| USCViterbi@

School of Engincering

Spiral 2-5

Sequential Logic Constructs

| USCViterbi

Learning Outcomes

| understand how a bistable works
— | understand how a bistable holds, sets, and resets

| understand the issues that glitches pose to
bistables and the need for latches

| understand the difference between level-
sensitive and edge-sensitive

| understand how to create an edge-triggered
FF from 2 latches

| USCViterbi@

School of Engincering

How sequential building blocks work

BISTABLES, LATCHES, AND FLIP-
FLOPS

| USCViterbi

Sequential Logic

* Suppose we have a sequence of input numbers on X[3:0] that
are entered over time that we want to sum up

* Possible solution: Route the outputs SO
we can add the current sum to the input X

A0 S0
A1
X[3:0] — A2 —_— .
3l 9 3 2 A3 g3 St 14,5,2 Z[3:0]
B0 s

B1
B2

S3|
B3

| USCViterbi@
Sequential Logic

School of Engincering

* Problem 1: No way to

* Problem 2: Outputs can

to
. Possible Solution
inputs and
X0 A0 S0 20
—_ Xt At
be added 9,32 x—lo
. X3 A3, s1 z
per input number 23
B0 S 72
B1
B2
& S S
Outputs can feedback to ‘ﬂ>
inputs and update them
sum more than once per

input

| USCViterbi
Sequential Logic

School of Engincering

* Add logic at outputs to just capture and remember the new
sum until we're ready to input the next number in the

sequence o _
This logic should remember (i.e.
sequential logic) the sum and only
update it when the next number arrives
7
X0 A0 SO Z0
9 3 2 X1 Al

7w X2 A2 St o

X3 A e

The data can still loop
B0 s2 72 around and add up again
(2+2=4) but if we just
hold our output = 2 then
S3 Z3 the feedback loop will be

B3 broken
We remember initial sum

of 2 until input 3 arrives
at which point we’d
capture & remember the
sum 5.

S —— 5 Viterh{ 22
Sequence Adder

* |f X changes then Z should also

change per cycle

* That is why we will use a register (flip-flops) to
ensure the outputs can only update per
cycle

‘283

i

B0 so—2 Da

B1
B2 Y3
B3

Z2

L3

Z3

C4

1

Cloc Clear

USC ViterbiC2e®

School of Engincering

Sequence Adder

* The 0 on Clear will cause Z to be initialized to 0, but then Z
can’t change until the next positive edge

* That means we will just keep adding0+2 =2

o]
co

X0 A0 so—¥° w 20 time ——=—-- N
2 x1 Al oD
S DQ
X3 A3 s 2 0 Clock
Y2

FQED:‘“ 72
BO DQ
B1 > ,QM Clear
B2 Y3 Z3
3
0 83 S DQ

c4

| Clocl Clear

S — 5 Viterh{ 22
Sequence Adder

* At the edge the flip-flops will sample the D inputs and then
remember 2 until the next positive edge

* That means we will just keep adding3+2=5

o]

Cco
3 o so—>—Da|- = fiMe ————-mmmmm - o
X2 A2 Y1 Z1
R X - 5 o LI LI
Y2 Z2
B s *EQ Clear
2 B2 s Y3 Da Z3
= . T & x X ZX XX
| Cloc Clear
Y
z X_0 X_2)

S 15 Vitcrh{ 22>
Sequential Logic

But how do flip-flops work?

Our first goal will be to design a circuit that
can remember one bit of information

Easiest approach...

But how do you change the input?
— A signal should only have one driver

| USCViterbi@

School of Engincering

SET/RESET BISTABLES

| USCV1terb1
RS (or SR) Bistable

* Terminology
- = Force output to 1 1T

- = Force output to O _RBiStableo‘_

e Set/Reset Bistable Circuit
— A circuit that can set or reset its output...

— ...but then can remember its current output value
once the inputs are removed

on2

01;&

| USCV1terb1@

RS (SR) Bistable

* Cross-Connected NOR B
gates (outputs feed
back to inputs)

* When Set =1, Q should s
be forcedto

* WhenReset=1,Q
should be forcedto

* When neitherare 1, Q
should atits
present value

School of Eng

| USCV1terb1.

RS (SR) Bistable

School of Eng

Always start your analysis
from the output Q and cycle
it around the loop

S R Q Q 0
0 0 R
110 DQanda
0 1 feed back
1 1

S

0

| USCVlterbl@

RS (SR) Bistable

Q Qy

s |lo|=|o|lw
—a|lalo|lo|D

School of En

| USCV1terb1.

RS (SR) Bistable

s | R Q Q 1
o o Q, Qy i
1] o 1 0
o] 1 0 1
1] 1
S

School of En

I (]S Viterhi@ D N (/S ViterbiCo)

School of Engincering School of Engincering

RS (SR) Bistable RS (SR) Bistable

S R Q Q 1 S R Q Q +0 0
0 0 Qo Qy’ R Q 0 0 Qo Qo R Q
1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1 0 feeds
1 1 , 1 1 0 0 back ,
S Q (illegal) | (illegal) S o @
1 40
1,1 combination violates the «It cannot be “remembered”...meaning as
soon as R or S goes to 0 then it will set and
reset; if R and S goto 0 at the same instant,
then we will have unpredictable behavior
| USCVite,rbi@ | USCX/ite;bi
Another Waveform Criteria for a Bistable
» Waveform for an SR bistable with active-hi 1. Able to independently => Force Q=1
inputs (cross-connected NOR gates) 2. Able to independently => Force Q=0
3. Ableto =>Q=Q,
s_ [
R
Q

] USC\ﬁte;bi@
Exercises

* Complete the waveforms below for an RS
bistable with active hi inputs

s_,—l sm
: e I e i B

| USCViterbi

School of Engincering

A problem with bistables

MOTIVATION FOR LATCHES

R 5 C Viterb{ €22
Problem w/ Bistables

e Bistables will remember st o Soqvors

input values whether

we X4 | L
* Imagine we connect the ; . b

Set input to the output 1 OZZi o |-

of a comparator to 18 E

check if any number in C

a sequence is > 10 and *2:(“:‘”,(“ . IB

Xx>10 1 [!
then remember that ngeﬁ ' F'i
Foi

| USCYE‘FErbl
Problem w/ Bistables

* When inputs change in a
combinational circuit, the

Start_of_Sequence

outputs may transition back X mh]
and forth between 1 and 0 ar O (— A
e Thisis called a “ " 1 OE rases One s "o b
and is caused due to the —e, one
propagation delay of the o Ju
logic 1 T —
X * 8 'X 3 XI 12 5 7 E]
S N e W
. !
Al e
F : :

 EEm——
Problem w/ Bistables

* Suppose we get a
sequence: 2,6,7

Start_of_Sequence

- AttheendQshouldstill XJ: | L <}
= 0 since no numbers > ::g - |
10 10:32 on |-

» However, if when the 185
inputs change a small
glitch occurs on A>B, X _2 X 6 X 7
the bistable will Ouns |

I (IS Virerbi 22
Problem w/ Bistables

* Qutput should have
been 0 at end of

Start_of_Sequence

sequence X) ——
. ™ “r RS
* Problem: Glitch was 1035 e e |
remembered s L
0 — he
* Need some way to 0
______inputs until
theyare and X I G G
OA>B :”‘
Q i
Glitch causes Q to
be set

| USCViterbi@

Clock Signals

* A clock signal is an alternating sequence of 1’s and 0’s

* |t can be used to help ignore the inputs of a bistable when there
might be glitches or other invalid values

* lIdea:
— When clock is 0, ignore inputs
— When clock is 1, respond to inputs

Sample Clock Signal

1 1 1 1 1 1

f=1kHz
0 0 0 0 0 0

t=0ms 1ms 2ms 3ms 4ms 5ms

] USCX&teri
Latches

e Latches are bistables that include a new

* The clock input will tell the latch when to
the inputs (when C=0) and when to to
them (when C=1)

RS Bistable

R Internal

RS Latch

USC Viterbi@2>
School of Engineering
RS Latch RS Latch
(C=0) (C=1)
H R
Q
1
C
Q
S
C=0 causes S=R=0 and thus C=1 allows S,R to pass and
Q and Q’ remain unchanged thus Q and Q’ are set, reset

or remain unchanged based
on those inputs

] USCX&terbi
SR-Latch

* When C=0, Q holds (remembers) its value
* When C=1, Qresponds as a normal SR-bistable

CLK S R Q Q
- Q— 0 X X Q Qy
] 1 0 0 Q, Qy
1 1 0 1 0
— Qr— 1 0 1 0 1
1 1 1 illegal

I USC Viterbi 22
SR-Latch

CLK S R Q Q
— S Q— 0 X X QO QO,
p— 1 0 0 Qo Q,
) 1 1 0 1 0
i @ 1 0 1 0 1
1 1 1 illegal
CLK I St s N S
s I
S=1,R=0 causes Q=1 (.
R <S=0,R=1 causes Q=1
causes Q=0 \

—_ =~ —

When C=0, Q holds its value

e USCV1terb1
RS (SR) Latches

C|S|R Q Q
— S Qf— 0] x | x Q Qy
_1~ SR 1]1olo] Q Qy
CLat‘ch . .
_lg ol— 1 1 0 1 0
1 01 0 1
1 1| 1| illegal | illegal
When C=0, ignore inputs
x| A Sgligs
“ \ b
s /,.\ [T\ / \ N
When C=1, _B2 ==Ji —/ |\
outputs
change based @ / \
on inputs 2 \ /

| USCViterbi@

School of Engineering
Solution with Latches
e C= when _%
—_ Ay
change Xz ol
— Infact, in a real digital ::
system, it is C’s transition to O 10— ™= Owo S = =
that triggers the inputs to 1 : o = €1 Laten .
change o s statol |°___ [T
. . . 0 — los Sequence
— Glitches occur during this s

time and are filtered
* When C=1, inputs are
stable and no glitches will
occur

" Glitch gets filtered in
latch because C=0

| USCViterbi

School of Engincering

MOTIVATION FOR D-LATCHES

| USCViterbi@

School of Engincering

Adding a Sequence of Numbers

* Back to our example of adding a sequence of numbers
— RS latches require 2 inputs (S,R) per output bit Q
— Inthis scenario, we only have 1-bit of input per output
— We'll modify an SR latch to become a latch that can remember 1 input

bit This logic should remember (i.e.
4_/ sequential logic) the sum and only
X0 A0 SO 20 update it when the next number
R — .
9 3 2 X1 Al arrives
7w X2 A2
X3 A St Z1
283 Just remember initial
B0 s2 72 sum of 2 until 3 arrives.
B1 The data can still loop
B2 s3 73 around and add up again
B3 (2+2=4) but if we just
remember our output = 2
then the feedback loop
will be broken

] USCX&teri
D-Latches

* D-Latches (Data latches) data when the clock
is and data when the clock is

* D-Latch is just an SR Latch with the D-input run into
the S-input and into the R-input

D-Latch
____________ -
| [
D—L- s Q@
CP—+ —cp _ :_
: AR Q _l_Q

] USC\ﬁte;bi@
D-Latches

Hold Mode
—D Ql— C|D Q Q
’ Hold Mod
D Latch 0 x| Q | Q |Hodiode
110 0 1 Transparent
-°¢ o BEREE 0 Mode

Triggering Rule: The Q output follow the D input
D-LATCH (i.e. Q=D) when the clock or gate input is high (i.e.
; B the latch is enabled). When the latch is disabled
7475 Ai;éicgt/;’é%%;;n t (Clock = LOW) the output remains put.

p___ [TU L] IR
CLK
a___ U
\
0 1 2 3\Complete 6 7

waveform for Q

] USCX&te;bi
D-Latches

* WhenC=0,Q=0Q,
— Hold mode => Q stays the same
* WhenC=1,Q=D
— Transparent mode => Q follows D

R 5 C Viterb{€22
Bistables vs. Latches

Bistables Latches
* No clock input * Clock/Gate/Enable
— outputs can change input
anytime the inputs — outputs can only change
change (including during clock high/low
glitches) time

] USCWteri
Notation

* To show that Q remembers its value we can put
it in the past tense:
—Q=0Q, (Current Value of Q = Old Value of Q)

* OR putitin the future tense
— Q*'= Q (Next Value of Q = Current Value of Q)

Indicates “next-value”
of Q

clpflala clpola o
ol x[aqlay 0 Qla
1 0 0 1 1 0 0 1

1 1 1 0 1 1 1 0

Current Value = Old Value Next Value = Current Value

| USCViterbi@

School of Engincering

Adding a Sequence of Numbers

* Suppose we have a sequence of numbers that comes in over
time that we want to sum up

* Possible solution: Route the outputs back to the inputs so we
can add the current sum to the input X

* Problem 1: No way to Possible Solution

initialize sum x0——1{o 50 20
9,3,2 X1 Al
¢ Problem 2: Outputs can — e st 21
N ‘283
race around to inputs and o . 2
be added more than once = . ,
3
per input number 8 ‘)
Outputs feedback to inputs ‘ﬂ
and update them sum more
than once per input

| USCViterbi

School of Engincering

Adding a Sequence of Numbers

* Add logic at outputs to just capture and remember the new
sum until we're ready to input the next number in the

sequence o)
This logic should remember (i.e.
sequential logic) the sum and only
update it when the next number arrives
Vg
X0 A0 SO Z0
9 3 2 X1 Al
7w X2 A2
X3 A St z1
283 Just remember initial
B0 s2 72 sum of 2 until 3 arrives.
B1 The data can still loop
B2 s3 P around and add up again
B3 (2+2=4) but if we just
remember our output = 2
then the feedback loop
will be broken

| USCViterbi@

School of Engincering

Adding a Sequence of Numbers

* What if we put D-Latches at the outputs

Y — Z
X0 A0 S0 ° Da 0
X1 Al —I C
X2 A2 Y1 — 21
X3 A3 S1 Da
283 C
Y2 -1 z2
BO S DaQ
B1 9
22 an Y3 5a Z3
3
o |
Clock

| USCViterbi

School of Engincering

Adding a Sequence of Numbers

* Since the clock starts off low, the outputs of the
latches can’t change and just hold at O

X0 A0 so—"2 DQ 2
9 X A1 —l c
X2 A2 pm— ;
X St Y DQ zl time ----- »
3 A3
283 2 c 0
B0 so—"2 DQ z Clook |
B1 »—I c
B2 SR z3 x X 2 X 3 X
¢ y X_ =2

WhenC=0=>Q*=Q
WhenC=1=>Q*=D

| USCViterbi@

School of Engincering

Adding a Sequence of Numbers

* This feedback loop continues until the clock goes

low again
X0 A0 sol—Y0 5al 20
2 nT]
X3 A e st A go . time —------—=== o
B0 so—2 | Ioa} 22 Clock | [| L
2 - z x X 2 X 3 X
® v X2 XX
z

WhenC=0=>Q*=Q
When C=1=>Q*=D

| USCViterbi

School of Engincering

Adding a Sequence of Numbers

* When the clock goes low again, the outputs will hold at their
current value 8 until the clock goes high

YO — Z0
X0 A0 S0 DQ
3 X1 Al —lC
x2 A2 S A4l DQ 4] fime —=—ccccccccc e _,I
[9
ool 8 22 Clock | 1
C
5o} z x K2 3 X
8 e | M 0 0.C =
/ z X_ o 8

When C=0=>Q*=Q
WhenC=1=>Q*=D

| USCViterbi@

School of Engincering

Adding a Sequence of Numbers

* Latches clearly don’t work
* The goal should be to get one change of the outputs per

clock period
— 20

3 EZ EZ i Vi _IQ z)
X3 A3 st DQ time === = - - e e - N
o welom8lle o] | I
o ol s ’_l,%\, z x X 2 X 3 X
8 : v Xz T
z X_o 8 XX

WhenC=0=>Q*=Q
WhenC=1=>Q*=D

| USCViterbi

School of Engincering

FLIP-FLOPS

| USCViterbi@

Flip-Flo

School of Engincering

ps vs. Latches

Bistables Latches Flip-Flops
e Asynchronous * Asynchronous * Synchronous
¢ Noclock input * Clock/Enable input * Clock Input
+ Level Sensitive . Edge-Sensitive
— Outputs can change - Outputs change
anytime Clock = 1 only on the
positive
(negative) edges
=
s.l \s.
—S Q- —S Q- — S Qk
—C —>CLK
—R Q- R ol s -

| USCViterbi

School of Engincering
F I I F I

* Change D Latches to D Flip-Flops
* Change SR Latches to SR Flip-Flops

—/D QF —D Qr—
D-Latch - o, DFF_
_ I>EBLK Q—
— C Q — 2 N

Triangle at clock
input indicates edge-

sensitive FF SR-FF
—s o —S Qr—
SR-
—¢ Late ‘ > ek
1 R - e |
Q —R

| USCViterbi@

FI

School of Engincering

ip-Flops

* To indicate negative-edge triggered use a bubble in

front of the clock inp

Positive-Edge Triggered
D-FF

| D-FF
H>bk Q-

No bubble indicates

positive-edge
triggered

ut

Negative-Edge Triggered
D-FF

D-FF

iP>iclk Q-

§

Bubble indicates
negative-edge
triggered

USC Viterbi@®

School of Engincering

Positive-Edge Triggered D-FF

* Qlooks at D only at CLK

D [& | o
the positive-edge 0 X Q | @
1 X Q Q
1 0 0 1
1 1 1 0
CLK
o4 ULy U
a_ ¢ q {

Q only samples D at the positive edges and then
holds that value until the next edge

| USCViterbi@

Shift Register

* A shift register is a device that acts as a
‘gueue’ or ‘FIFO’ (First-in, First-Out).

* It can store n bits and each bit moves one step
forward each clock cycle
— One bit comes in the overall input per clock
— One bit ‘“falls out’ the output per clock

S7 S6 S5 S4 S3 S2 S1 S

0
Data during
1 clock i
Last
1

Data

Data during
clock i+1

Data In
=1

| USCViterbi

Shift Register

Qo Q1 Q2

DIN—D QF——D QF—D Q——D Q— @3
oo [[[[T
Shit Register w/ Latches

CLK
DN~]

Q0 __

Q1 __

Q2 __

Q3 __

USC Viterhi@s>

School of Engincering

BUILDING A FLIP FLOP

] USCV1terb1
Master-Slave D-FF

* To build an edge-triggered D-FF we can use two

D-Latches
T T
Two door system ?(?(
D D Q D al4 Q
Master Slave
C C
Q a’'li q
Clock >c

These 2 latches form a flip-flop

| USCViterbi@

Complete the Waveform

School of Engincering

D Q D
Master Slave
C C

Clocki

o 1 L] I

CLK

QMaster

QSIave

| USCViterbi

Master-Slave D-FF

School of Engincering

* To implement a positive edge-triggered D-FF

change the
D——D Q D aoH-Q D D Q D H-Q
Master Slave Master Slave
[c c c
Q QM Q Q QHq
Clock] ClocK
-Edge Triggered -Edge Triggered

| USCViterbi@

School of Engincering

ASYNCHRONOUS VS.
SYNCHRONOUS PRESET & CLEAR

| USCViterbi

School of Engincering

Synchronous vs. Asynchronous

* The preset and clear inputs can be built to be synchronous or
asynchronous

* These terms refer to when the initialization takes place
— Asynchronous...initialize when

— Synchronous...initialize at

Synchronous Asynchronous

Clock Clock
/CLR l /CLR
os MY as

Synchronous /PRE or /CLR Asynchronous /PRE or /CLR

means the signal must be means Q will initialize as soon

active at a clock edge before as the /PRE or /CLR signal is
Q will initialize activated

O {5 C Viterbi <22 I USC Viterbi 2%
Preset / Clear Example Preset / Clear Example
e Assume an asynchronous Preset and Clear e Assume an synchronous Preset and Clear
1 3 5 7 1 3 5 7
D T L] gl o 1T 1| U L
CLK | CLK
/CLR L /CLR i/
IPRE ~ _L [IPRE __/
Q _ Q _

