
3-1.1

Spiral 3-1

Hardware/Software Interfacing

3-1.2

Learning Outcomes

• I understand the PicoBlaze bus interface signals: PORT_ID, IN_PORT,
OUT_PORT, WRITE_STROBE

• I understand how a memory map provides the agreement between
addresses the software will use and that the hardware must recognize and
respond to

• I understand how to build address decoding logic to ensure only the
appropriate value/register is selected for a given PORTID

• For output, I can take a memory map and the PORTID and OUTDATA bits
such that the appropriate data is input or saved in a register when an
OUTPUT instruction is executed

• For input, I can take a memory map and the appropriate PORTID bits to
build logic and muxes such that the appropriate data value is present at
INDATA when an INPUT instruction is executed

3-1.3

FPGAS

3-1.4

Digital Design Targets

• Two possible implementation targets
– Custom Chips (ASIC’s = Application Specific Integrated Circuits):

Physical gates are created on silicon to implement 1 particular design

– FPGA (Field Programmable Gate Array’s): “Programmable logic” using
programmable memories to implement logic functions along with
other logic resources tiled on the chip. Can implement any design and
then be changed to implement a new one

FPGA’s have “logic

resources” on them that

we can configure to

implement our specific

design. We can then

reconfigure it to

implement another design

In an ASIC design, a

unique chip will be

manufactured that

implements our design at

which point the HW

design is fixed & cannot

be changed (example:

Pentium, etc.)

http://images.google.com/imgres?imgurl=http://www.indifference.com/art/2000/chip.jpg&imgrefurl=http://www.indifference.com/indiff_stock/&h=199&w=220&sz=33&tbnid=J6YMINyMqPUJ:&tbnh=92&tbnw=101&start=13&prev=/images?q%3Dcomputer%2Bchip%26hl%3Den%26lr%3D%26ie%3DUTF-8
http://images.google.com/imgres?imgurl=http://88.191.24.164/cresittj2/technologies/HelpEpisipHtml/Images/FPGA.gif&imgrefurl=http://88.191.24.164/cresittj2/technologies/HelpEpisipHtml/EDK/FPGA.htm&h=567&w=756&sz=51&hl=en&start=24&um=1&usg=__uLffTAftHQEXsvnNmQteoQF14fI=&tbnid=mNWL9FGatHL3yM:&tbnh=107&tbnw=142&prev=/images?q%3Dfpga%26start%3D20%26ndsp%3D20%26um%3D1%26hl%3Den%26rls%3Dcom.microsoft:*:IE-SearchBox%26rlz%3D1I7DMUS%26sa%3DN
http://images.google.com/imgres?imgurl=http://www.promwad.com/images/stories/services/fpga-case-link-en.jpg&imgrefurl=http://www.promwad.com/services/fpga.html&h=347&w=300&sz=24&hl=en&start=28&um=1&usg=__YMaioQoKG73ahjXpFZrldgU7vH4=&tbnid=7oftOZDJ0G5CGM:&tbnh=120&tbnw=104&prev=/images?q%3Dfpga%26start%3D20%26ndsp%3D20%26um%3D1%26hl%3Den%26rls%3Dcom.microsoft:*:IE-SearchBox%26rlz%3D1I7DMUS%26sa%3DN

3-1.5

ASICs

3-1.6

Implementation

• ASIC’s
– Use the CAD tools to synthesize and route a “netlist”

• Synthesis = Takes logic description or logic schematic & converts to transistor
level gates

• Place and Route = Figure out where each gate should go on the chip)

– Final “netlist” is sent to chip maker for production

– Fabrication is very expensive (> $1 million) so get your design right the first
time.

• FPGA’s
– Synthesis converts logic description to necessary LUT contents, etc.

– Place and route produces a configuration for the FPGA chip

– Can reconfigure FPGA as much as you like, so less important to get it right
1st time

3-1.7

ASIC’s vs. FPGA’s

• ASIC’s

– Faster

– Handles Larger Designs

– More Expensive

– Less Flexible (Cannot be
reconfigured to perform
a new hardware
function)

• FPGA’s

– Slower (extra logic to
make it reconfigurable)

– Smaller Designs

– Less Expensive

– Extremely Flexible

3-1.8

Xilinx Spartan 3E

Digilent Nexys-2 Board

• Has a Xilinx Spartan 3E FPGA
(XC3S500e)

• 500K gate equivalent

• 9312 D-FF’s on-board

On-board I/O

• (4) 7-Segment Displays

• (8) LED’s

• (4) Push Buttons

• (8) Switches

3-1.9

Latest FPGA's

• SoC design (Xilinx Kintex [KU115])

– Quad-Core ARM cores

– DDR3 SDRAM Memory Interface

– ~800 I/O Pins

– Equiv. ~15M gate equivalent FPGA fabric

• ~1M D-FFs + 552K LUTs

• 1968 dedicated DSP "slices" 18x18 multiply + adder

• 34.6 Megabits of onboard Block RAMs

3-1.10

PICOBLAZE
Hardware/Software Interfacing

3-1.11

Input / Output

• The processor connects to peripherals and other logic
via the bus (address, data, and control)

• Software running on the processor performs loads
and stores that read and write data to and from these
devices based on address

Video

Interface

FE may

signify a

white dot at

a particular

location

…

800

Processor Memory

A D C

800

254

WRITE

…

0

399

254

01

Keyboard

Interface

61400

3-1.12

Introduction
• Picoblaze (aka KCPSM3) is an 8-bit soft-processor

– The processor is not implemented directly in hardware on the FPGA
but instead is just a description that is then synthesized using the
same process as any of our other designs

– It provides a bus interface that can be connected to custom logic that
you design and then used to control that custom logic via software
executing on the processor

3-1.13

Taken from the KCPSM3 Manual

3-1.14

Taken from the KCPSM3 Manual

3-1.15

Taken from the KCPSM3 Manual

3-1.16

Input / Output Operations

Taken from the KCPSM3 Manual

3-1.17

Exercise 1

• Make the register below capture data
(out_data) from your Picoblaze whenever it
outputs address FF hex on (address or
port_id)

Picoblaze

Processor

(software

controlled)

O
U

T
D

A
T

A
A

D
D

RIN
D

A
T

A

WS (WEN)

Reg

EN

CLK

D[7:0] Q[7:0]

RST

3-1.18

Remember: Registers w/ Enables

• Registers (D-FF’s) will sample the D
bit every clock edge and pass it to Q

• Sometimes we may want to hold the
value of Q and ignore D even at a
clock edge

• We can add an enable input and
some logic in front of the D-FF to
accomplish this FF with Data Enable

CLK /AR EN Di Qi*

X 0 X X 0

0,1 1 X X Qi

↑⁭ 1 0 X Qi

⁭↑ 1 1 0 0

↑⁭ 1 1 1 1

D Q

CLR

SET

1

D

Q
0

1

Y

S

EN

CLK
/AR

3-1.19

Registers w/ Enables

• The D value is sampled at the clock edge only
if the enable is active

• Otherwise the current Q value is maintained

CLK

/AR

EN

D[3:0]

Q[3:0] 0000 0101 0111 1000

0011 0100 0101 0110 0111 1000 1001 10100010

3-1.20

Recall Memory Interfaces

• We provide address and
data

• EN = Overall enable
(unless it is 1) the
memory won't read or
write (we assume EN=1)

• WEN = Write enable

– 1 = Write / 0 = read

1 0 0 0
1 1 1 0
1 1 0 0
1 0 1 0
0 0 1 1
0 1 0 0
1 0 0 1
0 1 1 0

0
1
2
3
4
5
6
7

D
O

[3
:0

]

DI[3:0]

A[2:0]

WEN

CLK

EN

A[2:0]

CLK

110 001

DI[3:0] 1111

WEN

DO[3:0] ??? mem[3] = 1111 mem[6] = 1001

twrite

011

tacc

M[3] 1010 1111

Assume EN=1

3-1.21

Exercise 1

• Make the register below capture data
(out_data) from your Picoblaze whenever it
outputs address FF hex on (address or
port_id)

Picoblaze

Processor

(software

controlled)

O
U

T
D

A
T

A
A

D
D

RIN
D

A
T

A

WS (WEN)

EN

CLK

D[7:0] Q[7:0]
8

8

8

8 8
8-bit REG

RST

CLK

RST

Addr[0]

Addr[7]
AND all signals

3-1.22

Exercise 2

• Use your PicoBlaze to receive input from A
given address 00 hex and B for address 0x01
hex

Picoblaze

Processor

(software

controlled)

O
U

T
D

A
T

A
A

D
D

RIN
D

A
T

A

WS (WEN)

8

8

8
0

1

8

8

A[7:0]

B[7:0]

Addr[0]

3-1.23

Memory Maps

• A memory map shows what devices are assigned to a
given address or address range that can then be
accessed by the processor (and its software programs)

Dec A7 A6 A5 A4 A3 A2 A1 A0 Assigned Device

00 0 0 0 0 0 0 0 0 Input Switches

01 0 0 0 0 0 0 0 1 open

02 0 0 0 0 0 0 1 0 open

…

253 1 1 1 1 1 1 0 1 LEDs

254 1 1 1 1 1 1 1 0 open

255 1 1 1 1 1 1 1 1 7-Seg Display

3-1.24

Memory Maps
• Given an 8-bit address space (256 locations) and 3 devices that we want to

interface to our microprocessor, we first must create the memory map

– A 64 bytes (64x8) memory

– A single 8-bit register

– A single 1-bit D-FF

Dec A7 A6 A5 A4 A3 A2 A1 A0 Assigned Device

00 0 0 0 0 0 0 0 0 64x8

01 0 0 0 0 0 0 0 1 Memory

…

63 0 0 1 1 1 1 1 1

64 0 1 0 0 0 0 0 0 8-bit Register

… open

128 1 0 0 0 0 0 0 0 1-bit D-FF

… open

3-1.25

Memory Maps
• Exercise: What is a minimal set of bits that could be used to distinguish

each device from the others?

– A 64 bytes (64x8) memory => A7-A6 = 0,0

– A single 8-bit register => A7-A6 = 0,1

– A single 1-bit D-FF => A7 = 1

Dec A7 A6 A5 A4 A3 A2 A1 A0 Assigned Device

00 0 0 0 0 0 0 0 0 64x8

01 0 0 0 0 0 0 0 1 Memory

…

63 0 0 1 1 1 1 1 1

64 0 1 0 0 0 0 0 0 8-bit Register

… open

128 1 0 0 0 0 0 0 0 1-bit D-FF

… open

3-1.26

Memory Aliasing
• Given

– A 64 bytes (64x8) memory => A7-A6 = 0,0

– A single 8-bit register => A7-A6 = 0,1

– A single 1-bit D-FF => A7 = 1

• By using don't care situations the 8-bit register will respond to any address
where A7-A6 = 0,1 (i.e. 64-127) and similarly the 1-bit D-FF will respond to
any address where A7=1 (i.e. 128-255)

Dec A7 A6 A5 A4 A3 A2 A1 A0 Assigned Device

00 0 0 0 0 0 0 0 0 64x8

01 0 0 0 0 0 0 0 1 Memory

…

63 0 0 1 1 1 1 1 1

64 0 1 0 0 0 0 0 0 8-bit Register

… open

128 1 0 0 0 0 0 0 0 1-bit D-FF

… open

3-1.27

Picoblaze

Processor

(software

controlled)

O
U

T
P

O
R

T
P

O
R

T
IDIN

P
O

R
T

WS (WEN) EN

CLK

D[7:0] Q[7:0]

8

8

8

8 8

DO[7:0]DI[7:0]

A[5:0]

WEN

CLK

EN

64x8

Memory
88

6

D Q

CLR

SET

0

EN

0

1

2

S1 S0

8-bit REG

1-bit

DFF

RST

WS

OUTPORT[7:0]

PortID[7:0]

PortID[6]

WS

PortID[7]

PortID[6]

WS
PortID[7]

WS

PortID[7]

CLK

CLK

OUTPORT[0]

OUTPORT[7:0]

OUTPORT[7:0]

PortID[5:0]
MEM[7:0]

REG[7:0]

MEM[7:0]

REG[7:0]

{7'b0000000,FFQ}

RST

Address Decoding
• Address decoding refers to the process of enabling the correct

device based on a specific address combination

Address Decoding

Logic

3-1.28

Memory Maps
• Exercise: Repeat the exercise to find a minimal set of bits that could be

used to distinguish each device from the others?

– A 64 bytes (64x8) memory => A6 + A6'(A5+A4+A3+A2+A1)

– A single 8-bit register => A6'A5'A4'A3'A2'A1'A0'

– A single 1-bit D-FF => A6'A5'A4'A3'A2'A1'A0

Dec A7 A6 A5 A4 A3 A2 A1 A0 Assigned Device

00 0 0 0 0 0 0 0 0 8-bit Register

01 0 0 0 0 0 0 0 1 1-bit D-FF

02 0 0 0 0 0 0 1 0 64x8

03 0 0 0 0 0 0 1 1 Memory

04 0 0 0 0 0 1 0 0

…

64 0 1 0 0 0 0 0 0

65 0 1 0 0 0 0 0 1

66 0 1 0 0 0 0 1 0 open

… open

3-1.29

Address Decoding Exercise 2

Picoblaze

Processor

(software

controlled)
O

U
T

D
A

T
A

A
D

D
RIN

D
A

T
A

WS (WEN) EN

CLK

D[7:0] Q[7:0]

8

8

8

8 8

DO[7:0]DI[7:0]

A[5:0]

WEN

CLK

EN

64x8

Memory
88

6

D Q

CLR

SET

0

EN

0

1

2

3 S1 S0

8-bit REG

1-bit

DFF

RST

3-1.30

High-Order Interleaving
• General strategy is to place devices at ranges of address divide by more-

significant bits

Dec A7 A6 A5 A4 A3 A2 A1 A0 Assigned Device

00

0 0

0 0 0 0 0 0 64x8

01 0 0 0 0 0 1 Memory

…

63 1 1 1 1 1 1

… open

128

1
0

0 0 0 0 0 0 8-bit Register

… open

192
1

0 0 0 0 0 0 1-bit D-FF

… open

3-1.31

PING))) Interfacing

• Work with your instructor to explore alternatives for interfacing the
PING))) engine you created to the Picoblaze processor
– Output (Write): PortID (address) 0 => Go, PortID (address) 1 => Inches/cm

– Input (Read): PortID (address) => Result, PortID (address) 1 => Done

convdone

pulse_en

pulse_out

pulse_in

clk

reset

go

inches

result[7:0]

PULSPIN

(to/from PING)

Picoblaze

Processor

(software

controlled)

WS (WEN)

8

8

8
0

1

CLK

RST

D Q

CLR

SET

1-bit

DFF
0

O
U

T
P

O
R

T
P

O
R

T
IDIN

P
O

R
T

D Q

CLR

SET

0

EN
1-bit

DFFWS

PortID[0]

CLK

OUTPORT[0]

RST

WS

PortID[0]

DONEFLAG

RES[7:0]

RES[7:0]

{7'b0000000,

DONEFLAG}

PortID[0] WS

OUTPORT[7:0]

PortID[7:0]

convdone only lasts 1 clock but we need to

keep it at 1 until the software "sees" it. So

register it. This could be a little state machine.

3-1.32

PING))) Interfacing

• Explore other alternatives…

convdone

pulse_en

pulse_out

pulse_in

clk

reset

go

inches

result[7:0]

PULSPIN

(to/from PING)

Picoblaze

Processor

(software

controlled)

O
U

T
D

A
T

A
A

D
D

RIN
D

A
T

A

WS (WEN)

8

8

8
0

1

3-1.33

PICOBLAZE ASSEMBLY

3-1.34

Relevant Manual Pages

• Pages 4-6, (7), 8, (9-11)

• Pages 16-36, focus on

– OUTPUT 34

– INPUT 35

– SHIFTS 32,33

– JUMP 17

– LOAD 22

– COMPARE 31

• Input/Output design 65-68

3-1.35

Output Instruction

• Example: output s1, FF

– Outputs the 8-bit number in s1 as data on
out_port to the address (port_id) of 0xFF

Taken from the KCPSM3 Manual

3-1.36

Input Instruction

• Example: input s8, 0c

– Places the address 0x0c on the port_id and then
grabs data from the in_port at the end of the
second cycle and writes it into register s8

Taken from the KCPSM3 Manual

3-1.37

LOAD Instruction

• Example: load s3, a5

– Loads the constant 0xa5 into register s3

Taken from the KCPSM3 Manual

3-1.38

Compare Instruction

• Example: compare sf, 2a

– Compares the data in register sf to the hex
constant 0x2a. It sets the Z flag (to determine
equality) and C flag (to indicate less-than)

Taken from the KCPSM3 Manual

3-1.39

AND Instruction

• Example: and s3, 04

– Takes the bitwise AND of the data in register s3 and
the hex constant 0x04, overwriting s3 with the result.
It sets the Z flag if the result of the ANDing is 0

Taken from the KCPSM3 Manual

3-1.40

Jump Instruction

• Example: jump Z, label

– Jumps to the location specified by label if the
condition bit (Z) is true

Taken from the KCPSM3 Manual

