
3-2.1

Spiral 3-2

Signal & Image Processing

3-2.2

SIGNAL AND IMAGE PROCESSING

Finding and exploiting patterns in raw data

3-2.3

Example

• Take USC fight song and remove high frequency audio from the song (i.e. 
lower the “treble”)

• We can view the song as samples over time or by taking the Fourier 
transform, we can see the component frequencies (i.e. the frequency domain 
representation)

0 0.5 1 1.5 2 2.5 3 3.5 4
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
Plot of fight song

seconds

A
m

p
lit

u
d
e

0 500 1000 1500 2000 2500 3000 3500 4000
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035
Fourier Series of Sound

Hz

F
o
u
ri
e
r 

C
o
e
ff

ic
ie

n
t

3-2.4

Low Pass Filter

• We would like to remove the high frequency components

0 0.5 1 1.5 2 2.5 3 3.5 4
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
Plot of fight song

seconds

A
m

p
lit

u
d
e

0 500 1000 1500 2000 2500 3000 3500 4000
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035
Fourier Series of Sound

Hz

F
o
u
ri
e
r 

C
o
e
ff

ic
ie

n
t



3-2.5

Tangent – Frequency Domain

• Fourier theory says any signal can be represented as 

sum of different frequency sine waves

Fourier Composition – By summing different sine waves we 

can form a square wave or any other signal

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
Individual Sine waves of 1*f, 3*f, 5*f, 7*f Sum of those sine waves

3-2.6

Fourier Decomposition

• Fourier theory says we can also find the sine wave 

components given the original signal

Fourier Composition – By summing different sine waves we 

can form a square wave or any other signal

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
Original signal

Component Sine Waves (Freq. Domain)

0 500 1000 1500 2000 2500 3000 3500 4000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Fourier Series of Composite Signal

Hz

F
o
u
ri
e
r 

C
o
e
ff

ic
ie

n
t

1*f Component

3*f Component

5*f Component

7*f Component

9*f Component

f = 60Hz

3-2.7

Designing a Low Pass Filter

• Below is a zoomed view

• Removing high frequency components (parts of the signal that change 

rapidly) means smoothing the signal or finding its basic curve and not the 

bumpiness

• To do this, for each sample, make it equal to the average of neighboring 

pixels.

0.62 0.625 0.63 0.635 0.64 0.645 0.65 0.655 0.66 0.665 0.67
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

3-2.8

Moving Average

• By making each sample equal to the average 

of itself plus neighboring samples we tend to 

smooth the signal

Original signal,

x[i]

Averaged Signal,

y[i]



3-2.9

Averaged Signal

• Averaging smoothes the waveform and 

effectively filters out high-frequency 

components

0.62 0.625 0.63 0.635 0.64 0.645 0.65 0.655 0.66 0.665 0.67
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.62 0.625 0.63 0.635 0.64 0.645 0.65 0.655 0.66 0.665 0.67
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

Original signal After averaging each sample with 8 

nearest samples

3-2.10

8-tap Moving Average Filter

• Assume each sample is the average of 8 surrounding 

samples, we can describe the output as:

y[i] = Σk=0 to 7 (1/8) * x[i-k]

• Example:

– y[7] = 1/8*x[7] + 1/8*x[6] + … + 1/8*x[0]

– y[8] = 1/8*x[8] + 1/8*x[7] + … + 1/8*x[1]

• If we want a weighted average rather than pure 

average we can generalize from 1/8 to some weight 

coefficient: wk

y[i] = Σk=0 to 7 wk*x[i-k]

3-2.11

Digital Implementation

• The system we want to design gets one 

sample per clock and produces one output 

sample per clock

Moving Average 

Filter
x[i] y[i]

clk
reset

3-2.12

Storing Last 8 Samples

• Since we only get one sample a clock, but need to 

use the last 8 samples to do our average, we need to 

save the last 8 samples

– To store values we use registers

– Chain together several registers

• xd1 = x[i] delayed by 1 clock

• xd2 = x[i] delayed by 2 clocks



3-2.13

Time Space Diagram

Clock X[i] Xd1 Xd2 Xd3 Xd4 Xd5 Xd6 Xd7

0 X(0) X(-1)=0 X(-2)=0 X(-3)=0 X(-4)=0 X(-5)=0 X(-6)=0 X(-7)=0

1 X(1) X(0) X(-1)=0 X(-2)=0 X(-3)=0 X(-4)=0 X(-5)=0 X(-6)=0

2 X(2) X(1) X(0) X(-1)=0 X(-2)=0 X(-3)=0 X(-4)=0 X(-5)=0

3 X(3) X(2) X(1) X(0) X(-1)=0 X(-2)=0 X(-3)=0 X(-4)=0

4 X(4) X(3) X(2) X(1) X(0) X(-1)=0 X(-2)=0 X(-3)=0

5 X(5) X(4) X(3) X(2) X(1) X(0) X(-1)=0 X(-2)=0

6 X(6) X(5) X(4) X(3) X(2) X(1) X(0) X(-1)=0

7 X(7) X(6) X(5) X(4) X(3) X(2) X(1) X(0)

8 X(8) X(7) X(6) X(5) X(4) X(3) X(2) X(1)

9 X(9) X(8) X(7) X(6) X(5) X(4) X(3) X(2)

Samples x[i] where i < 0 (negative indices) are equal to 0 since 
there register will be reset (cleared) at clock 0

3-2.14

Averaging the Samples

• Multiple each sample by the appropriate 

weight (in this case each wk = 1/8)

• Add up all values

3-2.15

CONCEPTS

HW/SW Design (System on Chip)

3-2.16

Another Example: Image Compression

• Images are just 2-D arrays (matrices) of numbers

• Each number corresponds to the color or a pixel in 

that location

• Image store those numbers in some way

Column Index



3-2.17

Image Compression

129 131 130 133 132 132 130 129 128 130 131 129

130 130 131 129 131 132 131 133 130 129 129 131

132 131 130 132

134 132 131 132

133 131

156 157

153 155

154 152

207 204

208 205

3-2.18

Image Compression

129 131 130 133 132 132 130 129 128 130 131 129

130 130 131 129 131 132 131 133 130 129 129 131

132 131 130 132

134 132 131 132

133 131

156 157

153 155

154 152

207 204

208 205

129 131 130 133

130 130 131 129

132 131 130 132

134 132 131 132

129 2 1 4

2 1 2 0

3 2 1 3

5 3 2 3

1. Break Image into small blocks of pixels

2. Store the difference of each pixel and the upper left 

(or some other representative pixel)

129 2 0 4

2 0 2 0

2 2 0 2

4 2 2 2

3. We can save more space by rounding numbers to a 

smaller set of options (i.e. only even # differences)

129 2 1 4

2 1 2 0

3 2 1 3

5 3 2 3

3-2.19

Video Compression

• Video is a sequence of still frames

– 24-30 frames per second (fps)

• How much difference is expected between frames?

• Idea:

– Store 1 of every N frames (aka key frame or I-frame), with 

other N-1 frames being differences from previous or next 

frame

3-2.20

JPEG



3-2.21

JPEG Conversion Process

Break into 

8x8 Tiles

129 131 130 133

130 130 131 129

132 131 130 132

134 132 131 132

129 131 130 133

130 130 131 129

132 131 130 132

134 132 131 132

129 131 130 133

130 130 131 129

132 131 130 132

134 132 131 132

Perform 

Discrete 

Cosine 

Transform 

on each 

8x8 Block

129 20 15 3

17 -3 2 4

12 3 2 1

10 1 -2 0

129 20 15 3

17 -3 2 4

12 3 2 1

10 1 -2 0

129 20 15 3

17 -3 2 4

12 3 2 1

10 1 -2 0

32 5 3 0

4 -1 0 1

3 0 0 0

2 0 0 0

32 5 3 0

4 -1 0 1

3 0 0 0

2 0 0 0

32 5 3 0

4 -1 0 1

3 0 0 0

2 0 0 0

Quantize

Huffman 

Coding

Storage

(as .jpeg)

3-2.22

Huffman Code

• Compression algorithm

• Variable-length code

– Each character can be coded with a different 

number of bits

• Prefix code 

– No two codes start with the same prefix

• Assignment of codes to characters is based on 

frequency of the code in the message

3-2.23

Huffman Example 1

• "Mississippi"

3-2.24

Huffman Example 2

• "i boo big bruins"



3-2.25

DESIGN EXERCISE

3-2.26

Design Exercise

• Design a system that breaks 

a 8x8 image into 4 tiles of 

4x4 and:

– Leaves the upper-left pixel of 

each tile as is

– Codes the remaining 15 pixels 

of the tile as relative values 

based on the upper-left

– Computes the frequency of 

each pixel value to prepare 

for Huffman coding

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

32 33 34 35 36 37 38 39

40

56 57 58 59 60 61 62 63

3-2.27

Computing Frequencies

• Given an array 16 numbers between 0-255 

how could you compute their frequencies in 

software?

3-2.28

Block Diagram



3-2.29

Addressing

• Given the HW 

counter that 

counts 0000-1111 

and tile counter 

00-11, can you use 

those 6-bits to 

form the correct 

system address?

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

32 33 34 35 36 37 38 39

40

56 57 58 59 60 61 62 63

0 1 2 3 0 1 2 3

4 5 6 7 4 5 6 7

8 9 10 11 8 9 10 11

12 13 14 15 12 13 14 15

0 1 2 3 0 1 2 3

4 5 6 7 4 5 6 7

8 9 10 11 8 9 10 11

12 13 14 15 12 13 14 15

T
ile

 0
T

ile
 2

T
ile

 1
T

ile
 3

System Address

HW Counters

3-2.30

Verilog Description


