
3-1.1

Spiral 3-1

Hardware/Software Interfacing

3-1.2

Learning Outcomes

• I understand the PicoBlaze bus interface signals: PORT_ID, IN_PORT,

OUT_PORT, WRITE_STROBE

• I understand how a memory map provides the agreement between

addresses the software will use and that the hardware must recognize and

respond to

• I understand how to build address decoding logic to ensure only the

appropriate value/register is selected for a given PORTID

• For output, I can take a memory map and the PORTID and OUTDATA bits

such that the appropriate data is input or saved in a register when an

OUTPUT instruction is executed

• For input, I can take a memory map and the appropriate PORTID bits to

build logic and muxes such that the appropriate data value is present at

INDATA when an INPUT instruction is executed

3-1.3

ASICS & FPGAS REVIEW

3-1.4

Digital Design Targets

• Two possible implementation targets

– Custom Chips (ASIC’s = Application Specific Integrated Circuits):

Physical gates are created on silicon to implement 1 particular design

– FPGA (Field Programmable Gate Array’s): “Programmable logic” using

programmable memories to implement logic functions along with

other logic resources tiled on the chip. Can implement any design and

then be changed to implement a new one

FPGA’s have “logic
resources” on them that

we can configure to
implement our specific
design. We can then

reconfigure it to
implement another design

In an ASIC design, a
unique chip will be
manufactured that

implements our design at
which point the HW

design is fixed & cannot
be changed (example:

Pentium, etc.)

3-1.5

ASICs

3-1.6

Implementation

• ASIC’s
– Use the CAD tools to synthesize and route a “netlist”

• Synthesis = Takes logic description or logic schematic & converts to transistor
level gates

• Place and Route = Figure out where each gate should go on the chip)

– Final “netlist” is sent to chip maker for production

– Fabrication is very expensive (> $1 million) so get your design right the first
time.

• FPGA’s
– Synthesis converts logic description to necessary LUT contents, etc.

– Place and route produces a configuration for the FPGA chip

– Can reconfigure FPGA as much as you like, so less important to get it right
1st time

3-1.7

ASIC’s vs. FPGA’s

• ASIC’s

– ___________

– Handles _______

Designs

– _______ Expensive

– _____ Flexible (Cannot

be ______________ to

perform a new hardware

function)

• FPGA’s

– __________________

– ________ Designs

– ______ Expensive

– __________ Flexible

3-1.8

Xilinx Spartan 3E

Digilent Nexys-2 Board

• Has a Xilinx Spartan 3E FPGA

(XC3S500e)

• 500K gate equivalent

• 9312 D-FF’s on-board

On-board I/O

• (4) 7-Segment Displays

• (8) LED’s

• (4) Push Buttons

• (8) Switches

3-1.9

Latest FPGA's

• SoC design (Xilinx Kintex [KU115])

– Quad-Core ARM cores

– DDR3 SDRAM Memory Interface

– ~800 I/O Pins

– Equiv. ~15M gate equivalent FPGA fabric

• ~1M D-FFs + 552K LUTs

• 1968 dedicated DSP "slices" 18x18 multiply + adder

• 34.6 Megabits of onboard Block RAMs

3-1.10

PICOBLAZE

Hardware/Software Interfacing

3-1.11

Input / Output

• The processor connects to peripherals and other logic
via the _______ (address, data, and control)

• Software running on the processor performs _______
and _______ that read and write data to and from
these devices based on ________

Video

Interface
FE may
signify a

white dot at
a particular

location

…

800

Processor Memory

A D C

800

254

WRITE

…

0

399

254

01

Keyboard

Interface

61400

3-1.12

Introduction
• Picoblaze (aka KCPSM3) is an 8-bit _____________

– The processor is not implemented directly in hardware on the FPGA

but instead is just a description that is then _______________ using

the same process as any of our other designs

– It provides a bus interface that can be connected to custom logic that

you design and then used to control that custom logic via __________

executing on the processor

3-1.13

Taken from the KCPSM3 Manual

3-1.14

Taken from the KCPSM3 Manual

3-1.15

Taken from the KCPSM3 Manual

3-1.16

Input / Output Operations

Taken from the KCPSM3 Manual

3-1.17

Exercise 1

• Make the register below capture data

(out_data) from your Picoblaze whenever it

outputs address FF hex on (address or

port_id)

Picoblaze

Processor

(software

controlled)

O
U

T
D

A
T

A
A

D
D

RIN
D

A
T

A

WS (WEN)

Reg

EN

CLK

D[7:0] Q[7:0]

RST

3-1.18

Remember: Registers w/ Enables

• Registers (D-FF’s) will sample the D
bit every clock edge and pass it to Q

• Sometimes we may want to hold the
value of Q and ignore D even at a
clock edge

• We can add an enable input and
some logic in front of the D-FF to
accomplish this

FF with Data Enable

CLK /AR EN Di Qi*

X 0 X X 0

0,1 1 X X Qi

↑ 1 0 X Qi

 ↑ 1 1 0 0

↑ 1 1 1 1

D Q

CLR

SET

1

D

Q
0

1

Y

S

EN

CLK
/AR

3-1.19

Registers w/ Enables

• The D value is sampled at the clock edge only
if the enable is active

• Otherwise the current Q value is maintained

CLK

/AR

EN

D[3:0]

Q[3:0] 0000 0101 0111 1000

0011 0100 0101 0110 0111 1000 1001 10100010

3-1.20

Recall Memory Interfaces

• We provide address and

data

• EN = Overall enable

(unless it is 1) the

memory won't read or

write (we assume EN=1)

• WEN = Write enable

– 1 = Write / 0 = read

1 0 0 0
1 1 1 0
1 1 0 0
1 0 1 0
0 0 1 1
0 1 0 0
1 0 0 1
0 1 1 0

0
1
2
3
4
5
6
7

D
O

[3
:0

]

DI[3:0]

A[2:0]

WEN

CLK

EN

A[2:0]

CLK

110 001

DI[3:0] 1111

WEN

DO[3:0] ??? mem[3] = 1111 mem[6] = 1001

twrite

011

tacc

M[3] 1010 1111

Assume EN=1

3-1.21

Exercise 1

• Make the register below capture data

(out_data) from your Picoblaze whenever it

outputs address FF hex on (address or

port_id)

Picoblaze

Processor

(software

controlled)

O
U

T
D

A
T

A
A

D
D

RIN
D

A
T

A

WS (WEN)

Reg

EN

CLK

D[7:0] Q[7:0]

RST

3-1.22

Exercise 2

• Use your PicoBlaze to receive input from A

given address 00 hex and B for address 0x01

hex

Picoblaze

Processor

(software

controlled)

O
U

T
D

A
T

A
A

D
D

RIN
D

A
T

A

WS (WEN)

0

1

8

8

8

A[7:0]

B[7:0]

3-1.23

Memory Maps

• A memory map shows what devices are assigned to a

given __________ or address range that can then be

accessed by the processor (and its software programs)

Dec A7 A6 A5 A4 A3 A2 A1 A0 Assigned Device

00 0 0 0 0 0 0 0 0 Input Switches

01 0 0 0 0 0 0 0 1 open

02 0 0 0 0 0 0 1 0 open

…

253 1 1 1 1 1 1 0 1 LEDs

254 1 1 1 1 1 1 1 0 open

255 1 1 1 1 1 1 1 1 7-Seg Display

3-1.24

Memory Maps
• Given an 8-bit address space (256 locations) and 3 devices that we want to

interface to our microprocessor, we first must create the memory map

– A 64 bytes (64x8) memory

– A single 8-bit register

– A single 1-bit D-FF

Dec A7 A6 A5 A4 A3 A2 A1 A0 Assigned Device

00 0 0 0 0 0 0 0 0 64x8

01 0 0 0 0 0 0 0 1 Memory

…

63 0 0 1 1 1 1 1 1

64 0 1 0 0 0 0 0 0 8-bit Register

… open

128 1 0 0 0 0 0 0 0 1-bit D-FF

… open

3-1.25

Memory Maps
• Exercise: What is a minimal set of bits that could be used to distinguish

each device from the others?

– A 64 bytes (64x8) memory => _______________

– A single 8-bit register => _______________

– A single 1-bit D-FF => __________________

Dec A7 A6 A5 A4 A3 A2 A1 A0 Assigned Device

00 0 0 0 0 0 0 0 0 64x8

01 0 0 0 0 0 0 0 1 Memory

…

63 0 0 1 1 1 1 1 1

64 0 1 0 0 0 0 0 0 8-bit Register

… open

128 1 0 0 0 0 0 0 0 1-bit D-FF

… open

3-1.26

Memory Aliasing
• Given

– A 64 bytes (64x8) memory => __________

– A single 8-bit register => _____________

– A single 1-bit D-FF => __________

• By using don't care situations the 8-bit register will respond to ____ address

where A7-A6 = ___ (i.e. _______) and similarly the 1-bit D-FF will respond

to any address where A7=__ (i.e. ___________)

Dec A7 A6 A5 A4 A3 A2 A1 A0 Assigned Device

00 0 0 0 0 0 0 0 0 64x8

01 0 0 0 0 0 0 0 1 Memory

…

63 0 0 1 1 1 1 1 1

64 0 1 0 0 0 0 0 0 8-bit Register

… open

128 1 0 0 0 0 0 0 0 1-bit D-FF

… open

3-1.27

Address Decoding
• Address decoding refers to the process of _____________ the

correct device based on a specific address _____________

Picoblaze

Processor

(software

controlled)

WS (WEN) EN

CLK

D[7:0] Q[7:0]

8

8

8

8 8

DO[7:0]DI[7:0]

A[5:0]

WEN

CLK

EN

64x8

Memory
88

6

D Q

CLR

SET

0

EN

0

1

2

3 S1 S0

8-bit REG

1-bit

DFF

RST

3-1.28

Memory Maps
• Exercise: Repeat the exercise to find a minimal set of bits that could be

used to distinguish each device from the others?

– A 64 bytes (64x8) memory => ________________________

– A single 8-bit register => ________________________

– A single 1-bit D-FF => ____________________________

Dec A7 A6 A5 A4 A3 A2 A1 A0 Assigned Device

00 0 0 0 0 0 0 0 0 8-bit Register

01 0 0 0 0 0 0 0 1 1-bit D-FF

02 0 0 0 0 0 0 1 0 64x8

03 0 0 0 0 0 0 1 1 Memory

04 0 0 0 0 0 1 0 0

…

64 0 1 0 0 0 0 0 0

65 0 1 0 0 0 0 0 1

66 0 1 0 0 0 0 1 0 open

… open

3-1.29

Address Decoding Exercise 2

Picoblaze

Processor

(software

controlled)

WS (WEN) EN

CLK

D[7:0] Q[7:0]

8

8

8

8 8

DO[7:0]DI[7:0]

A[5:0]

WEN

CLK

EN

64x8

Memory
88

6

D Q

CLR

SET

0

EN

0

1

2

3 S1 S0

8-bit REG

1-bit

DFF

RST

3-1.30

High-Order Interleaving

• General strategy is to place devices at ranges of address divide

by more-significant bits

Dec A7 A6 A5 A4 A3 A2 A1 A0 Assigned Device

00

0 0

0 0 0 0 0 0 64x8

01 0 0 0 0 0 1 Memory

…

63 1 1 1 1 1 1

… open

128

1
0

0 0 0 0 0 0 8-bit Register

… open

192
1

0 0 0 0 0 0 1-bit D-FF

… open

3-1.31

PING))) Interfacing

• Work with your instructor to explore alternatives for interfacing the

PING))) engine you created to the Picoblaze processor

3-1.32

PING))) Interfacing

• Explore other alternatives…

3-1.33

PICOBLAZE ASSEMBLY

3-1.34

Relevant Manual Pages

• Pages 4-6, (7), 8, (9-11)

• Pages 16-36, focus on

– OUTPUT 34

– INPUT 35

– SHIFTS 32,33

– JUMP 17

– LOAD 22

– COMPARE 31

• Input/Output design 65-68

3-1.35

Output Instruction

• Example: output s1, FF

– Outputs the 8-bit number in s1 as data on

out_port to the address (port_id) of 0xFF

Taken from the KCPSM3 Manual

3-1.36

Input Instruction

• Example: input s8, 0c

– Places the address 0x0c on the port_id and then

grabs data from the in_port at the end of the

second cycle and writes it into register s8
Taken from the KCPSM3 Manual

3-1.37

LOAD Instruction

• Example: load s3, a5

– Loads the constant 0xa5 into register s3

Taken from the KCPSM3 Manual

3-1.38

Compare Instruction

• Example: compare sf, 2a

– Compares the data in register sf to the hex

constant 0x2a. It sets the Z flag (to determine

equality) and C flag (to indicate less-than)
Taken from the KCPSM3 Manual

3-1.39

Jump Instruction

• Example: jump Z, label

– Jumps to the location specified by label if the

condition bit (Z) is true
Taken from the KCPSM3 Manual

