
2-8.1

Spiral 2-8

Cell Layout

2-8.2

Learning Outcomes

• I understand how a digital circuit is composed of
layers of materials forming transistors and wires

• I understand how each layer is expressed as
geometric patterns called masks

• I understand the difference between custom and
standard cell ASIC flow

• I understand how FPGAs implement arbitrary logic
designs by producing a bit stream which is the
contents of Look-Up Tables and mux selects

• I understand the pros and cons of ASIC vs. FPGA
design targets

2-8.3

LAYOUT

2-8.4

Digital Design Overview

• A flowchart of digital

• From concept through testing and finally to a layout

Circuit Design

Verify the
circuitry logic

Compile a netlist

Layout Design

Partitioning

Floorplanning

Placement

Routing

2-8.5

Layout

• We need to describe the
patterns of material to
deposit and build on the
silicon surface

• We will draw it from a
top-down perspective p-type

Gate Input
Source Input Drain Output

n-type

W

L

2-8.6

Layout

• Below is a notional layout of two inverters back to back

• Let's go through the steps for how we would lay this out

Vdd

A

GND

~A Aorig

A ~A Aorig

Vdd

GND

A ~A

Vdd

GND

Aorig

2-8.7

Layout

• Start with p-type substrate which is
what we need for NMOS

• Add n-well area for the PMOS
transistors

A ~A Aorig

Vdd

GND

A ~A

Vdd

GND

Aorig

N-Well

P-Type

2-8.8

Layout
• Now we lay down the n- and p- diffusion areas for

the source and drain of both NMOS and PMOS

• Notice the W/L relationship
– Right now the length seems longer than it really will be

A ~A Aorig

Vdd

GND

A ~A

Vdd

GND

Aorig

p+ diff

n+ diff.

W

W

2-8.9

Layout

• Now we draw the polysilicon gates

A ~A Aorig

Vdd

GND

A ~A

Vdd

GND

Aorig

Poly

2-8.10

Layout

• Now we add the L1 metal (M1) wires which include the Vdd and
GND rail as well as the input and output signals

• To make a connection from the M1 level to the surface of the
chip we add contacts

Vdd

A

GND

~A Aorig

A ~A Aorig

Vdd

GND

A ~A

Vdd

GND

Aorig

M1

Contact

2-8.11

M2 – Mn

• How do we get Aorig out from between Vdd and Gnd?

• We need another level of metal, M2
– Just like a freeway interchange

Vdd

A

GND

~A Aorig

A ~A Aorig

Vdd

GND

A ~A

Vdd

GND

Aorig

M2

2-8.12

12

CMOS Inverter
• Taps in (b) to connect n-well and p-substrate to VDD and ground respectively

2-8.13

NAND and NOR Gate Layout

http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-

884-complex-digital-systems-spring-2005/6-884S05.jpg
http://cmosedu.com/jbaker/courses/ee421L/f13/

students/adamsk5/lab6/nor_lay_sim.JPG

2-8.14

CMOS Gates – Inverter, NAND2, NOR2

Two sample layouts of CMOS inverter circuits (for p-type substrate)

14

2-8.15

Chips Are 3D Sandwiches

http://i.ytimg.com/vi/F4EArOqNNSU/maxresdefault.jpg

2-8.16

DESIGN RULES

Ensuring we can fabricate a working chip

2-8.17

• Lambda Rules: One lambda = one half of the “minimum” mask dimension,
typically the length of a transistor channel

• Lambda Rules are based on the assumption that one can scale a design to the
appropriate size before manufacturing

– Every spacing and sizing value is presented based on multiples of lambda

– The layout tool has a design rule checker (DRC) to verify those. In case of any
violations the tool will point that out

Reminder: Layout Design Rules

2-8.18

18

CMOS NAND3

• nMOS and pMOS
transistors in series, and
in parallel, respectively

2-8.19

CUSTOM OR STANDARD CELL ASIC
(NOT FPGA) DESIGN FLOW

2-8.20

Digital Design Overview

• A flowchart of digital

• From concept through testing and finally to a layout

Circuit Design

Verify the
circuitry logic

Compile a netlist

Layout Design

Partitioning

Floorplanning

Placement

Routing

2-8.21

• After circuit design, we obtain a netlist which could be easily translated
into a schematic. Now, let’s start the layout design (a.k.a. physical design)

• Partitioning

• Divide the chip into smaller blocks

• This is done based on some goals and constraints, e.g., to minimize
the number of connections between the blocks, but in general it is
done to separate different functional blocks and simplify their
physical design process and also to make placement and routing
easier

• For example, during partitioning you may decide to divide your
design into two blocks, such that the total number of connections
between the gates in different blocks is minimized

Layout Design

2-8.22

• Floorplanning

• Create functional areas for your chip. For example, decide where to place
FPU (Floating Point Unit), RAM, MPU (Microprocessor), ROM on the chip

• Place the input and output (I/O) cells of your chip

• Connect functional blocks with I/O pads or with each other

• Check whether long wires would slow your design

• Placement

• Nail down the exact positions of all logic gates within each block

• Place I/O drivers

• Similarly to other steps, placement is done based on goals and constraints,
e.g., such that the total approximate wire length is minimized

Layout Design (cont.)

2-8.23

• Routing

• Route power nets and clock nets first. They are critical nets

• Route rest of the nets

• Routing is typically done in two steps of global routing and detailed
routing. In global routing the resource (channels) for the wires are
selected and in detailed routing, the wires are assigned to a specific
routing track (metal layer) in the selected channels

Layout Design (cont.)

2-8.24

Macro View of a Chip
• Place and route are very important aspects of design

2-8.25

Standard Cell Library

• Standard Cell Library

– Intellectual property provided by a vendor

– Has many pre-defined gates (cells) that are already laid out
at various sizing levels for drive strength (to achieve
desired delay)

– Design Flow
• You develop a design

• A synthesis software tool determines what cells are needed

• A place and route tool determines how to place them and route
the input/output of each cell appropriately (i.e. using various
metal layers)

– Example
• http://web.engr.oregonstate.edu/~traylor/ece474/reading/SAED_

Cell_Lib_Rev1_4_20_1.pdf

http://web.engr.oregonstate.edu/~traylor/ece474/reading/SAED_Cell_Lib_Rev1_4_20_1.pdf

2-8.26

FPGAS

2-8.27

Progression of Logic Density

• Small Scale Integrated (SSI) Circuits
– 1960’s and 1970’s
– A few gates on a chip

• Medium Scale Integrated (MSI) Circuits
– 1970’s
– Around a hundred gates per chip (‘283s and

’85s)

• Very Large Scale Integrated (VLSI)
Circuits
– 100’s of millions of gates

http://images.google.com/imgres?imgurl=http://www.solarbotics.com/assets/images/74ac14/74ac14_pl.jpg&imgrefurl=http://www.solarbotics.com/products/74ac14n/&h=450&w=600&sz=26&hl=en&start=12&um=1&usg=__Wukg6oGqr7xBVawfFILKs6gUw08=&tbnid=hdZzCnSnWjnZQM:&tbnh=101&tbnw=135&prev=/images?q%3D74LS%2B%2Bchip%26um%3D1%26hl%3Den%26rls%3Dcom.microsoft:*:IE-SearchBox%26rlz%3D1I7DMUS
http://images.google.com/imgres?imgurl=http://media.teamxbox.com/dailyposts/hardware/nvidia_apx2500_chip.jpg&imgrefurl=http://news.teamxbox.com/xbox/15672/NVIDIA-Announces-HighDefinition-Computer-on-a-Chip/&h=261&w=400&sz=67&hl=en&start=15&um=1&usg=__ePtM-qB7nkf0sDTZUruaYZFuikU=&tbnid=ypJvsSoyin0EbM:&tbnh=81&tbnw=124&prev=/images?q%3Dnvidia%2Bchip%26um%3D1%26hl%3Den%26rls%3Dcom.microsoft:*:IE-SearchBox%26rlz%3D1I7DMUS

2-8.28

Digital Design Targets

• Two possible implementation targets
– Custom Chips (ASIC’s = Application Specific Integrated Circuits):

Physical gates are created on silicon to implement 1 particular design

– FPGA (Field Programmable Gate Array’s): “Programmable logic” using
programmable memories to implement logic functions along with
other logic resources tiled on the chip. Can implement any design and
then be changed to implement a new one

FPGA’s have “logic

resources” on them that

we can configure to

implement our specific

design. We can then

reconfigure it to

implement another design

In an ASIC design, a

unique chip will be

manufactured that

implements our design at

which point the HW

design is fixed & cannot

be changed (example:

Pentium, etc.)

http://images.google.com/imgres?imgurl=http://www.indifference.com/art/2000/chip.jpg&imgrefurl=http://www.indifference.com/indiff_stock/&h=199&w=220&sz=33&tbnid=J6YMINyMqPUJ:&tbnh=92&tbnw=101&start=13&prev=/images?q%3Dcomputer%2Bchip%26hl%3Den%26lr%3D%26ie%3DUTF-8
http://images.google.com/imgres?imgurl=http://88.191.24.164/cresittj2/technologies/HelpEpisipHtml/Images/FPGA.gif&imgrefurl=http://88.191.24.164/cresittj2/technologies/HelpEpisipHtml/EDK/FPGA.htm&h=567&w=756&sz=51&hl=en&start=24&um=1&usg=__uLffTAftHQEXsvnNmQteoQF14fI=&tbnid=mNWL9FGatHL3yM:&tbnh=107&tbnw=142&prev=/images?q%3Dfpga%26start%3D20%26ndsp%3D20%26um%3D1%26hl%3Den%26rls%3Dcom.microsoft:*:IE-SearchBox%26rlz%3D1I7DMUS%26sa%3DN
http://images.google.com/imgres?imgurl=http://www.promwad.com/images/stories/services/fpga-case-link-en.jpg&imgrefurl=http://www.promwad.com/services/fpga.html&h=347&w=300&sz=24&hl=en&start=28&um=1&usg=__YMaioQoKG73ahjXpFZrldgU7vH4=&tbnid=7oftOZDJ0G5CGM:&tbnh=120&tbnw=104&prev=/images?q%3Dfpga%26start%3D20%26ndsp%3D20%26um%3D1%26hl%3Den%26rls%3Dcom.microsoft:*:IE-SearchBox%26rlz%3D1I7DMUS%26sa%3DN

2-8.29

ASICs

2-8.30

Basis of FPGA’s

• Memories provide a universal way to
implement a logic function
– 2n x m memory can implement a

function of n-variables and m outputs

• If we use RWM (read/write memory)
rather than ROM’s we can change
what function the memory
implements

• Memories are referred to as Look-up
Tables (LUT’s)

0 0

0 1

0 1

1 0

0 1

1 0

1 0

1 1

X

Cin

Y

Cout S

D1 D0

0

1

2

3

4

5

6

7

8x2 Memory

A2

A0

A1

Full Adder

Implementation

2-8.31

Configurable Logic Blocks (CLB’s)

• Writable Look-Up Table

• D-FF’s with bypass path

– “Bypass” mux selects the
pure combinational output
of the LUT or the
registered/D-FF output

• Blue boxes indicate
programmable bits that
control the operation and
function of the logic

Any 3-input /

2-output

combinational

function

FF’s if

sequential

logic needed

0

1

2

3

4

5

6

7

0 0

0 1

0 1

1 0

0 1

1 0

1 0

1 1

A0

A1

A2

D1 D0

8x2 Mem.

CLK

D

Q

CLK

D

Q

CLB

01 01

2-8.32

Routing & Switch Matrices

• Inputs and outputs of
neighboring CLB’s
connect to a “switch
matrix” (SM)

• Switch matrix is simply
composed of muxes
that allow us to
“route” inputs and
outputs to another
CLB or further away

CLB CLB CLB

CLB CLB CLB

CLB CLB CLB

SM SM

SM SM

2-8.33

Routing & Switch Matrices

B
A

L

B
A

L

LBA

LBA
...

...

..
.

...

C

To / from

N SM

Switch

Matrix

(SM)

CLB

CLB

To / from E SM

To / from

S SM

CLB

CLB

To / from W SM

A B

D

E

F

GHI

J

K

L

2-8.34

Place and Route

• ASIC: Find where each gate should be placed on the chip and how to route
the wires that connect to it

• FPGA: Determine which LUT’s should be used and how to route through
switch matrices

• Affects timing and area

– wiring takes up space and longer wires leads to longer delays

ASIC FPGA CLB CLB CLB

CLB CLB CLB

CLB CLB CLB

SM SM

SM SM

2-8.35

Exercise

• Find the configuration bits to build a 3-bit free-running (always
enabled) counter

0

1

2

3

4

5

6

7

A0

A1

A2

D1 D0

8x2 Mem.

CLK

D

Q

CLK

D

Q

CLB

01 01

0

1

2

3

4

5

6

7

A0

A1

A2

D1 D0

8x2 Mem.

CLK

D

Q

CLK

D

Q

CLB

01 01

B
A

L

LBA
...

...

C

To / from

N SM

Switch

Matrix

(SM)

CLB

CLB

To / from E SM

A B

D

E

F

0 1

1 0

0 1

1 0

0 1

1 0

0 1

1 0

0 0

0 1

0 1

1 0

1 0

1 1

1 1

0 0

Q0

0

0

Ci

Q1

Q2

0 111

Q1Q2 Q0Ci

0

0 0 Q0

Ci Q0

Ci

Q1

Q2

Q1

Q2

A = 000

D = 011

E = 100

X = XXX

X = XXX

B = 001

2-8.36

Implementation

• ASIC’s
– Use the CAD tools to synthesize and route a “netlist”

• Synthesis = Takes logic description or logic schematic & converts to transistor
level gates

• Place and Route = Figure out where each gate should go on the chip)

– Final “netlist” is sent to chip maker for production

– Fabrication is very expensive (> $1 million) so get your design right the first
time.

• FPGA’s
– Synthesis converts logic description to necessary LUT contents, etc.

– Place and route produces a configuration for the FPGA chip

– Can reconfigure FPGA as much as you like, so less important to get it right
1st time

2-8.37

ASIC’s vs. FPGA’s

• ASIC’s

– Faster

– Handles Larger Designs

– More Expensive

– Less Flexible (Cannot be
reconfigured to perform
a new hardware
function)

• FPGA’s

– Slower (extra logic to
make it reconfigurable)

– Smaller Designs

– Less Expensive

– Extremely Flexible

2-8.38

Xilinx Spartan 3E

Digilent Nexys-2 Board

• Has a Xilinx Spartan 3E FPGA
(XC3S500e)

• 500K gate equivalent

• 9312 D-FF’s on-board

On-board I/O

• (4) 7-Segment Displays

• (8) LED’s

• (4) Push Buttons

• (8) Switches

2-8.39

Latest FPGA's

• SoC design (Xilinx Kintex [KU115])

– Quad-Core ARM cores

– DDR3 SDRAM Memory Interface

– ~800 I/O Pins

– Equiv. ~15M gate equivalent FPGA fabric

• ~1M D-FFs + 552K LUTs

• 1968 dedicated DSP "slices" 18x18 multiply + adder

• 34.6 Megabits of onboard Block RAMs

