Spiral 3-1

Hardware/Software Interfacing

S (/5 Viterb{
Learning Outcomes

e lunderstand the PicoBlaze bus interface signals: PORT_ID, IN_PORT,
OUT_PORT, WRITE_STROBE

¢ lunderstand how a memory map provides the agreement between
addresses the software will use and that the hardware must recognize and
respond to

* lunderstand how to build address decoding logic to ensure only the
appropriate value/register is selected for a given PORTID

e For output, | can take a memory map and the PORTID and OUTDATA bits
such that the appropriate data is input or saved in a register when an
OUTPUT instruction is executed

* Forinput, | can take a memory map and the appropriate PORTID bits to
build logic and muxes such that the appropriate data value is present at
INDATA when an INPUT instruction is executed

| USCViterbi@

School of Engincering

ASICS & FPGAS REVIEW

| USCYItEFbl
Digital Design Targets

* Two possible implementation targets

— Custom Chips (ASIC’s = Application Specific Integrated Circuits):
Physical gates are created on silicon to implement 1 particular design

— FPGA (Field Programmable Gate Array’s): “Programmable logic” using
programmable memories to implement logic functions along with
other logic resources tiled on the chip. Can implement any design and
then be changed to implement a new one

In an ASIC design, a
unique chip will be
manufactured that

implements our design at
which point the HW
design is fixed & cannot
be changed (example:
Pentium, etc.)

FPGA’s have “logic
resources” on them that
we can configure to
implement our specific
design. We can then
reconfigure it to
implement another design

| USCViterbi@
ASICs

School of Engincering

| USCV1terb1
Implementation

* ASIC’s
— Use the CAD tools to synthesize and route a “netlist”

* Synthesis = Takes logic description or logic schematic & converts to transistor
level gates

* Place and Route = Figure out where each gate should go on the chip)
— Final “netlist” is sent to chip maker for production
— Fabrication is very expensive (> $1 million) so get your design right the first
time.
* FPGA’s
— Synthesis converts logic description to necessary LUT contents, etc.
— Place and route produces a configuration for the FPGA chip

— Can reconfigure FPGA as much as you like, so less important to get it right
15t time

— 5 C Viterb{ '
ASIC’s vs. FPGA’s

* ASIC’s * FPGA’s
— Handles - Designs
Designs - Expensive
— ____ Expensive - Flexible
— ______ Flexible (Cannot
be to
perform a new hardware
function)

| USCViterbi

School of Engincering

Xilinx Spartan 3E

Digilent Nexys-2 Board

* Has a Xilinx Spartan 3E FPGA
(XC3S500e)

* 500K gate equivalent

* 9312 D-FF’s on-board
On-board 1/0

* (4) 7-Segment Displays
* (8) LED’s

* (4) Push Buttons

* (8) Switches

angn

| USCViterbi@

Latest FPGA's

* SoC design (Xilinx Kintex [KU115])
— Quad-Core ARM cores
— DDR3 SDRAM Memory Interface
—~800 I/0 Pins

— Equiv. ¥15M gate equivalent FPGA fabric
e ~1M D-FFs + 552K LUTs
* 1968 dedicated DSP "slices" 18x18 multiply + adder
* 34.6 Megabits of onboard Block RAMSs

| USCViterbi

School of Engincering

Hardware/Software Interfacing

PICOBLAZE

| USCViterbi@

Input / Output

School of Engincering

* The processor connects to peripherals and other logic
via the (address, data, and control)

* Software running on the processor performs
and that read and write data to and from

these devices based on Processor —
0
399
Video ADC
Interface 800 l |
FE may 800 [254 254
/ signify a
white dot at WRITE
a parti(_:ular 01 |
location Keyboard
Interface

| USCViterbi

Introduction
* Picoblaze (aka KCPSM3) is an 8-bit

— The processor is not implemented directly in hardware on the FPGA
but instead is just a description that is then using
the same process as any of our other designs

— It provides a bus interface that can be connected to custom logic that
you design and then used to control that custom logic via
executing on the processor

Interface to logic {

Block Memory
(Program)

INSTRUCTION[17:0]

ADDRESS[9:0]
| —b oK

IN_PORT[7:0]
INTERRUPT
RESET

cLK

OUT_PORT[7:0]
PORT_ID[7:0]
READ_STROBE
WRITE_STROBE
INTERRUPT_ACK

INSTRUCTION[17:0] ~ ADDRESS[9:0]

Interface to logic

| USCViterbi@

School of Engincering

KCPSM3 is small!

This plot from the Xilinx Floorplanner shows the same implementation of KCPSM3 in an XC3S200 Spartan-3 device. This makes it
easier to appreciate the actual logic resources required by the macro without the interconnect obscuring the detail

The placement in this Floorplanner view was achieved using a
simple area constraint in the project UCF file.

INST processor_* LOC=SLICE_X0Y0:SLICE X19Y4;

Such constraints are not required in normal designs and it has only
been used in this case because so little of the device is occupied.

its have shown that have very little
effect on performance.

The FPGA Editor view shown
to the right was the result
when no constraints were
used. The size is still 96
slices but this is now a little
less obvious! The
performance was actually a
little higher than when using
the area constraint indicating
that a ‘tidy’ design is not
always the fastest!

e

-
CETE T

Taken from the KCPSM3 Manual

| USCViterbi

School of Engincering

Size and Performance

The following device resource information is taken from the ISE reports for the KCPSM3 macro in an XC3S200 device. The reports
reveal the features that are utilised and the efficiency of the macro. The 96 ‘slices’ reported by the MAP process in this case may
reduce to the minimum of 89 ‘slices’ when greater packing is used to fit a complete design into a device.

XST Report MAP Report
LUT1 .2 Number of occupied Slices : 96 out of 1920 5%
LUT2 . P 1 109 LUTs Number of Block RAMs : 1 out of 12 8%
LUT3 68 ‘ (55 slices) Total equivalent gate count for design: 74,814
LUT4 : 33 12 x KCPSM3 can fit into the XC3S200 device (40% of the logic
slices remaining). An equivalent gate count of 897,768 gates in a
. |
MUXCY : 39 Carry and MUX logic 200,000 gate device!
MUXF5
YORCY s (Free with LUTSs)
TRACE Report
FD 24 .
FDE 2 Device,speed: xc3s200,-4 (PREVIEW 1.22 2003-03-16)
FDR S0 76 Flip_flops Minimum period: 11.403ns
FDRE a ¢ (Free with LUTs) (Maximum frequency: 87.696MHz)
FDRSE : 10 N
FDS 2 7 43.8 MIPS
RAM16X1D : 8 — Register bank (8 slices) TRACE Report for Virtex-IIPRO
RAM32X1S : 10 Call/Return Stack (10 slices)
RAM64X1S : 8 ——Scratch Pad Memory (16 slices) | pevice,speed: xcvp2,-7 (ADVANCED 1.76 2003-03-16)
Minimum period: 7.505ns
Total = 89 Slices (Maximum frequency: 133.245MHz) 66.6 MIPS

Taken from the KCPSM3 Manual

| USCViterbi@

KCPSM3 Architecture

Port
Address
Control

16 Registers

PORT_ID[7:0]
8-bit

READ_STROBE
WRITE_STROBE

s7

OUT_PORT[7:0]

IN_PORTI[7:0]

ALU
Arithmetic

Logical
Shift
Rotate
Scratch Pad PARITY
_ 18 bit instruction word Memory
) 64-Bytes
I ¢ bit data path ZEROE 4| Interrupt

I ¢ it port address

CARRY |4 Shadow Flags
flags

I 10 bit program address INTERRUPT — |nterrupt
Constants INTERRUPT_ACK €——] Control
Program ADDRESS[9:0]
INSTRUCTION[17:0] — aaa Control
Program Operational ::
ROM/RAM
control & |3

Instruction

1024 words decoding

Program
aaa/pp/ss/kk Counter

Stack

Taken from the KCPSM3 Manual

S 15 Vit
Input / Output Operations

Clk 1L rmorr—r4—frrrrrrf L

ADDRESS[9:0] _18A X 188 X 8C X 18D X 8E X 18F

INSTRUCTION[17:0] —X inst18A X__INPUT s2,(sE) inst18C X_OUTPUT sA 65 inst18E X
PORT_ID[7:0] _X X 47 X 65) G
OUT_PORT[7:0] X X X 42 X

WRITE_STROBE
READ_STROBE

KCPSM3 captures data into s2 Use WRITE_STROBE to clock
register on this clock edge. enable external circuit and
capture data on this clock edge

Taken from the KCPSM3 Manual

| Uscwterbi@
Exercise 1

* Make the register below capture data
(out_data) from your Picoblaze whenever it
outputs address FF hex on (address or

port_id)
<
:7_ et D[7:0] Q[7:0] e
ﬁ Picoblaze EI [7:0] Qi7:011
bt < Processor O
% (software g Reg
~ controlled) 8 ——EN
<7 —JcLK
WS (WEN)|— RST

USC Viterbi@-®

School of Engincering

Remember: Registers w/ Enables

e Registers (D-FF’s) will sample the D

bit every clock edge and pass it to Q "

* Sometimes we may want to hold the ° Y o SET g Q
value of Q and ignore D even at a b s R
clock edge EN

* We can add an enable input and ,(,:\LRK 4

some logic in front of the D-FF to

accomplish this FF with Data Enable

CLK /AR EN D, @F
X 0 X X 0

0,1 1 X X Q
p 1 0 X Q
p 1 1 0 0
p 1 1 1 1

i 15 Vierbi
Registers w/ Enables

* The D value is sampled at the clock edge only
if the enable is active

* Otherwise the current Q value is maintained

ck _[1 I L
/AR L

EN I) S L

D[3:0] ookoX_ o011} X o0100] X o101 { X_ o010} X_ o111} X__1o00] X_ 1001 | X 1010

Q[3:0] —X 0000 0jo1 o111 1000

P 15 Vit
Recall Memory Interfaces

* We provide address and —lazo; o[i]ofofo
1[1]{1({1]0
data 2[11lolo] =
—DI[3:0] 3[110{1]0] O |—
* EN = Overall enable doodt 8
—EN
it 6[1/0/0][1
(unless it is 1) the —WEN 7 [olililo
memory won't read or ek
write (we assume EN=1)
* WEN = Write enable R [I— L
. A[2:0] 011 110 op1
— 1 =Write /0 =read LI X
DI[3:0] 1111
WEN [[ty \
M[3] 1010 1111
DO[3:0] 2?2 X__mem[3]4 1111 Kmem][6] = 1001
taQQ .

Assume EN=1

| USCViterbi@

Exercise 1

* Make the register below capture data
(out_data) from your Picoblaze whenever it
outputs address FF hex on (address or

port_id)
<
:7_ et D[7:0] Q[7:0] frmn
ﬁ Picoblaze EI [7:0] Qi7:011
bt < Processor O
% (software g Reg
~ controlled) 8 ——EN
<7 —JcLK
WS (WEN)|— RST

] USC\ﬁte;bi
Exercise 2

» Use your PicoBlaze to receive input from A
given address 00 hex and B for address 0x01
hex

<
=18
- I
A[7:0] o g | Picoblaze B
} << Processor O
B[7:0] 1 S (software g
™ controlled) 8| 8
Qe
WS (WEN)|—

| USCViterbi@

Memory Maps

* A memory map shows what devices are assigned to a
given or address range that can then be
accessed by the processor (and its software programs)

Dec A7 A6 A5 A4 A3 A2 Al A0 Assigned Device
00 0 0O O O O O O O |InputSwitches
01 0 0 O O O O O 1 9open

02 0O 0O O O O O 1 O0 open

253 1 1 1 1 1 1 0 1 LEDs
254 1 1 1 1 1 1 1 0 open
255 1 1 1 1 1 1 1 1 7-SegDisplay

USC Viterbi@'29

School of Engincering

Memory Maps

e Given an 8-bit address space (256 locations) and 3 devices that we want to
interface to our microprocessor, we first must create the memory map
— A 64 bytes (64x8) memory
— Asingle 8-bit register
— Asingle 1-bit D-FF

Dec A7 A6 A5 A4 A3 A2 Al A0 Assigned Device
o0 0 0 0 0 0O O O0 O 64x8
opL o 0 o O O o o0 1 Memory

63 0 0 1 1 1

64 0 1 0 O O 0 O O 8bitRegister
open

12881 0 0 O O O O O 1-bitD-FF

open

ol of

| USCViterbi@

Memory Maps

* Exercise: What is a minimal set of bits that could be used to distinguish
each device from the others?

— A 64 bytes (64x8) memory =>
— Asingle 8-bit register =>
— Asingle 1-bit D-FF =>

Dec A7 A6 A5 A4 A3 A2 Al A0 Assigned Device
oo o 0 0 0O O O o0 O 64x8
o1 o0 0o o O o O o0 1 Memory

63 o o 1 1 1 1 1 1

64 0 1 0 O O O O O 8bitRegister
open

12881 0 0 O O O O O 1-bitD-FF

open

I USCXifS:lgbi
Memory Aliasing

* Given
— A 64 bytes (64x8) memory =>
— Asingle 8-bit register =>
— Asingle 1-bit D-FF =>
e By using don't care situations the 8-bit register will respond to ____ address

where A7-A6=___ (i.e.) and similarly the 1-bit D-FF will respond
to any address where A7=__{(i.e.)

Dec A7 A6 A5 A4 A3 A2 Al A0 Assigned Device

00 o 0 O O O o o0 o 64x8

orL o o o o o o o0 1 Memory

63 0 0 1 1 1
64 0 1 O O O O O O 8-bitRegister

open
126 1 0 0 0 0O O O O 1-bitD-FF

open

USC Viterbi@'2>

School of Engincering

Address Decoding
* Address decoding refers to the process of the
correct device based on a specific address

8 64x8 8
e DI SIS} 7:0] e
6
el A[5:0]
—EN
—IWEN
E 8 —CLK
g | Picoblaze E
g Processor © 8 8-bit REG 8
Z (software . :
~ controlled) 3| 8 et D[7:0] Q[7:0] rmmplmm
S fr—
WS (WEN)| — N
—CLK
—RST
0
|
1y SET o
1-bit
—ENorF
2 CLR

| USCViterbi

School of Engineering.
Memory Maps
* Exercise: Repeat the exercise to find a minimal set of bits that could be

used to distinguish each device from the others?
— A 64 bytes (64x8) memory =>

— Asingle 8-bit register =>
— Asingle 1-bit D-FF =>
Dec A7 A6 A5 A4 A3 A2 Al A0 Assigned Device
00 o 0O 0O O o O o0 o

8-bit Register

01 o0 0 0o O O O o0 1 1-bit D-FF
02 0 0 O O O O 1 O 64x8
03 o0 0 o O o o 1 1 Memory
04 0 0O O O O 1 o0 O

64 0 1 0 O O O o0 o

65 0 1

66 0 1 0 O O O 1 O open

open

USC Viterbi@'2>

School of Engincering

Address Decoding Exercise 2

8 64x8 8
M
e DI7:0] BOL7:0] e
6
s A\[5:0]
—1EN
—IWEN
= —CLK
<
Qo
8 | Picoblaze B
< Processor O s 8-bit REG 5
= (software g . .
~ controlled) 8 et D[7:0] Q[7:0] el
<
WS (WEN) —1EN
—CLK
—RST
‘|
SET o]
1-bit
T |< DFF
—12CLR

| USCViterbi
High-Order Interleaving

School of Engincering

* General strategy is to place devices at ranges of address divide
by more-significant bits

Dec A7 A6 A5 A4 A3 A2 Al A0 Assigned Device

00 0 o0 0O O O o 64x8
01 0 o 0 O O o0 1 Memory
63 O 11 1 1 1 1
open

128 0 0O O O O O 8bitRegister
0 open
192 1 0 0 O O O 0 1-bitD-FF

1 open

USC Viterbi@'2>

School of Engincering

PING))) Interfacing

* Work with your instructor to explore alternatives for interfacing the
PING))) engine you created to the Picoblaze processor

E 8 L pulse_in pulse_en
§ Ol
g | Picoblaze 5 pulse_out
g Pro:f:;vssor o g PULSPIN
H (software —m| inches (to/from PING)
controlled) g 8
<
WS (WEN)|— result[7:0] F»
—» clk
—» reset convdone —-

USC Viterbi@®

School of Engincering

PING))) Interfacing

* Explore other alternatives...

E 8 L pulse_in pulse_en
) p=1 S,
g | Picoblaze K| pulse_out
g Profc;,ssor o g PULSPIN
H (software —m| inches (to/from PING)
controlled) g 8
<
WS (WEN)|— result[7:0] F»
—» clk
—» reset convdone —-

| USCViterbi@

School of Engincering

PICOBLAZE ASSEMBLY

S 15 Vitcrh{ 2
Relevant Manual Pages

* Pages 4-6, (7), 8, (9-11)
* Pages 16-36, focus on

— OUTPUT 34

— INPUT 35

— SHIFTS 32,33

—JUMP 17

— LOAD 22

— COMPARE 31

Input/Output design 65-68

| USCViterbi@

Output Instruction
OUTPUT

The OUTPUT instruction enables the contents of any register to be transferred to logic external to KCPSM3. The port address (in
the range 00 to FF) can be defined by a constant value or indirectly as the contents of any other register. The Flags are not
affected by this operation.

Port Value sX PORT_ID Address Constant

[IITT 11T]l«——[ITTTITTT1] [TTTTTTT]<4— [elelelelelelele]

Port Value sX PORT_ID Address sY
«—[ITTTTTT] [TTTTTTT] «—— [TTTTTTT1]

The user interface logic is required to decode the PORT_ID port address value and capture the data provided on the OUT_PORT.
The WRITE_STROBE is set during an output operation (see ‘READ and WRITE STROBES’), and should be used to clock enable
the capture register or write enable a RAM (see ‘Design of Output Ports’).

 Example: output s1, FF

— Outputs the 8-bit number in s1 as data on
out_port to the address (port_id) of OxFF

Taken from the KCPSM3 Manual

| USCViterbi

Input Instruction
INPUT

The INPUT instruction enables data values external to KCPSM3 to be transferred into any one of the internal registers. The port
address (in the range 00 to FF) can be defined by a constant value or indirectly as the contents of any other register. The Flags are
not affected by this operation.

sX Port Value PORT_ID Address Constant

[(TI T T I I l«——[ITIT1T1TIT1] [ITTTTTTT]<«— [ololplelelelolr]
sX Port Value PORT_ID Address sY

[(TT T T I T T l«——[ITIITT1TIT1] [TTTTTT T]«——[TTITTTT1TT1]

The user interface logic is required to decode the PORT_ID port address value and supply the correct data to the IN_PORT. The
READ_STROBE is set during an input operation (see ‘READ and WRITE STROBES'), but it is not always necessary for the
interface logic to decode this strobe. However, it can be useful for determining when data has been read, such as when reading a
FIFO buffer (see ‘Design of Input Ports’).

* Example: input s8, Oc
— Places the address 0xOc on the port_id and then

grabs data from the in_port at the end of the

second cycle and writes it into reglster s8
Taken from the KCPSM3 Manual

— 5 C Viterb{
LOAD Instruction
LOAD

The LOAD instruction provides a method for specifying the contents of any register. The new value can be a constant, or the
contents of any other register. The LOAD instruction has no effect on the status of the flags.
sX Constant
[TTTTTTT]*—[kIxlxTelTkT]k]

sX sY
[(TTTIT T]«——[ITITTTT1]

Since the LOAD instruction does not effect the flags it may be used to reorder and assign register contents at any stage of the
program execution. The ability to assign a constant with no impact to the program size or performance means that the load
instruction is the most obvious way to assign a value or clear a register.

The first operand of a LOAD instruction must specify the register to be loaded as register ‘s’ followed by a hexadecimal digit. The

second operand must then specify a second register value in a similar way or specify an 8-bit constant using 2 hexadecimal digits.
The assembler supports register naming and constant labels to simplify the process.

 Example: load s3, a5
— Loads the constant Oxa5 into register s3

Taken from the KCPSM3 Manual

P 15 Vitcrh{ 29
Compare Instruction

COMPARE

The COMPARE instruction performs an 8-bit subtraction of two operands Unlike the ‘SUB’ instruction, the result of the operation is
discarded and only the flags are affected. The ZERO flag is set when all the bits of the temporary result are low and indicates that
both input operands were identical. The CARRY flag indicates when an underflow has occurred and indicates that the second
operand was larger than the first. For example, if ‘'s05" contains 27 hex and the instruction COMPARE s05,35 is performed, then
the CARRY flag will be set (35>27) and the ZERO flag will be reset (35227).

Temporary sX Constant
[ITTTTTTT] «—— [TTTTTTT] - Gkl [«Ik]
Temporary sX sY

[TTTTTT] «—— [OITITTTT1] - OIITT1T11]

Set if 'sY” or 'kk’ is greater than 'sX'.
CARRY Reset in all other cases. ZERO

Set if operands are equal.
Reset in all other cases.

* Example: compare sf, 2a

— Compares the data in register sf to the hex
constant @x2a. It sets the Z flag (to determine

equality) and C flag (to indicate less-than)
Taken from the KCPSM3 Manual

| USCViterbi@

Jump Instruction
JUMP

Under normal conditions, the program counter (PC) increments to point to the next instruction. The address space is fixed to
1024 locations (000 to 3FF hex) and therefore the program counter is 10 bits wide. It is worth noting that the top of memory is
3FF hex and will increment to 000.

PC PC

OOTTTTTTTT] «——[ITTTTTTTTT +1 Normal Instruction

The JUMP instruction may be used to modify this sequence by specifying a new address. However, the JUMP instruction may be
conditional. A conditional JUMP will only be performed if a test performed on either the ZERO flag or CARRY flag is valid. The
JUMP instruction has no effect on the status of the flags.

Condition

not valid PC
[TTTTTTTTTT +1
PC —
[ITTTTTTTTT] JUMP aaa

¥ New Address JUMP 7,aaa
[a[aa[a]a[a]a[a[a]a] JUMP NZ,aaa
Unconditional or JUMP C,aaa
condition valid JUMP NC,aaa

 Example: jump Z, label
— Jumps to the location specified by 1abel if the

condition bit (Z) is true
Taken from the KCPSM3 Manual

