| USCViterbi@

School of Engincering

Spiral 3-2

Signal & Image Processing

| USCViterbi

School of Engincering

Finding and exploiting patterns in raw data

SIGNAL AND IMAGE PROCESSING

I USC Viterbi 22
Example

e Take USC fight song and remove high frequency audio from the song (i.e.
lower the “treble”)

* We can view the song as samples over time or by taking the Fourier
transform, we can see the component frequencies (i.e. the frequency domain
representation)

Plot of fight song Fourier Series of Sound

Amplitude
Fourier Coefficient

0 05 1 15 2 25 3 35 4] 00 1000 1500 2000 2500 3000 3500 4000
seconds Hz

| USCV1terb1
Low Pass Filter

¢ We would like to remove the high frequency components

Plot of fight song Fourier Series of Sound

Amplitude
Fourier Coefficient

0 0.5 1 15 2 25 3 35 4 500 2500 3000 3500 4000
seconds Hz

| USCViterbi@

School of Engincering

Tangent — Frequency Domain

* Fourier theory says any signal can be represented as
sum of different frequency sine waves

quividual Sine waves of 1*f, 3*f, 5*f, 7*f Sum of those sine waves

0.8

0.6

0.4

| ‘V\ ‘\‘: “Ah‘ “\m“ ‘a{qm “H““ Ma:
VR ‘\) Lt

1A
0.2
i

0

[0.2

0.4

0.6

0.8

-1

-1

0 001 002 003 004 005 006 007 0.08 009 0. 0 001 002 005 004 005 006 007 008 009 04

Fourier Composition — By summing different sine waves we
can form a square wave or any other signal

i (5 Vierbi(22
Fourier Decomposition

* Fourier theory says we can also find the sine wave
components given the original signal

Component Sine Waves (Freq. Domain)

1 OI’IgI nal S|gnal Fourier Series of Composite Signal
1
v \ f = 60Hz |
06 o 1*f Component
o 07 3* Component
0.2 €
% 0.6 1
o £ 5*f Component
3 05 i
- HEE 7*f Component
0.4 w
0.3 4
0 /g*f Component
0.2 4
s /
0.1 4
B 0 0.‘01 0.‘02 0.63 0.‘04 0.b5 0.b6 0.67 0.b8 0.b9 0.1 o
500 1000 1500 2000 2500 3000 3500 4000

Hz
Fourier Composition — By summing different sine waves we
can form a square wave or any other signal

| USCViterbi@

School of Engincering

Designing a Low Pass Filter

* Below is a zoomed view

* Removing high frequency components (parts of the signal that change
rapidly) means smoothing the signal or finding its basic curve and not the
bumpiness

* Todo this, for each sample, make it equal to the average of neighboring
pixels.

08 L L L L L L n L n
0.62 0.625 0.63 0.635 0.64 0.645 0.65 0.655 0.66 0.665 0.67

USC ViterbiC22

School of Engincering

Moving Average

* By making each sample equal to the average
of itself plus neighboring samples we tend to
smooth the signal

il =111

Original signal, Averaged Signal,
X[i] ylil

| USCViterbi@

School of Engincering

Averaged Signal

* Averaging smoothes the waveform and
effectively filters out high-frequency

components

Original signal

0.4

After averaging each sample with 8
nearest samples

-0.6

0.3

0.2

0.1

0

0.1

0.2

0.3

08 L L L L . L L L . 04 L L I L n L " L n
0.62 0625 063 0.635 0.64 0.645 065 0.655 0.66 0.665 0.67 0.62 0625 0.63 0.635 0.64 0645 0.65 0655 0.66 0.665 0.67

| USCViterbi

School of Engincering

8-tap Moving Average Filter

* Assume each sample is the average of 8 surrounding
samples, we can describe the output as:
ylil = 21040 7 (1/8) * x[i-K]
* Example:
— y[7] = 1/8*x[7] + 1/8*x[6] + ... + 1/8*x[0]
— y[8] = 1/8*x[8] + 1/8*x[7] + ... + 1/8*x[1]

* |f we want a weighted average rather than pure
average we can generalize from 1/8 to some weight
coefficient: w,

Y[l = 220 10 7 WiFX[i-K]

— 5 Vit
Digital Implementation

* The system we want to design gets one
sample per clock and produces one output
sample per clock

Moving Average

Filter —— il

xi] ———

clk

reset

P 15 Vitcrh{ 22>
Storing Last 8 Samples

* Since we only get one sample a clock, but need to
use the last 8 samples to do our average, we need to
save the last 8 samples

— To store values we use registers
— Chain together several registers
* xd1 = x[i] delayed by 1 clock
* xd2 = x][i] delayed by 2 clocks

clk
clk
C

C

clk
clk
clk

(i 1 xd2 w3 wd4 #d5 wdb xd7T
gl o o ba [6 o [b a [b ol ba
D

Ripipipip

| USCViterbi@
Time Space Diagram

School of Engincering

0 X(0) X(1)=0 X(-2)=0 X(-3)=0 X(-4)=0 X(-5)=0 X(-6)=0 X(-7)=0
1 X(1) X(0) X(-1)=0 X(-2)=0 X(-3)=0 X(-4)=0 X(-5)=0 X(-6)=0
2 X(2) X(1) X(0) X(1)=0 X(-2)=0 X(-3)=0 X(-4)=0 X(-5)=0
3 X(3) X(2) X(1) X(0) X(1)=0 X(-2)=0 X(-3)=0 X(-4)=0
4 X(4) X(3) X(2) X(1) X(0) X(1)=0 X(-2)=0 X(-3)=0
5 X(5) X(4) X(3) X(2) X(1) X(0) X(1)=0 X(-2)=0
6 X(6) X(5) X(4) X(3) X(2) X(1) X(0) X(-1)=0
7 X(7) X(6) X(5) X(4) X(3) X(2) X(1) X(0)

8 X(8) X(7) X(6) X(5) X(4) X(3) X(2) X(1)

9 X(9) X(8) X(7) X(6) X(5) X(4) X(3) X(2)

Samples x[i] where i < 0 (negative indices) are equal to 0 since
there register will be reset (cleared) at clock 0

] USCYItFFbl
Averaging the Samples

* Multiple each sample by the appropriate
weight (in this case each w, = 1/8)

* Add up all values

| USCViterbi@

School of Engincering

HW/SW Design (System on Chip)

CONCEPTS

USC Viterbi@®

School of Engincering

Another Example: Image Compression

* Images are just 2-D arrays (matrices) of numbers

* Each number corresponds to the color or a pixel in
that location

* Image store those numbers in some way

Individual
Pixels

Image taken from the photo "Robin Jeffers at Ton
House" (1927) by Edward Weston

i ()5 Viterbi 2
Image Compression

131 | 130 | 133 | 132 | 132 | 130 | 129 | 128 | 130 | 131 | 129

130 | 131 | 129 | 131 | 132 | 131 | 133 | 130 | 129 | 129 | 131
131 | 130 | 132

132 | 131 | 132

131

157

155

152

204

205

| USCV1terb1
Image Compression

131 | 130 | 133 | 132 | 132 | 130 | 129 | 128 | 130 | 131 | 129

130 | 131 | 129 | 131 | 132 | 131 | 133 | 130 | 129 | 129 | 131

131 | 130 | 132

132 | 131 | 132

131

157

155

152

204

205

1. Break Image into small blocks of pixels

129 | 131 | 130 | 133 129 | 2 1 4 129 | 2 1 4 129 | 2 0 4
130 | 130 | 131 | 129 2 1 2 0 2 1 2 0 2 0 2 0
132 | 131 | 130 | 132 I:> 3 2 1 3 3 2 1 3 :> 2 2 0 2
134 | 132 | 131 | 132 5 3 2 3 5 3 2 3 4 2 2 2

3. We can save more space by rounding numbers to a
smaller set of options (i.e. only even # differences)

2. Store the difference of each pixel and the upper left
(or some other representative pixel)

| USCViterbi@

School of Engincering

Video Compression

* Video is a sequence of still frames
— 24-30 frames per second (fps)

* How much difference is expected between frames?

* |dea:

— Store 1 of every N frames (aka key frame or |-frame), with
other N-1 frames being differences from previous or next
frame

| USCViterbi

School of Engincering

JPEG

I (]S Viterhi 22D N (/S Viterbi22)

School of Engincering School of Engincering

JPEG Conversion Process Huffman Code
— Pertorm * Compression algorithm
| Cocino. * Variable-length code
Sigaﬁlggo 123222‘?{”‘ — Each character can be coded with a different

8x8 Block .
number of bits

Huffman
Coding

Prefix code
— No two codes start with the same prefix

Quantize

* Assignment of codes to characters is based on
frequency of the code in the message

Storage
(as .jpeg)

I (]S Viterhi 22 I (/S ViterbiC22)

School of Engincering School of Engincering

Huffman Example 1 Huffman Example 2

* "Mississippi" * "i boo big bruins"

| USCViterbi@

School of Engincering

DESIGN EXERCISE

S (/5 Viterb{ 2
Design Exercise

* Design a system that breaks
a 8x8 image into 4 tiles of
4x4 and: o |1 [2 [3 [|a [5 |e |7

— Leaves the upper-left pixel of
each tileasis

16 17 18 19 20 21 22 23

32 33 34 35 36 37 38 39

— Codes the remaining 15 pixels
of the tile as relative values
based on the upper-left

40

— Computes the frequency of
each pixel value to prepare
for Huffman coding

— 5 Vit 22
Computing Frequencies

* Given an array 16 numbers between 0-255
how could you compute their frequencies in
software?

] USCV1terb1
Block Diagram

| USCViterbi@

Addressing

* Given the HW
counter that
counts 0000-1111
and tile counter
00-11, can you use
those 6-bits to
form the correct
system address?

Tile 0

Tile 2

School of Engineering

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

32 33 34 35 36 37 38 39

40

56 57 58 59 60 61 62 63

System Address
0 1 2 3 0 1 2 3
4 5 6 7 4 5 6 7 A
(0]

8 9 10 11 8 9 10 11 =
l_

12 13 14 15 12 13 14 15

0 1 2 3 0 1 2 3

4 5 6 7 4 5 6 7 ™

()

8 9 10 11 8 9 10 11 =
|_

12 13 14 15 12 13 14 15

HW Counters

| USCViterbi

Verilog Description

