycles. However if ___2___ or more

independent instructions sit in between the producer and dependent

instruction, then no stall cycles would be necessary.

Perform the calculations detailed below.

We can calculate the average CPI of a pipelined processor using the ideal CPI of 1 and then

adding the average stall cycles an instruction incurs

(i.e. Average CPI = Ideal CPI + Average Stall Cycles = 1 + Average Stall Cycles).

What could a competitor company claim is the worst case CPI of this processor (again

assuming only stalls due to data hazards)?

Worst case is every instruction is followed by a dependent instruction requiring 2 stall

cycles for every 1 instruction finished:

ADD $2, $2, $2

ADD $2, $2, $2

 Final answer for worst-case CPI = _1 + 2 stall cycles per instruction = 3____

Examining a few representative programs, we find the following relationships for dependent

instructions:

Probabilities of an instruction being

followed by a dependent instruction…

Probability

…Immediately (i.e. next instruction) 40%

…2 instructions later 20%

…3 instructions later 10%

…4 instructions later 10%

…More than 4 instructions later 5%

…Never (no dependent instruction) 15%

Assuming we only stall due to data dependencies calculate the Average CPI:

 Average CPI = 1 + Average Stall cycles

 Average Stall Cycles = 2*.4 + 1*.2 + 0*.4 = 1

 Final answer for average CPI = ___1 + 1.0 = 2.0_________________

ADD $t0,$t1,$t2

SUB $t3,$t0,$t4

ADD $t0,$t1,$t2

Indep. Instr.

SUB $t3,$t0,$t4

Page 9 / 9

b. Assume the following stage delays for the pipeline processor w/o forwarding:

IF ID EX ME WB

10 ns 8 ns 7 ns 10 ns 6 ns

Now assume the forwarding unit and muxes are added as shown on page 7. Suppose that the

forwarding unit itself requires 3 ns of delay to produce ALUSELA and ALUSELB and that

all muxes require 2 ns of delay once their inputs have arrived. What clock cycle time is

appropriate for the processor to use when the forwarding unit and muxes are added?

EX stage time is now: 7 + 3 for Forwarding Unit + 2 for mux = 12 ns

 Final answer for appropriate clock cycle time? ______12 ns_________

Using the probabilities of dependent instructions on the previous page and given an

instruction mix as shown below, compute the average CPI for pipeline process with this

newly added forwarding logic (again assume stalls only occur due to data hazards).

LW 30% ALU-Type 40%

SW 20% Branches 10%

Average CPI = 1 + P(LW)*P(LW followed by depend. Instruct)*1 stall cycle =

 1 + (.3*.4*1) = 1.12

 Final answer for Average CPI = __1.12

Determine the speedup (or speed-down) of the pipelined processor with forwarding logic that

you analyzed on this page (with its CPI & cycle time) vs. the pipeline processor WITHOUT

forwarding logic that you analyzed on this and the previous page). Assume they execute the

same program and set of instructions.

Exec Time w/o Forwarding = IC * 2.0 * 10ns

Exec Time w/ Forwarding = IC * 1.12 * 12 ns =

Speedup = old / new = 2.0*10 / 1.12*12 = 20 / 13.44 = around 1.5

 Proc. w/ forwarding logic [circle one] (Speedup / Speeddown) = _20/13.44=1.489 times

