

- We can build the bistables and latches we've seen at the gate level with direct CMOS substitutions
 - Replace each NOR or AND gate with it's CMOS transistor level equivalent

- and latches in other (possibly more efficient) ways
- The simplest sequential cell is just a feedback loop of inverters ٠ – Problem...how do we change the value, Q?

An SR-Latch

2-9.61

USCViterbi

School of Engine

- We can use pass transistors to pull the output Q or Q' to a new value
 - Note: ϕ is the CLK signals

- Consider the case when Q(t=0)=0 and we then apply the set input
 - After a short time the pass transistor connected to S and the pull down transistor connected from Q to GND will be in linear mode and form a voltage divider
 - Some analysis will show us that we must make $(W/L)_{M6} > (W/L)_{M3}$ by some appropriate factor to get Q to switch

