
2-9.1

Spiral 2-9

Tri-State Gates
Memories

DMA

2-9.2

Learning Outcomes

• I understand how a tri-state works and the rules for
using them to share a bus

• I understand how SRAM and DRAM cells perform
reads and writes

• I understand the pros and cons of SRAM and DRAM

• I understand how modern memories optimize
sequential access

• I know what a DMA engine is and why it is used

• I understand the difference between big- and little-
endian byte ordering and the problems that might
arise when transferring between different orderings

2-9.3

TRI-STATE GATES

2-9.4

Typical Logic Gate
• Gates can output two values: 0 & 1
– Logic ‘1’ (Vdd = 3V or 5V), or Logic ‘0’ (Vss = GND)

– But they are ALWAYS outputting something!!!

• Analogy: a sink faucet
– 2 possibilities: Hot (‘1’) or Cold (‘0’)

• In a real circuit, inputs cause EITHER a pathway from
output to VDD OR VSS

Hot Water = Logic 1

Cold Water = Logic 0

(Strapped together so always one type

of water coming out)

+3V

PMOS

NMOS

Output

Inputs

Vdd

Vss

Inputs

+3V

PMOS

NMOS

Output

Inputs

2-9.5

Output Connections

• Can we connect the output of two logic gates together?

• No! Possible short circuit (static, low-resistance pathway
from Vdd to GND)

• We call this situation “bus contention”

Src 1

Src 2

Src 3

Vdd

Vss

Inputs

Vdd

Vss

Inputs

Src 1

Src 2

2-9.6

Tri-State Buffers

• Normal digital gates can output two
values: 0 & 1

1. Logic 0 = 0 volts

2. Logic 1 = 5 volts

• Tristate buffers can output a third
value:

3. Z = High-Impedance = "Floating"
(no connection to any voltage
source…infinite resistance)

• Analogy: a sink faucet
– 3 possibilities:

1.) Hot water,
2.) Cold water,
3.) NO water

Hot Water = Logic 1

Cold Water = Logic 0

NO Water = Z (High-Impedance)

+3V

PMOS

NMOS

OutputInputs

Z (high

impedance)

2-9.7

Tri-State Buffers

• Tri-state buffers have an extra
enable input

• When disabled, output is said
to be at high impedance (a.k.a.
Z)
– High Impedance is equivalent to

no connection (i.e. floating
output) or an infinite resistance

– It's like a brick wall between the
output and any connection to
source

• When enabled, normal buffer

In Out = In

Enable=1

Tri-State Buffer

En In Out

0 - Z

1 0 0

1 1 1

E

In Out = ____

Enable=0

E

2-9.8

Tri-State Buffers

• We use tri-state buffers to share one output
amongst several sources

• Rule: Only 1 buffer enabled at a time

E

E

E

Src 1

Src 2

Src 3

EN1

EN2

EN3

D Q

QCLK

D-FF

2-9.9

Tri-State Buffers

• We use tri-state buffers to share one output amongst several
sources

• Rule: Only 1 buffer enabled at a time
• When 1 buffer enabled, its output overpowers the Z’s (no

connection) from the other gates

0

1

0

1

0

0

Select source

1 to pass its

data

Disabled

buffers

output ‘Z’

Z

0

Z

output of 0

overpowers

the Z

0

E

E

E

D Q

QCLK

D-FF

2-9.10

Bidirectional Bus

• 1 transmitter (otherwise bus contention)

• N receivers

• Each device can send (though 1 at a time) or
receive

0 1 0 0

2-9.11

Tri-State Cell Implementation

• To implement we simply add a pair of inner
transistors that can BOTH be turned off

– This would isolate the output from any Vdd or
GND connection

Vdd

E

E

In
OutE

2-9.12

Tri-State Cell Implementation

• To implement we simply add a pair of
inner transistors that can BOTH be
turned off

– This would isolate the output from any
Vdd or GND connection

E

E

E

Src 1

Src 2

Src 3

EN1

EN2

EN3

Vdd

E1

E1

In1

Out

Vdd

In2

E2

E2

2-9.13

Tri-State Cell Implementation

• If E1 = 0 then the upper tri-state will isolate
the output from any Vdd/GND connection

• If E2 = 1 then the lower tri-state acts as a
normal inverter

• If both E1=0, E2=0 then the output is floating
(Z = high impedance)

E

E

E

Src 1

Src 2

Src 3

EN1

EN2

EN3

Vdd

E1

E1

In1

Out

Vdd

In2

E2

E2

2-9.14

TRANSMISSION GATE & PASS
TRANSISTORS

2-9.15

Why NMOS Pass Weak 1s
• We've said NMOS are:

– Pass a strong 0 but a weak 1

• Let's explore why
– In the first case one side is tied to GND and thus is the

source (lower voltage side is the source)
• Vgs = Vdd and transistor will stay on no matter what the drain

voltage is (eventually Vd will equal 0)

– In the second case one side is tied to Vdd and thus the
other terminal is the source (source is the lower voltage
terminal)
• As the source node charges up eventually it will reach Vdd-Vt but

at that point Vgs = Vg – Vs = Vdd – (Vdd-Vt) = Vt

• Recall to stay on the transistor must have Vgs > Vt.

• So the transistor will turn off and not allow the source to charge
all the way to Vdd

A=1

GND

Vout
DS

G

A=1

Vout
SD

GVdd

2-9.16

Why PMOS Pass Weak 0s
• We've said PMOS are:

– Pass a strong 1 but a weak 0

• For similar reasons as on the previous slide when we try to pass a
0 through a PMOS transistor the transistor will turn off when Vout
reaches Vt
– This prevents the PMOS from passing a strong 0

Vout
DS

GVdd

A=0

GND

Vout
SD

G

A=0

2-9.17

Transmission Gates

• Well if one is good at passing 0's and
one is good at passing 1's why not use
them together

• A Transmission gate puts a PMOS and
NMOS transistors in parallel

– Depending on the input voltage at the
source either the NMOS or PMOS can
pull the drain up/down to that voltage

– Use complementary inputs at each gate
to ensure only one transistor is on

A

GND

Vout

A

A

Vout

A

Vdd

2-9.18

Transmission Gates

• We can even connect the source
to some other signal rather than a
constant voltage

• In the example to the right, if A =
1 (A' = 0) then B is passed

• This gate produces

– AB when A=1 (i.e. pass B when A=1)

– Z (floating) when A=0

A

Vout

A

B

2-9.19

Transmission Gate Symbols

• The CMOS TG operates as a bidirectional
switch between nodes A and B, which is
controlled by signal C

Different representations (symbols) of the CMOS TGs

A B

C

C

2-9.20

More Transmission Gates

• By making complementary
cases of transmission gates we
can build some useful
structures

• What is this structure?

• A 2-to-1 mux

FS

A

S

B

2-9.21

More Transmission Gates

• What is this structure?

• An XOR gate

FA

B

A

B

2-9.22

MEMORY

2-9.23

MEMORY TECHNOLOGIES

2-9.24

The Memory Wall

• Problem: The Memory Wall

– Processor speeds have been increasing much faster than memory access
speeds (Memory technology targets density rather than speed)

– Large memories yield large address decode and access times

– Main memory is physically located on separate chips and inter-chip signals
have much higher propagation delay than intra-chip signals

Processor-Memory

Performance Gap

7%/year

55%/year

Hennessy and Patterson,

Computer Architecture –

A Quantitative Approach (2003)

©Elsevier Science

2-9.25

Improving Memory Performance

• Possibilities for improvement

– Technology
• Can we improve our transistor-level design to create faster RAMs

• Can we integrate memories on the same chip as our processing
logic

– Architectural
• Can we organize memory in a more efficient manner (this is our

focus)

2-9.26

DRAM & SRAM

2-9.27

Memory Technology

• Static RAM (SRAM)

– Will retain values indefinitely (as long as power is
on)

– Stored bit is actively “remembered” (driven and
regenerated by circuitry)

• Dynamic RAM (DRAM)

– Will lose values if not refreshed periodically

– Stored bit is passively “remembered” and needs
to be regenerated by external circuitry

2-9.28

Memory Array

• Logical View = 1D array of rows (words)
– Already this is 2D because each word is 32-bits (i.e. 32 columns)

• Physical View = 2D array of rows and columns
– Each row may contain 1000’s of columns (bits) though we have to

access at least 8- (and often 16-, 32-, or 64-) bits at a time

123489AB

0x0008

AB4982FE

89AB97CD

0x0004

0x0000

C8004DB2 0x000c

1D Logical View

(Each row is a

single word =

32-bits)

...

…

...

...

...

0x000000

0x000400

0x000800

2D Physical View

(e.g. a row is 1KB = 8Kb)

2-9.29

1Mx8 Memory Array Layout

WL[0]

WL[1023]

Cell Cell

Cell Cell

BL[0] BL[8191]

8K Bit Lines
• Start with array of cells that

can each store 1-bit
• 1 MB = 8 Mbit = 223 total

cells
• This can be broken into a 2D

array of cells (210 x 213)
• Each row connects to a WL =

word line which selects that
row

• Each column connects to a
BL = bit line for read/write
data

1
K

 W
o

rd
 L

in
e
s

2-9.30

Row and Column Address

A
d
d
r.

D
e
c
o
d
e
r

Row

Addr.

WL[0]

WL[1023]

Cell Cell

Cell Cell

BL[0] BL[8191]

Amplifiers & Column Mux

8K Bit Lines
• For 1MB we need 20

address bits
• 10 upper address bits can

select one of the 1024
rows

• Suppose we always want
to read/write an
8-bits (byte), then we will
group each set of 8-bits
into 1024 byte columns
(1024*8=8K)

• 10 lower address bits will
select the column

A[19:10]
210 word

lines

Data in/out [7:0]

Col. Addr.

A[9:0]

10-bits

10-bits

2-9.31

Periphery Logic

A
d
d
r.

D
e
c
o
d
e
r

Addr.

WL[0]

WL[1023]

Cell Cell

Cell Cell

BL[0] BL[8191]

Amplifiers & Column Mux

8K Bit Lines
• Address decoders

selects one row based
on the input address
number

• Bit lines are
bidirectional lines for
reading (output) or
writing (input)

• Column multiplexers
use the address bits to
select the right set of
8-bits from the 8K bit
lines

A[19:10]
210 word

lines

Data in/out [7:0]

Addr.

A[9:0]

10-bits

10-bits

2-9.32

Memory Technologies

• Memory technologies
share the same layout but
differ in their cell
implementation

• Static RAM (SRAM)
– Will retain values

indefinitely (as long as
power is on)

– When read, the stored bit is
actively driven onto the bit
lines

• Dynamic RAM (DRAM)
• Will lose values if not

refreshed periodically
• When read, the stored bit

passively pulls the bit line
voltage up or down slightly
and needs to be amplified

A
d
d
r. D

e
c
o
d
e
r

Addr.

WL[0]

WL[1023]

Cell Cell

Cell Cell

BL[0] BL[8191]

Amplifiers & Column Mux

8K Bit Lines

Data in/out

Addr.

2-9.33

SRAM Cell

SRAM Core

BL[0]

D/Q

Enable

• Each memory cell requires 6
transistors

• Each cell consists of a D-Latch is
made from cross connected
inverters which have active
connections to PWR and GND.

– Thus, the signal is remembered
and regenerated as long as power
is supplied

WL

SRAM core implementation

GND

PWR

PWR

GND

WL WL

BL BL

DQ DQ

2-9.34

DRAM Cell

• Bit is stored on a capacitor
and requires only 1
transistor and a capacitor

BL

Capacitor

WL

Transistor acting as

a switch

2-9.35

DRAM Cell

• Bit is stored on a capacitor
and requires only 1
transistor

• Write
– WL=1 connects the capacitor

to the BL which is driven to 1
or 0 and charges/discharges
capacitor based on the BL
value

BL

Capacitor

charges to

5V

WL

Transistor acting as

a switch

‘1’ = 5V

1

2-9.36

DRAM Cell

• Bit is stored on a capacitor
and requires only 1
transistor

• Write
– WL=1 connects the capacitor

to the BL which is driven to 1
or 0 and charges/discharges
capacitor based on the BL
value

• With WL=0 transistor is
closed and value stored on
the capacitor

BL

Capacitor

maintains

5V charge

WL

Transistor is now

off trapping charge

on capacitor

0

2-9.37

DRAM Cell

• Bit is stored on a capacitor
and requires only 1
transistor

• Write
– WL=1 connects the capacitor

to the BL which is driven to 1
or 0 and charges/discharges
capacitor based on the BL
value

• Read
– BL is precharged to 2.5 V
– WL=1 connects the capacitor

to the BL allowing charge on
capacitor to change the
voltage on the BL

BL

WL

Transistor acting as

a switch

Capacitor charge

(or lack of charge)

changes the BL

voltage slightly

2.7 V

Bitline is precharged to 2.5V and then

capacitor charge slightly raises or lowers

BL voltage

Sense amp drives voltage the rest of the

way to 5V or 0V

2.5 V

2.3 V

Sense

Amp.

2-9.38

DRAM Issues

• Destructive Read
– Charge is lost when

capacitor value is read

– Need to write whatever
is read back to the cap.

• Leakage Current
– Charge slowly leaks off

the cap.

– Value must be refreshed
periodically

BL

Capacitor

WL

Transistor acting as

a switch

2-9.39

SRAM vs. DRAM Summary

• SRAM

– Faster because bit lines
are actively driven by the
D-Latch

– Faster, simpler interface
due to lack of refresh

– Larger Area for each cell
which means less
memory per chip

– Used for cache memory
where speed/latency is
key

• DRAM

– Slower because passive
value (charge on cap.)
drives BL

– Slower due to refresh
cycles

– Small area means much
greater density of cells
and thus large memories

– Used for main memory
where density is key

2-9.40

MEMORY ARCHITECTURES

2-9.41

Implications of Memory Technology

• Memory latency of a single access using
current DRAM technology will be slow

• We must improve bandwidth

– Idea 1: Access more than just a single word at a
time

– Technology: EDO, SDRAM, etc.

– Idea 2: Increase number of accesses serviced in
parallel (in-flight accesses)

– Technology: Banking

2-9.42

Legacy DRAM Timing

• Can have only a single access “in-flight” at once

• Memory controller must send row and column address portions for each
access

– RAS active holds the row open for reading/writing

– CAS active selects the column to read/write

R
o
w

 D
e

c
o

d
e

r

Column Muxes

Row

Address

Column

Address

Data in / out

Memory Array

Legacy DRAM

(Must present new Row/Column address for each access)

MC Address

Bus

Data

Bus

/CAS

/RAS

Row

Address

Column

Address

Data

In / Out

Row

Address

Column

Address

Data

In / Out

Timing

Generator/CAS

/RAS

tRC

tRAC

tRC= Cycle Time (110ns) = Time

before next access can start

tRAC=Access Time (60ns) =

Time until data is valid

2-9.43

Fast Page Mode DRAM Timing

• Can provide multiple column addresses with
only one row address

R
o
w

 D
e

c
o

d
e

r

Column Muxes

Row

Address

Column

Address

Data in / out

Fast Page Mode

(Future address that fall in same row can

pull data from the latched row)

Memory Array

Timing

Generator/CAS

/RAS

R
e
g
.

MC Address

Bus

Data

Bus

/CAS

/RAS

Row

Address

Column

Address

Data

In / Out

Column

Address

Data

In / Out

2-9.44

EDO DRAM Timing

• Similar to FPM but overlaps data i with column
address i+1

R
o
w

 D
e

c
o

d
e

r

Column Muxes

Column

Address

Data in / out

EDO (Extended Data Out)

Column address i+1 is sent while data i

is being transferred on the bus

Memory Array

Timing

Generator/CAS

/RAS

Row

Address

R
e
g
.

MC Address

Bus

Data

Bus

/CAS

/RAS

Row

Address

Column

Address

Data

In / Out

Column

Address

Data

In / Out

2-9.45

Synchronous DRAM Timing

• Registers the column address and automatically increments it,
accessing n sequential data words in n successive clocks called
bursts… n=4 or 8 usually)

R
o
w

 D
e

c
o

d
e

r

Column Muxes

Column Latch/Register
Column

Address

Data in / outSDRAM (Synchronous DRAM)

Addition of clock signal. Will get up to ‘n’ consecutive

words in the next ‘n’ clocks after column address is sent

R
e
g
/C

n
tr

Memory Array

Timing

Generator/CAS

/RAS

Row

Address

R
e
g
.

MC Address

Bus

Data

Bus

/CAS

/RAS

Row

Address

Column

Address

CLK

Data

i

Data

i+1

Data

i+2

Data

i+3

CLK

2-9.46

DDR SDRAM Timing

• Double data rate access data every half clock
cycle

R
o
w

 D
e

c
o

d
e

r

Column Muxes

Column Latch/Register
Column

Address

Data in / outDDR SDRAM (Double-Data Rate SDRAM)

Addition of clock signal. Will get up to ‘2n’ consecutive

words in the next ‘n’ clocks after column address is sent

R
e
g
/C

n
tr

Memory Array

Timing

Generator/CAS

/RAS

Row

Address

R
e
g
.

CLK

2-9.47

Banking

• Divide memory into “banks” duplicating row/column decoder
and other peripheral logic to create independent memory arrays
that can access data in parallel
– uses a portion of the address to determine which bank to access

Row /

Column

Address

Data

Bank 0 Bank 1

Bank 2 Bank 3

Bank 0Bank 0Bank 0Bank 0Address

Data

2-9.48

Bank Access Timing

• Consecutive accesses to different banks can be overlapped
and hide the time to access the row and select the column

• Consecutive accesses within a bank (to different rows)
exposes the access latency

MC Address

Bus

Data

Bus

Row

1

CLK

Col

1

Row

2a

Col

2a

Row

2b

Col

2b

Data 2aData 1 Data 2b

Access 1 maps to bank 1 while access 2a maps to bank 2

allowing parallel access. However, access 2b immediately

follows and maps to bank 2 causing a delay.

Delay due to bank conflict

2-9.49

Programming Considerations

• For memory configuration given earlier, accesses to the same bank but different row
occur on an 32KB boundary

• Now consider a matrix multiply of 8K x 8K integer matrices (i.e. 32KB x 32KB)

• In code below…m2[0][0] @ 0x10010000 while m2[1][0] @ 0x10018000

int m1[8192][8192], m2[8192][8192], result[8192][8192];

int i,j,k;

...

for(i=0; i < 8192; i++){

for(j=0; j < 8192; j++){

result[i][j]=0;

for(k=0; k < 8192; k++){

result[i][j] += matrix1[i][k] * matrix2[k][j];

} } }

Unused Rank Row Bank Col. Unused

A31,A30 A29 A28…A15 A14,A13 A12…A3 A2..A0

00 0 1 0000 0000 0001 0 00 0000000000 000

00 0 1 0000 0000 0001 1 00 0000000000 000

0x10010000

0x10018000

m1 m2

x

2-9.50

DMA & ENDIAN-NESS

2-9.51

Direct Memory Access (DMA)

• Large buffers of data often
need to be copied between:

– Memory and I/O (video data,
network traffic, etc.)

– Memory and Memory (OS space
to user app. space)

• DMA devices are small
hardware devices that copy
data from a source to
destination freeing the
processor to do “real” work

CPU Memory

I/O Bridge

I/O Device

(USB)

I/O Device

(Network)

System

Bus

I/O Bus

DMA

2-9.52

Data Transfer w/o DMA

• Without DMA, processor would
have to move data using a loop

• Move 16Kwords pointed to by ($s1)
to ($s2)

li $t0,16384

AGAIN: lw $t1,0($s1)

sw $t1,0($s2)

addi $s1,$s1,4

addi $s2,$s2,4

subi $t0,$t0,1

bne $t0,$zero,AGAIN

• Processor wastes valuable execution
time moving data

CPU Memory

I/O Bridge

I/O Device

(USB)

I/O Device

(Network)

System

Bus

I/O Bus

2-9.53

Data Transfer w/ DMA

• Processor sets values in DMA control
registers
– Source Start Address

– Dest. Start Address

– Byte Count

– Control & Status (Start, Stop, Interrupt
on Completion, etc.)

• DMA becomes “bus-master”
(controls system bus to generate
reads and writes) while processor is
free to execute other code
– Small problem: Bus will be busy

– Hopefully, data & code needed by the
CPU will reside in the processor’s cache

CPU Memory

I/O Bridge

I/O Device

(USB)

I/O Device

(Network)

System

Bus

I/O Bus

DMA
DMA

Control

Registers

2-9.54

DMA Engines

• Systems usually have multiple DMA engines/channels

• Each can be configured to be started/controlled by the
processor or by certain I/O peripherals
– Network or other peripherals can initiate DMA’s on their behalf

• Bus arbiter assigns control of the bus
– Usually winning requestor

has control of the bus until it
relinquishes it
(turns off its request signal)

D
M

A

C
h

a
n

n
e
l

0

D
M

A

C
h

a
n

n
e
l

1

D
M

A

C
h

a
n

n
e
l

2

D
M

A

C
h

a
n

n
e
l

3

Bus Arbiter

Processor

Core

Memory Peripheral Peripheral

Internal

System Bus

Bus

Masters

Slave

devices

Requests /

Grants

2-9.55

Endian-ness

• Endian-ness refers to the two
alternate methods of ordering the
bytes in a larger unit (word, long,
etc.)
– Big-Endian

• PPC, Sparc

• MS byte is put at the starting address

– Little-Endian
• used by Intel processors / PCI bus

• LS byte is put at the starting address

The longword value:

Big-Endian Little-Endian

0 x 1 2 3 4 5 6 7 8

can be stored differently

78

0x00

56

340x01

0x02

12

0x03 12

0x00

34

560x01

0x02

78

0x03

2-9.56

Big-endian vs. Little-endian

• Big-endian
– makes sense if you view your

memory as starting at the
top-left and addresses
increasing as you go down

• Little-endian
– makes sense if you view your

memory as starting at the
bottom-right and addresses
increasing as you go up

12345678000000

000004

000008

00000C

000010

…

000014

1 2 3 4 5 6 7 8

Byte 0 Byte 1 Byte 2 Byte 3

000000

000004

000008

00000C

000010

…

000014

12345678

0 1 2 3

1 2 3 4 5 6 7 8

Byte 3 Byte 2 Byte 1 Byte 0

A
d

d
re

s
s
e
s
 in

c
re

a
s
in

g
 d

o
w

n
w

a
rd

A
d

d
re

s
s
e
s
 i

n
c

re
a
s
in

g
 u

p
w

a
rd

3 2 1 0

2-9.57

12345678000000

000004

000008

00000C

000010

…

000014

1 2 3 4 5 6 7 8

Byte 0 Byte 1 Byte 2 Byte 3

000000

000004

000008

00000C

000010

…

000014

78563412

7 8 5 6 3 4 1 2

Byte 3 Byte 2 Byte 1 Byte 0

A
d

d
re

s
s
e
s
 in

c
re

a
s
in

g
 d

o
w

n
w

a
rd

A
d

d
re

s
s
e
s
 i

n
c

re
a
s
in

g
 u

p
w

a
rd

Big-endian vs. Little-endian

• Issues arise when transferring data between different systems
– Byte-wise copy of data from big-endian system to little-endian system

– Major issue in networks (little-endian computer => big-endian computer) and
even within a single computer (System memory => Peripheral (PCI) device)

Copy byte 0 to byte 0,

byte 1 to byte 1, etc.

Long @ 0 in big-endian

system is now different that

long @ 0 in little-endian

system

Long @ addr. 0

Big-Endian Little-Endian
0 1 2 3

3 2 1 0

MARS is

LITTLE-ENDIAN

2-9.58

BACKUP
Sequential Cells

2-9.59

Sequential Cell Review

• We've seen how to build basic combinational gates
but what about sequential circuits

• We can build the bistables and latches we've seen at
the gate level with direct CMOS substitutions

– Replace each NOR or AND gate with it's CMOS transistor
level equivalent

R

S

Q

Q’

R

S

Q

Q’

C

2-9.60

Sequential Cell Review

• We can also take advantage of our circuit level understanding
of transistors, capacitance, and sizing to build the bistables
and latches in other (possibly more efficient) ways

• The simplest sequential cell is just a feedback loop of inverters
– Problem…how do we change the value, Q?

QQ

Vdd

GND

Q

Vdd

GND

Q

2-9.61

Vdd

GND

Q

Vdd

GND

Q
SR

Φ Φ

An SR-Latch

• We can use pass transistors to pull the output Q or Q'
to a new value

– Note:  is the CLK signals

M6

M3

M4

M1

M2

M5

2-9.62

Vdd

GND

Q@t=0

=0

Vdd

GND

Q=1
S=1R

Φ =

0->1

VQ(t)

=?

Φ

An SR-Latch

• Consider the case when Q(t=0)=0 and we then apply the set input

– After a short time the pass transistor connected to S and the pull down
transistor connected from Q to GND will be in linear mode and form a voltage
divider

– Some analysis will show us that we must make (W/L)M6 > (W/L)M3 by some
appropriate factor to get Q to switch

M6

M3

