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Single Cycle CPU
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Learning Outcomes

* | understand how the single-cycle CPU
datapath supports each type of instruction

* | understand why each mux is needed to
select appropriate inputs to the datapath
components

* | know how to design the control signals as a
function of the type of instruction
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Hardware vs. Software

REVIEW
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Sorting: Software Implementation

* To perform the algorithm in software means the processor
fetches instructions, executes them, which causes the
processor to then read and write the data in memory into it's
sorted positions

* Sorting 64 element on a 2.8 GHz Xeon processor

Memory
— 16 microseconds 5 0
rocessor
+ Can we do better w/ more HW? 120}
ADC

[ R\ 2]
=/
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Sorting: Hardware Implementation

* Sorting 64 element on a 2.8 GHz Xeon processor [SW only]

— 16 microseconds

. . What did wedo to feduce
* Sorting 64 numbers in [old] custom HW ¢, k period in this design?

CLK period = 30 ns => 6 microseconds total
30 ns is due to the 8 number HW sorter
Merging (Select-Val) stages are < 10 ns

— Can we improve?

30 ns

10ns o Jons 10ns
X0 Y0 v N >
X1 Lyt \\\\ FIFO/Queue 1a/b FIFO/Queve 1a/b HFO/Quete 1a/b
N
N
X2+ v2
L X3 . -v3
'ﬂe;?;?v HW Sorting 64
(1perclock) X4 Network l-va
X5 ..to memory
] Y5
\ X6 Lve [/
/1,7
X7 -
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Sorting: Final Comparison

* Sorting 64 element on a 2.8 GHz Xeon processor [SW only]
— 16 microseconds total time
* Sorting 64 numbers in [old] custom HW
— CLK period = 30 ns => 6 microseconds total = ~2.5x speedup
* Sorting 64 numbers in [old] pipelined HW
— CLK period =10 ns =>
2 microseconds total = ~8x speedup Processor

— Processor is freed
to do other work
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Building hardware to execute software

GENERAL PURPOSE HARDWARE
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CPU Organization Scope

*  We will build a CPU to implement our subset of the MIPS ISA
— Memory Reference Instructions:
* Load Word (LW)
* Store Word (SW)
— Arithmetic and Logic Instructions:
« ADD, SUB, AND, OR, SLT
— Branch and Jump Instructions:
* Branch if equal (BEQ)
* Jump unconditional (J)
* These basic instructions exercise a majority of the necessary
datapath and control logic for a more complete
implementation
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Single-Cycle CPU Datapath

MemRead & MemWrite
ALUOp[1:0]

+

MemtoReg
RegDst
Control ALUSrc Branch
3 RegWrite
[25:21] Read
Reg. 1
5 eg. 1#
[20:16] Read MemRead
Reg. 2 # |
Read
Addr. 0 Write data 1 Zero l
Instruc. = o 1 ul Reg.# |E R Add
es. Ir.
5 Write fiad 0 <
-Cache —>| Data data 2 : Read
RegDFt N BER
. 92P' | Register File Write
3
= Data
16 Sgn 32
ALUSrc MemtoReg
]’ \_Extend / NsTIs0] D-Cache
ALUOPIT0] ALU control 4
pLT: MemWrite
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e Address in PCis used to fetch instruction while it is also
incremented by 4 to point to the next instruction

* Remember, the PC doesn’t update until the end of the clock
cycle / beginning of next cycle

* Mux provides a path for branch target addresses

time
Fetch -
branch target clk | |
0x0040001¢c PC 400014} 0x400018 0x40001c
PC+4
Adder 400018) ox40001c | { 0x400020
® 0x00400018 opcode rs rt rd shamt func
8 Adar. | ——{oo0000]ot001 01010 10000 00000 100000]
=]
< Instruc.
S 0x012a8020
S I-Cache
ADD $16.$9.$10

PC
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Decode

* Opcode and func. field are decoded to produce other control signals

* Execution of an ALU instruction (ADD $3,$1,52) requires reading 2 register
values and writing the result to a third

e REGWrite is an enable signal indicating the write data should be written to
the specified register

Instruction Word

ADD $3.$1,$2

apoado

Read Read
Reg.1# data1
~
¢ Read Read
Reg.2#  gata2
Write
Reg. #
Write

P

Data
Register File

Jweys

LT

ouny

[000001 [ 00000 1+000 [ 01000 10000 [ 000000 |

CLK REGWrite

Control .
Control Signals

|—» Value of $1

|—, Value of $2

Register File is the collection of GPR’s. Our register
file has 3 “ " (ability to concurrently read or
write a register). To see why we need 3, consider
an “ADD $3,51,52”. We need 2 to
read two operands (i.e. $1 + $2) and 1 for
the result (S3)

1
Result from add
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Register File

* 32 registers each storing 32-bits
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* Read registers => Muxes to choose desired value

* Write register => Decoder and registers w/ enable

Read Reg #1

—

Register File

$0

-1 At Write
5|7 Regwiite e
Ll Reed
7 |Ree 1%
3121 Reed
Reg.2 #
Read
et Wite  data 1
e Rog#
o 5 W |wiite T
fhe | il
RegDft X ' 3
5 9 Register File Write
o Reg. #
RegWrite

Each Mux chooses which

register value to output based

on the 5-bit reg. # provided by
the instruction

Read data 1

5-to-32 decoder converts 5-bit write reg. # to
1-0f-32 output signals to enable that register
to capture the write data on the next edge. If
RegWrite is 0 the decoder is disabled making
all outputs go to 0 and thus no register
updates.

Read data 2

Read Reg#2 ——1
CLK
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Datapath for ALU instruction

» ALU takes inputs from register file and
performs the add, sub, and, or, slt, operations

* Result is written back to dest. register

1 Read
Reg. 1#
2 ALUop
Inst ” Read
nstruc. wor Reg. 2 #
— 3 Read| $1 value
ADD $3,$1,$2 Write data 1 Zero
Reg # $2 val Er
value es.
Write theag c Sum
Data aa
Register File
13
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Memory Access Datapath

* Operands are read from register file while offset is sign extended

e ALU calculates

*  Memory access is performed

o IfLW,
LW $4,0xfff8($1
SW $3,0x1a($1
1 Read 1
N Reo- T —»| Read
Reg. 1 #
Read .=
Reg. 2 # e
4 Read| $1value Reg.2# $1 value
—» Write data 1 : Aead
et Write data 1
Reg. #
Write dReag Addr. Read g » -
Data lata Read| Data Write ey
U i Data Data Foad
Register File e - |
ister Fi
- —— $3value | write
i Data
D-Cache Write Data
32 Oxffff fff8 :
00000011.4 D-Cache
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Branch Datapath

* BEQrequires...
— ALU for comparison (examine ‘zero’ output)
— Sign extension unit for branch offset
— Adder to add PC and offset

* Need a separate adder since ALU is used to perform comparison

/

PC+4 (incremented PC) —p|

Sum —» Branch Target
Address to PC

USC Viterbi
Fetch Datapath Question 1

e Can the adder used to increment the PC be an ALU and be
used/shared for ALU instructions like ADD/SUB/etc.

— In asingle-cycle CPU,

“Next” PC=PC +4
4

Instruc. word

BEQ $1.$2,offset

word offset Sign
Extend

extended word o

>
o
@ ?
(]
=
Read
s ./‘ L
byte offset ALUop
Read
Reg. 2 #
Read $1 value
Write data 1
Reg. # IE Zero[—
Wi Read $2 value s Res. —»
rite
Data data 2
Register File L

ffset

ZERO

Sum

CLK

Current PC/
Read Address

Write

Addr. Data

I-Cache / I-MEM

—
Instruction Word
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Fetch Datapath Question 2

* Do we need the “Write” enable signal on the PC register for
our single-cycle CPU?
— In the single-cycle CPU,

“Next” PC = PC +4

4

CLK

Addr. Data |——
Current PC/ Instruction Word
Read Address
. I-Cache / I-MEM
Write 17
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RegFile Question 1

* Why do we need the write enable signal, REGWrite?

|
—> Control Signals

Read Read » Value of $1
Reg.1# datat

apoado

Ssi
[000001 [ 00000 [ 1+000 [ 01000 ] 10000 [ 000000 |

Read Read

Reg.2# oo f— Value of $2

Instruction Word Write

Reg. #

55

ex. ALU instruc. X
Write

Data
Register File

pi

LT

I [
CLK REGWrite

ouny jweys

Result from add
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RegFile Question 2

* Can write to registers be level sensitive or does it have to be
edge-sensitive?

Control .
Control Signals

Read Read
Reg.1# data1

apoado

[000001 [ 00000 1+000 [ 01000 10000 [ 000000 |

— Value of $1

s

Read

R
Reg.2# 4oi9l» Value of $2
Instruction Word Write
Reg. #

ex. ALU instruc.

55

Write
Data
Register File

P

I I
CLK REGWrite

LT

ouny jweys

Result from add

USC Viterbi@2

School of Engincering

Sign Extension Unit

* Ina ‘LW’ or ‘SW’ instructions with
their base register + offset format,
the instruction only contains the
offset as a 16-bit value

— Example: LW $4,-8(51) offset= oxtrtie
Sign
— Machine Code: 0x8c24fff8
e -8 = Oxfff8

* The 16-bit offset must be extended
to 32-bits before being added to base
register

LW $4.0xffig(g1) |[100011]00001]00100] 11111111 1111 1000 0
opcode rs rt offset
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Sign Extension Questions

* What logic is inside a sign-extension unit?

— How do we sign extend a number?
— Do you need a shift register?

Iﬂ‘b14|b13|

| bol 16-bit offset

)

b.d [b4g]b15balbs]

lbol 32-bit sign-extended

output
21
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Branch Datapath Question

* Is it okay to start adding branch offset even before
determining whether the branch is taken or not?

Instruc. word

BEQ $1.$2,offset

word offset Sign
Extend

PC+4 (incremented PC) —p| >
o
Q Sum Branch Target
] Address to PC
Read
Reg. 1 #
ALUop
Read
Reg. 2 #
Read $1 value
Write data 1 To control logic
Reg. # Zero ZERO ( gic)
Wi Read $2 value E Res. Sum
s data 2
Data
Register File
extended word offset 22
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Combining Datapaths

* Now we will take the datapaths for each instruction
type and try to combine them into one

* Anywhere we have multiple options for a certain
input we can use a mux to select the appropriate

value for the given instruction

* Select bits must be generated to control the mux

23

ALUSrc Mux

¢ Mux controlling second input to ALU
— ALU instruction provides Read Register 2 data to the 2" input of ALU
— LW/SW uses 2" input of ALU as an offset to form effective address

Read
Reg. 1#

——»{ Read
Reg.2#

Read
Write data 1
Reg. #

wite  head

$1value

$2value
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Data data2
Register File

1_|Read
I Reg.1#
ADD
ALUop Read 1
. G0 Read | S1value
>\ Wiite  datat Zero
Reg. # >
3 Zero > Wit  Res. Addr. Read
= Res. | Data Data
c Sum Data Read
Data
Write
Data
Sig
D-Cache

ALU Instruction

Zero |—»

Mem. Instruction

I Res.—>
c

24




| USC\ﬁterbi@
MemtoReg Mux
* Mux controlling writeback value to register file

— ALU instructions use the result of the ALU
— LW uses the read data from data memory

Read
7 Reg. 1#
5 MemtoReg
Read
7 Reg.2 #
5 Read
/ Write data 1 Zero
5 Reg. # >
Wi Read E Res.
| Write data 2 0
Data 1 Read
Data
Register Fill
CESErALD Write
Data
Sign
16 \_ Extend D-Cache
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PCSrc Mux

¢ Next instruction can either be at the next sequential address (PC+4) or the
branch target address (PC+offset)

4 —p A
Read
+ ——*| Branch Target
B s |Rea-1# Address cs
PCSrc
Read
7 Reg.2#
Add 5 Read 0
Ir. / Write data 1
o Instruc. —— Reg. #
Bt g 5 Addr.
q Read
—> it data 2
I-Cache Data Read 1
Data
Register File Wi
/S'_\ Data
ign
16 @d/ 52 D-Cache

26
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RegDst Mux

« Different destination register ID fields for ALU and LW instructions

R-Type (ALU) [ 0 [ rs [ nt shamt| func |

3126 25-21 20-16 15411 10-6 5-0 Destination
Register Number
I-Type (LW) [s50r43 rs address offset |

31-26  25-21  20-16 15-0
(1]
4 — A !
. s Read +
B A Reg.1#
rt Read
Reg.2#
Read ®
Addr. Write data 1 Zero
o 1 Reg. # >
s Instruc. P Read " Res. Addr.
Write S
|-Cache | Data data 2 Read 1
RegDht Data
Regi Fil
egister File Write
Data
Sign
16 Extend 32 D-Cache
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Single-Cycle CPU Datapath

+

RegWrite Branch
M
[25:21] Read
A Reg. 1 #
[20:16] Read MemRead
Reg. 2 # |
Read 0
Addr. =0 Write data 1 Zero l
1 [15;11 | Reg. # >
Instruc. 1 I~ Res Add
5 Wi Read c ' "
rite 0
I-Cache [lpata 9812 1 e !
RegDbt . ) Data
5 92P' | Register File Write
3
B= T Data
16 g 3?
I Extend woren D-Cache
— ALU control 4
ALUOp[1:0] ———> MemWrite
28
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Single-Cycle CPU Datapath

MemRead & MemWrite +
ALUOp[1:0]
MemtoReg

RegDst
Control ALUSrc Branch
3 RegWrite
[25:21] Read
Reg. 1
5 eg. 1#
[20:16] Read MemRead
Reg. 2 # |
Read
Addr. 0 Write data 1 Zero l
Instruc. = Lvik 1 ul IREg & |E
s ) Read P Res. Addr.
Write 0
-Cache —>| Data data 2 : Read
RegDpt Data
o Register File
2 g Write
B T Data
16 Sign R
ALUSrc MemtoReg
]’ \_Extend / NsTIs0] D-Cache
ALUOPIT0] ALU control 4
pLT: MemWrite
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Jump Instruc. Implementation

Jump Address = {NewPC[31:28], INST[25:0],00}

Next Instruc. Address M °
0
1
Jump
MemRead & MemWrite Branch Address Jump
ALUOp[1:0]
MemtoReg
Control RegDst PCSre
- g ALUSrc Branch
g2l & RegWrite
[25:21] Read
A Reg. 1 #
20:16] Read MemRead
Reg. 2 # l
Read 0
Addr. =0 Write data 1 Zero l
Instruc. ik 1 ol IREg) & =
g " Res. Addr.
5 . Read c
Write 0
I-Cache lpata  d32 1 e !
RegDht . i Data
= 9Pt | Register File Write
&
= T Data
16 Sgn 32
I \_Extend / ST ALUSrc D-Cache MemtoReg
- ALU control 7y
ALUOPp[1:0] ———» .
p[1:0] Me0Write
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Control Unit Design for Single-Cycle CPU

Inputs (Instruction/Opcode)

* Control Unit: Maps instruction to ¥ o
utputs
control signals NSL oL 5P
* Traditional Control Unit

— FSM: Produces control signals asserted at
different times

— Design NSL, SM, OFL
* Single-Cycle Control Unit

— Every cycle we perform the same steps: Outputs
Fetch, Decode, Execute

Traditional Control Unit

# of FF’s in tightly-encoded state assignment:
5-8 states: , 9-16 states:

Inputs (Instruction/Opcode)

— Signals are not necessarily time based but
instruction based => only combinational
logic

Single-Cycle Control Unit
Only 1 sta?d => FF's

USC Viterbi@®

School of Engincering

Control Unit

Most control signals are a

. OpCode > Jump
function of the opcode (netuelS128) | > Branch
. — MemRegd
(i.e. LW/SW, R-Type, Control [ Memiirte
Unit L, alusrc
BranCh' Jump) (InstrucT;'?)(]:i > RegDst
= > —> RegWrite
—> ALUControl[2:0]

ALU Control is a function

of opcode AND function OpCode
(Instruc.[31:26])

bits.

Jump
Branch
MemRead
MemWrite
MemtoReg
ALUSrc
RegDst
RegWrite

Control
Unit

T

ALUOp0] | ALU | ANV

Control
Func. (Instruc.[5:0]) ————>

32
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ALU Control ALU Control Truth Table

¢ ALU Control needs to know what e ALUControl[2:0] is a function of: ALUOp[1:0] and Func.[5:0]
. . e OpCod
instruction type it is: (Instruc.[iip1 ;ge]e) Control |—
— Unit —
— R-Type (op. depends on func. code) Instruc. ALUOp[1:0] Instruction Func.[5:0] Desired ALU
_ LW/SW (Op. - ADD) ALUOPI1:0] Operation Action
3 LW 00 Load d X Add
— BEQ (op. = SUB) L e oad wor
ontrol =
. . SW 00 St d X Add
+  Let main control unit produce ALUOp[1:0] Func. (Instruc [5:0) ————) ore wor
to indicate , then use Branch 01 BEQ X Subtract
function bits if necessary to tell the ALU R-Type 10 AND 100100 And
what to do R-Type 10 OR 100101 or
Instruction ALUOp[1:0] R-Type 10 Add 100000 Add
LW/SW 00 R-Type 10 Sub 100010 Subtract
Branch 01 R-Type 10 SLT 101010 Set on less
than
R-Type 10

Produce each ALUControl[2:0] bit from the ALUOp and Func. inputs
Control unit maps instruction opcode to

ALUOp[1:0] encoding 34
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Control Signal Generation Control Signal Truth Table

R- w sw BEQ J Jump Branch Reg ALU Memto- Reg Mem Mem ALU ALU

Type Dst Src Reg Write Read Write Op[1] Op[0]

 Other control signals are a function of the opcode 1 lolololol ol o ol ol 11 o
* We could write a full truth table or (because we are only o|1|lo0|o0]ofo 0 1 0 0 0
implementing a small subset of instructions) simply o|lo|l1]|0]o0of o0 0 0 1 0 0
decode the opcodes of the specific instructions we are ololo| 1]o0f o 1 0| o 0 1
implementing and use those intermediate signals to ololo|o|1] 1 X o | o | x X

generate the actual control signals

- | Jump Address (‘NJ
Y e .
T
Merr:(-euagvﬂi:g?mwms I+ Branch Address
R-T Moo @
(Instruc?gﬁgg]e) [ Jump (Instruc?gﬁgg]e) i [ Jump Contel :fﬂsmfg Fose
[31: I+ Branch [31: ™ I+ Branch g i Branch
—> MemRead > MemRead " o e
—> MemWrite —» MemWrite Eggww
C%"‘_‘;OI —> MemtoReg Decoder sw Cont_rOI —> MemtoReg [zum\s Read MemRead
nit [, ALusrc . Unit — ALUSrc Reg.2#
> RegDst —> RegDst JT‘ Write &?‘3
—> RegWrite Jum —> RegWrite L Reg. # I
> ALUOp10] P I ALUOp{1:0] s fwe Reat ‘
Data Read
_ Could generate each control Simpler for human to design if we decode the o| PO | Registerriie ‘ o
signal by writing a full truth table opcode and then use individual “instruction” e S ALUS© P Memores | 36
of the 6-bit opcode signals to generate desired>Control signals | SR D=cach)

ALUOp[1:0] —————> MemWrite




Opl5]
Opl4]
Op[3]
Opl2]
Opl1]
Opl0]
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Control Signal Logic

R-Type

wle

SW

Decoder

Jump
Branch
RegDst
ALUSrc
MemtoReg
RegWrite
MemRead
MemWrite
ALUOPp1
ALUOpO

37
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* These slides were derived from Gandhi
Puvvada’s EE 457 Class Notes




