
2-5.1

Spiral 2-5

Sequential Logic Constructs

2-5.2

Learning Outcomes

• I understand how a bistable works

– I understand how a bistable holds, sets, and resets

• I understand the issues that glitches pose to

bistables and the need for latches

• I understand the difference between level-

sensitive and edge-sensitive

• I understand how to create an edge-triggered

FF from 2 latches

2-5.3

BISTABLES, LATCHES, AND FLIP-

FLOPS

How sequential building blocks work

2-5.4

Sequential Logic

• Suppose we have a sequence of input numbers on X[3:0] that

are entered over time that we want to sum up

• Possible solution: Route the outputs _________________ so

we can add the current sum to the input X

9, 3, 2
X[3:0]

14,5,2
Z[3:0]

A0

A1

A2

A3

B0

B1

B2

B3

S0

S1

S2

S3

‘283

2-5.5

Sequential Logic

• Problem 1: No way to

• Problem 2: Outputs can

___________________ to

inputs and

be added ______________

per input number

Possible Solution

Outputs can feedback to
inputs and update them
sum more than once per

input

A0

A1

A2

A3

B0

B1

B2

B3

S0

S1

S2

S3

‘283

X0

X1

X2

X3

Z0

Z1

Z2

Z3

9, 3, 2

2-5.6

Sequential Logic

• Add logic at outputs to just capture and remember the new

sum until we’re ready to input the next number in the

sequence
This logic should remember (i.e.

sequential logic) the sum and only
update it when the next number arrives

9, 3, 2

The data can still loop
around and add up again

(2+2=4) but if we just

hold our output = 2 then
the feedback loop will be

broken

We remember initial sum
of 2 until input 3 arrives

at which point we’d
capture & remember the

sum 5.

A0

A1

A2

A3

B0

B1

B2

B3

S0

S1

S2

S3

‘283

X0

X1

X2

X3

Z0

Z1

Z2

Z3

2-5.7

Sequence Adder

• If X changes _______________ then Z should also

change ________ per cycle

• That is why we will use a register (flip-flops) to

ensure the outputs can only update _______ per

cycle

A0

A1

C0

A2

A3

B0

B1

B2

B3
C4

S0

S1

S2

S3

‘283

X0

X1

X2

X3

D Q

D Q

D Q

D Q

Clock

Y0

Y1

Y2

Y3

Z0

Z1

Z2

Z3

0

Clear

2-5.8

Sequence Adder

time

• The 0 on Clear will cause Z to be initialized to 0, but then Z
can’t change until the next positive edge

• That means we will just keep adding 0 + 2 = 2

X 2

Clock

3 9

Clear

Y

Z

2

0

2 0

0

2
A0

A1

C0

A2

A3

B0

B1

B2

B3
C4

S0

S1

S2

S3

‘283

X0

X1

X2

X3

D Q

D Q

D Q

D Q

Clock

Y0

Y1

Y2

Y3

Z0

Z1

Z2

Z3

0

Clear

2-5.9

Sequence Adder

time

• At the edge the flip-flops will sample the D inputs and then
remember 2 until the next positive edge

• That means we will just keep adding 3 + 2 = 5

X 2

Clock

3 9

Clear

5 2

2

3

Y

Z

2 5

0 2

A0

A1

C0

A2

A3

B0

B1

B2

B3
C4

S0

S1

S2

S3

‘283

X0

X1

X2

X3

D Q

D Q

D Q

D Q

Clock

Y0

Y1

Y2

Y3

Z0

Z1

Z2

Z3

0

Clear

2-5.10

Sequential Logic

• But how do flip-flops work?

• Our first goal will be to design a circuit that

can remember one bit of information

• Easiest approach…

• But how do you change the input?

– A signal should only have one driver

2-5.11

SET/RESET BISTABLES

2-5.12

RS (or SR) Bistable

• Terminology

– _______ = Force output to 1

– _______ = Force output to 0

• Set/Reset Bistable Circuit

– A circuit that can set or reset its output…

– …but then can remember its current output value

once the inputs are removed

on

off

R

S Q

Q’

SR

Bistable

2-5.13

RS (SR) Bistable

• Cross-Connected NOR
gates (outputs feed
back to inputs)

• When Set = 1, Q should
be forced to ___

• When Reset = 1, Q
should be forced to ___

• When neither are 1, Q
should _________ at its
present value

R

S

Q

Q’

2-5.14

RS (SR) Bistable

S R Q Q’

0 0

1 0

0 1

1 1

0

0

Q and Q’

feed back

1

R

S

Q

Q’

Always start your analysis

from the output Q and cycle

it around the loop

2-5.15

RS (SR) Bistable

S R Q Q’

0 0 Q0 Q0’

1 0

0 1

1 1

1

0
R

S

Q

Q’

2-5.16

RS (SR) Bistable

S R Q Q’

0 0 Q0 Q0’

1 0 1 0

0 1 0 1

1 1

0

1
R

S

Q

Q’

2-5.17

RS (SR) Bistable

S R Q Q’

0 0 Q0 Q0’

1 0 1 0

0 1 0 1

1 1

1

1

•1,1 combination violates the _____________

R

S

Q

Q’

2-5.18

RS (SR) Bistable

S R Q Q’

0 0 Q0 Q0’

1 0 1 0

0 1 0 1

1 1 0

(illegal)

0

(illegal)

1

1

0

0

0 feeds

back

•It cannot be “remembered”…meaning as

soon as R or S goes to 0 then it will set and

reset; if R and S goto 0 at the same instant,

then we will have unpredictable behavior

R

S

Q

Q’

0

0

2-5.19

Another Waveform

• Waveform for an SR bistable with active-hi

inputs (cross-connected NOR gates)

2-5.20

Criteria for a Bistable

1. Able to independently ___________ => Force Q=1

2. Able to independently ___________ => Force Q=0

3. Able to _______________________ => Q = Q0

2-5.21

Exercises

• Complete the waveforms below for an RS

bistable with active hi inputs

S

R

Q

Q’

S

R

Q

Q’

2-5.22

MOTIVATION FOR LATCHES

A problem with bistables

2-5.23

Problem w/ Bistables

• Bistables will remember

input values whether

we ________________

• Imagine we connect the

Set input to the output

of a comparator to

check if any number in

a sequence is > 10 and

then remember that

X

10

OA<B

OA>B

OA=B

74LS85

A0

A1

A2

A3

B0

B1

B2

B3

IA<B

IA>B

IA=B

R

S

Q

Q’

Start_of_Sequence

RS

Bistable

F

0
0
1

2-5.24

Problem w/ Bistables

• When inputs change in a

combinational circuit, the

outputs may transition back

and forth between 1 and 0

• This is called a “________”

and is caused due to the

propagation delay of the

________________ logic

X

10

OA<B

OA>B

OA=B

74LS85

A0

A1

A2

A3

B0

B1

B2

B3

IA<B

IA>B

IA=B

R

S

Q

Q’

Start_of_Sequence

RS

Bistable

F

0
0
1

2-5.25

Problem w/ Bistables

• Suppose we get a

sequence: 2,6,7

• At the end Q should still

= 0 since no numbers >

10

• However, if when the

inputs change a small

glitch occurs on A>B,

the bistable will

___________________ Glitch causes Q to

be set

X

OA>B

Q

2 6 7

X

10

OA<B

OA>B

OA=B

74LS85

A0

A1

A2

A3

B0

B1

B2

B3

IA<B

IA>B

IA=B

R

S

Q

Q’

Start_of_Sequence

RS

Bistable

F

0
0
1

2-5.26

Problem w/ Bistables

• Output should have

been 0 at end of

sequence

• Problem: Glitch was

remembered

• Need some way to

__________ inputs until

they are _______ and

Glitch causes Q to

be set

X

OA>B

Q

2 6 7

X

10

OA<B

OA>B

OA=B

74LS85

A0

A1

A2

A3

B0

B1

B2

B3

IA<B

IA>B

IA=B

R

S

Q

Q’

Start_of_Sequence

RS

Bistable

F

0
0
1

2-5.27

Clock Signals

• A clock signal is an alternating sequence of 1’s and 0’s

• It can be used to help ignore the inputs of a bistable when there

might be glitches or other invalid values

• Idea:

– When clock is 0, ignore inputs

– When clock is 1, respond to inputs

Sample Clock Signal

0

1

0

1

0

1

0

1

0

1

0

1

t = 0 ms 1 ms 2 ms 3 ms 4 ms 5 ms

f = 1 kHz

2-5.28

Latches

• Latches are bistables that include a new __________

• The clock input will tell the latch when to ________

the inputs (when C=0) and when to ___________ to

them (when C=1)

RS Bistable

RS Latch

R

S

Q

Q’

C

R Internal

S Internal

2-5.29

Latches

RS Latch
(C=0)

0

RS Latch
(C=1)

0

0

Q

Q’

C=0 causes S=R=0 and thus

Q and Q’ remain unchanged

C=1 allows S,R to pass and

thus Q and Q’ are set, reset

or remain unchanged based

on those inputs

1

R

S

R

S

Q

Q’

C

R

S

Q

Q’

C

2-5.30

SR-Latch

• When C = 0, Q holds (remembers) its value

• When C = 1, Q responds as a normal SR-bistable

CLK S R Q Q’

0 x x Q0 Q0’

1 0 0 Q0 Q0’

1 1 0 1 0

1 0 1 0 1

1 1 1 illegal

R

S

C

Q

Q’

2-5.31

SR-Latch

CLK S R Q Q’

0 x x Q0 Q0’

1 0 0 Q0 Q0’

1 1 0 1 0

1 0 1 0 1

1 1 1 illegal

S=1,R=0 causes Q=1

S=0,R=1
causes Q=0

S=1,R=0
causes Q=1

When C=0, Q holds its value

R

S

C

Q

Q’

CLK

Q

S

R

2-5.32

RS (SR) Latches

C S R Q Q’

0 x x Q0 Q0’

1 0 0 Q0 Q0’

1 1 0 1 0

1 0 1 0 1

1 1 1 illegal illegal

When C=0, ignore inputs

When C=1,

outputs

change based

on inputs

S

R

Q

Q

CLK

R

S

C

Q

Q’

SR

Latch

2-5.33

Solution with Latches

• C = ___ when _______

change

– In fact, in a real digital

system, it is C’s transition to 0

that triggers the inputs to

change

– Glitches occur during this

time and are filtered

• When C = 1, inputs are

stable and no glitches will

occur

Glitch gets filtered in

latch because C=0

2-5.34

MOTIVATION FOR D-LATCHES

2-5.35

Adding a Sequence of Numbers

• Back to our example of adding a sequence of numbers

– RS latches require 2 inputs (S,R) per output bit Q

– In this scenario, we only have 1-bit of input per output

– We’ll modify an SR latch to become a latch that can remember 1 input

bit This logic should remember (i.e.
sequential logic) the sum and only

update it when the next number
arrives

9, 3, 2

Just remember initial
sum of 2 until 3 arrives.

The data can still loop
around and add up again

(2+2=4) but if we just
remember our output = 2
then the feedback loop

will be broken

A0

A1

A2

A3

B0

B1

B2

B3

S0

S1

S2

S3

‘283

X0

X1

X2

X3

Z0

Z1

Z2

Z3

2-5.36

D-Latches

• D-Latches (Data latches) ______ data when the clock

is ______ and ______ data when the clock is _____

• D-Latch is just an SR Latch with the D-input run into

the S-input and __________ into the R-input

D-Latch

S

CP

Q

QR

D

CP

Q

Q

2-5.37

D-Latches

C D Q Q’

0 x Q0 Q0’

1 0 0 1

1 1 1 0

Hold Mode

Hold Mode

Transparent

Mode

D

C

Q

Q’

D Latch

2-5.38

D-Latches

• When C = 0, Q = Q0

– Hold mode => Q stays the same

• When C = 1, Q = D

– Transparent mode => Q follows D

2-5.39

Bistables vs. Latches

Latches

• Clock/Gate/Enable

input

– outputs can only change

during clock high/low

time

Bistables

• No clock input

– outputs can change

anytime the inputs

change (including

glitches)

2-5.40

Notation

• To show that Q remembers its value we can put

it in the past tense:

– Q = Q0 (Current Value of Q = Old Value of Q)

• OR put it in the future tense

– Q* = Q (Next Value of Q = Current Value of Q)

C D Q* Q’*

0 x Q Q’

1 0 0 1

1 1 1 0

C D Q Q’

0 x Q0 Q0’

1 0 0 1

1 1 1 0

Indicates “next-value”

of Q

Current Value = Old Value Next Value = Current Value

2-5.41

Adding a Sequence of Numbers

• Suppose we have a sequence of numbers that comes in over

time that we want to sum up

• Possible solution: Route the outputs back to the inputs so we

can add the current sum to the input X

• Problem 1: No way to

initialize sum

• Problem 2: Outputs can

race around to inputs and

be added more than once

per input number

Possible Solution

Outputs feedback to inputs
and update them sum more

than once per input

9,3,2
A0

A1

A2

A3

B0

B1

B2

B3

S0

S1

S2

S3

‘283

X0

X1

X2

X3

Z0

Z1

Z2

Z3

2-5.42

Adding a Sequence of Numbers

• Add logic at outputs to just capture and remember the new

sum until we’re ready to input the next number in the

sequence
This logic should remember (i.e.

sequential logic) the sum and only
update it when the next number arrives

9, 3, 2

Just remember initial
sum of 2 until 3 arrives.

The data can still loop
around and add up again

(2+2=4) but if we just
remember our output = 2

then the feedback loop
will be broken

A0

A1

A2

A3

B0

B1

B2

B3

S0

S1

S2

S3

‘283

X0

X1

X2

X3

Z0

Z1

Z2

Z3

2-5.43

Adding a Sequence of Numbers

• What if we put D-Latches at the outputs

A0

A1

A2

A3

B0

B1

B2

B3

S0

S1

S2

S3

‘283

X0

X1

X2

X3

D

C

Q

D

C

Q

D

C

Q

D

C

Q

Clock

Y0

Y1

Y2

Y3

Z0

Z1

Z2

Z3

2-5.44

Adding a Sequence of Numbers

• Since the clock starts off low, the outputs of the

latches can’t change and just hold at 0

Clock

X 32

When C=0 => Q* = Q
When C=1 => Q* = D

0

2Y

Z

2

2 0

time

A0

A1

A2

A3

B0

B1

B2

B3

S0

S1

S2

S3

‘283

X0

X1

X2

X3

D

C

Q

D

C

Q

D

C

Q

D

C

Q

Clock

Y0

Y1

Y2

Y3

Z0

Z1

Z2

Z3

2-5.45

Adding a Sequence of Numbers

• This feedback loop continues until the clock goes

low again

Clock

X 32

When C=0 => Q* = Q
When C=1 => Q* = D

0

2Y

Z

2

6

time

2

6

4

4

8

6

6 8

8

A0

A1

A2

A3

B0

B1

B2

B3

S0

S1

S2

S3

‘283

X0

X1

X2

X3

D

C

Q

D

C

Q

D

C

Q

D

C

Q

Clock

Y0

Y1

Y2

Y3

Z0

Z1

Z2

Z3

2-5.46

Adding a Sequence of Numbers

• When the clock goes low again, the outputs will hold at their

current value 8 until the clock goes high

Clock

X 32

When C=0 => Q* = Q
When C=1 => Q* = D

0

2Y

Z

3

8

time

2

8

4

4

11

6

6 8

8

11

A0

A1

A2

A3

B0

B1

B2

B3

S0

S1

S2

S3

‘283

X0

X1

X2

X3

D

C

Q

D

C

Q

D

C

Q

D

C

Q

Clock

Y0

Y1

Y2

Y3

Z0

Z1

Z2

Z3

2-5.47

Adding a Sequence of Numbers

• Latches clearly don’t work

• The goal should be to get one change of the outputs per

clock period

When C=0 => Q* = Q
When C=1 => Q* = D

3

8

time

8

11

X 32

0 2 4 6

2 4 6 8Y

Z

11 14 17 20

8 11 14 17 20

Clock

A0

A1

A2

A3

B0

B1

B2

B3

S0

S1

S2

S3

‘283

X0

X1

X2

X3

D

C

Q

D

C

Q

D

C

Q

D

C

Q

Clock

Y0

Y1

Y2

Y3

Z0

Z1

Z2

Z3

2-5.48

FLIP-FLOPS

2-5.49

Flip-Flops vs. Latches

Flip-Flops

• Synchronous

• Clock Input

• Edge-Sensitive

– Outputs change

only on the

positive

(negative) edges

Latches

• Asynchronous

• Clock/Enable input

• Level Sensitive

– Outputs can change

anytime Clock = 1

Bistables

• Asynchronous

• No clock input

S

CLK

Q

Q
R

S Q

R Q’

S

C

Q

R Q’

2-5.50

Flip-Flops

• Change D Latches to D Flip-Flops

• Change SR Latches to SR Flip-Flops

Triangle at clock
input indicates edge-

sensitive FF

D

C

Q

Q

D-Latch

R

S

C

Q

Q’

SR-

Latch

S Q

Q
R

CLK

SR-FF

D Q

QCLK

D-FF

2-5.51

Flip-Flops

• To indicate negative-edge triggered use a bubble in

front of the clock input

Bubble indicates
negative-edge

triggered

No bubble indicates
positive-edge

triggered

Positive-Edge Triggered
D-FF

Negative-Edge Triggered
D-FF

D Q

QCLK

D-FF

D Q

QCLK

D-FF

2-5.52

Positive-Edge Triggered D-FF

• Q looks at D only at

the positive-edge
CLK D Q* Q’*

0 x Q Q’

1 x Q Q’

↑ 0 0 1

↑ 1 1 0

Q only samples D at the positive edges and then
holds that value until the next edge

CLK

D

Q

2-5.53

Shift Register

• A shift register is a device that acts as a

‘queue’ or ‘FIFO’ (First-in, First-Out).

• It can store n bits and each bit moves one step

forward each clock cycle

– One bit comes in the overall input per clock

– One bit ‘falls out’ the output per clock

2-5.54

Shift Register

2-5.55

BUILDING A FLIP FLOP

2-5.56

Master-Slave D-FF

• To build an edge-triggered D-FF we can use two

D-Latches

D

C

Q

Clock

Q

Q ’

D

C

Q

Q ’ Q ’

D

Master Slave

These 2 latches form a flip-flop

2-5.57

Complete the Waveform

D

C

Q

Clock

Q

Q’

D

C

Q

Q’ Q’

D
Master Slave

2-5.58

Master-Slave D-FF

• To implement a positive edge-triggered D-FF

change the __________________

__________-Edge Triggered __________-Edge Triggered

D

C

Q

Clock

Q

Q’

D

C

Q

Q’ Q’

D
Master Slave

D

C

Q

Clock

Q

Q’

D

C

Q

Q’ Q’

D
Master Slave

2-5.59

ASYNCHRONOUS VS.

SYNCHRONOUS PRESET & CLEAR

2-5.60

Synchronous vs. Asynchronous

• The preset and clear inputs can be built to be synchronous or

asynchronous

• These terms refer to when the initialization takes place

– Asynchronous…initialize when ___________________

– Synchronous…initialize at ________________

AsynchronousSynchronous

Clock

Q’s

Clock

/CLR

Q’s

Synchronous /PRE or /CLR

means the signal must be

active at a clock edge before

Q will initialize

/CLR

Asynchronous /PRE or /CLR

means Q will initialize as soon

as the /PRE or /CLR signal is

activated

2-5.61

Preset / Clear Example

• Assume an asynchronous Preset and Clear

2-5.62

Preset / Clear Example

• Assume an synchronous Preset and Clear

