| USCViterbi@

School of Engincering

Spiral 2-4

Function synthesis with:
Muxes (Shannon's Theorem)
Memories

| USCV1terb1
Learning Outcomes

* | canimplement logic for any truth table by using Shannon's
theorem to decompose the function to create two smaller
functions and a 2-to-1 mux

— | can recursively apply Shannon's theorem k times to decompose any
size truth table to arrive at 2k smaller functions and a 2*-to-1 mux

* | canimplement logic for any truth table by using a memory
as a look-up table

— lunderstand how to determine the necessary dimensions of the
memory

— lunderstand how to reinterpret input combinations as address inputs
to determine the correct row to place the desired output

| USCViterbi@

School of Engincering

Function Synthesis Techniques

* Given a combination function (i.e.

XY Z|P
truth table or other description) e Pt
what methods can we use to arrive 01 0|1

. . ? 01 1|1
at a circuit: e lol o
J— 10 1|1
11 0f0
—_— 11 1|1
Primes between
0-7
— Neither of these to

larger number of inputs

* Now we will see a few others

| USCViterbi

School of Engincering

Implementing functions with muxes

SHANNON'S THEOREM

| USCViterbi@

Simplify This

* Given F(x,y,z) =x'yz +y’Z/,
simplify F(0,y,z) =

then simplify F(1,y,z) =

* Given G(a,b,c,d) = bd’ + ab’cd + ac’d’
G(1,1,c,d) =

USC Viterbi(+2
2-to-1 Mux: Another View

Old Views:

; INO|
if(s==0)
1 S Y Y = INO
0 (lo) else
} Y= INT

1-bit wide 2-to-1 IN1—|
mux

New View:

We can show the function of a

2-to-1 mux as a splitter where

the variable 's’' decides which
input passes upwards

| USCViterbi@

School of Engincering

3-bit Prime Number Function

XY Z[P XY zZ[P

00 0|0 oooo\

00 1|0 0 0 1[0Fy X

ol | ol a T ,?OFF-set

01 1|1 0 1 1|1RN y

110|0||¢ 100|0 ON-set z

10 11 10 1|1

11 0(0 11 0|0

11 11 11 11

Primes between Truth Table
0-7

if(z==0)

z —/>K output 0 !
else

0 1 output 1 -

USC ViterbiC2+®

School of Engincering

Function Implementation w/ Muxes

* Implementing a function using muxes relies is
based on Shannon’s expansion theorem which
states:

— F(X, Xy, X,) = X, 9F(0,X,,..., X)) + X, oF(1,X,,...,X,)
— X, can be pulled out of F if we substitute an appropriate
constant and qualify it with X;" or X;
* Now recall a 2-to-1 mux can be built as:
— F=Sely+Sel,
— Comparing the two equations, Shannon’s theorem says we
can use X, as our select bit to a 2-to-1 mux with

F(0,X,,...X,)) as input 0 of our mux and F(1,X,,...,X,,) as input
1

USC ViterbiCz+2

School of Engincering

Binary Decision Trees & Muxes

F(x,y,2)

0 1

B B O O|=<
= B O O|m

2) F(0,1,2)

, O O +» r»r O o<
o B O B O +» O|N

» O B O B B O Ofm

o
o

F(x,y,2)

B B O O|=<
» O r»r O|N
» O B Oo|m

F(1,y,2)

F(1,1,2)

| IJS(:Xﬁteﬂj!;II’
Splitting on X

* We can use smaller x|vl|lz]|F
muxes by breaking the
. o|0]oO
truth table into fewer
disjoint sets 0 o1
— This increases the 110]1
amount of logic at the .
inputs though 11110
* Break the truth table ofof1
into groups based on ¥
01 1
some number (k) of 1 ,
MSB's e Fon the selects.
* For each group, 1] 1]
describe F as a function
of the
n-k LSB’s

I USC Viterbi
Implement G

X|vy|z]|a

olofo

ofl1]o

0101

1111 G
olofo

of1]1 X
1

11o]f1

111]o0

| IJS(:&EEEifS;I!'
Shannon’s Theorem

* F(X,X,,...X,) = X,"®F(0,X,,....X,) + X;*F(1,X,,...,X,)

* Now recall a 2-to-1 mux can be built as:
— F=S"ely+Sel;
— Comparing the two equations, Shannon’s theorem says we can use X;
as our select bit to a 2-to-1 mux with F(0,X,,...X,)) as input 0 of our mux
and F(1,X,,...,.X,) as input 1
* We can recursively apply Shannon’s theorem to pull
out more variables:
— F(X1, Xy, X,) =
X,'X,’*F(0,0,...,X,) + X;"X,*F(0,1,...,X,) +
X X, *F(1,0,...,X,) + X, X,*F(1,1,...X,) +

I (]S Viterhi @1 I (/S ViterbiC

School of Engincering School of Engincering

Additional Logic More Practice

F(x,y,z) can be
broken into several

* Muxes allow us to break a x|v|z|F disjoint functions xlvlzla
function into some number of ol o [JF@
smaller, disjoint functions 00 00 of°
* Use MSB’s to choose which e . o
small function we want ol 1| 4F@ ol 1
. . 01
* By including the use of 1o 01 NP
inverters we can use a mux 1 F,(2)
with n-1 select bits (given a 10 “ 10 0
function of n-var’s) 1] 1 1]
* Break the truth table into ofof fF@ o 4
groups of 2 rows 11 v 11
. T Put the n-1 1]o
* For each group, put Fin terms MSB’s on the
of: Z, Z', 0,orl selects
| USCViterbi@ | USCViterbi

School of Engincering School of Engincering

As Far as We like Splitting on Z -

X

* We can take this tactic all X|Y|Z|F * We can always rearrange our
the way down and use ONLY ololo lod+— O—N variables if it helps make the
a mux to implement any ol 1—® function simpler to implement z
function 1
—D,
* Connect the input variables o1 fof1 1 T+
to the select bits of the mux o i 7 [o}—0—0 X[Y|z|F
: YI—F o|lo]o ojofo
* The output of the muxis o o 1—1—o T z
the output of the function . —1s 0 R 0 x
s 5 0
* Whatever the output N I P t]ojgo 1o
should be for each input 11]ofot—0 " S 1]1]1 L v
value, attach that to the I e e B e olofo 0|01
input of the mux Xyz o1l of1]1
1 1
11olo 1]0]1 ,
1 1 1 1 1 1

I (]S Viterhi D I (/S ViterbiC D)

School of Engincering School of Engincering

Implementing Logic Functions Implementing an Initial State

* We can use muxes to implement any arbitrary

* Since the NSL is just a combinational function of the
logic function

current state and inputs, we can use Shannon's

— Choose one variable to the large function theorem (i.e. muxes)to find an implementation
into two smaller functions: and rather than K-Maps
s - JNezt,S’\t‘gSlle:L,ogicL .
. . T | o,
— A 2-to-1 mux will produce the bit and ot ——— OFL
n Al H H | ! (Sta1eSMNL‘emory) Funé?grgpt‘égic)
the chosen "split" variable will be the awn A s T
. | | ; DPREQ h o) ; |
— Implement f(0,x2,x3,...) using any known method b i e 1 '
. RESET +—
and connect it to of the 2-to-1 mux . 1
DPREQ (1 |
. | | |
— Implement f(1,x2,x3,...) using any known method oK b || oo
. I__ _meser _ |
and connect it to of the 2-to-1 mux
Current State Feedback
| USCWterbi@ | USCX/iterbi
Example 1 Example 2

* Implement D1 and DO using (2) 4-to-1 muxes with

* Implement D1 & DO using 2-to-1 muxes with S as the select Q1,00 as the selects

Current Stat Next State Output Next Stat
urren ate utpu ex ate
S=0 S=1 P Current Output
State S=0 S=1
Q1*= | Q0*= Q1* | Qo*
State Q | Q State D1 Do State _D1 | Do A State | Q, | Q, | State | @, | Q" | state | @,* | @ | ssa MTG MSG
SS 0[O0)| MS | 1 0 MT 1 1 1 0 0
Go1 0 0 G00 1 1 G10 0 1 1
NA |O0]| 1 X d d X d d d d d
G10 0 1 Go1 0 0 G11 1 0 1 Mt |11 ms|1lolms|i1]o 0 1 0
G00 1 1 GO0 1 1 G10 0 1 0 MS [1|o0]ss|[o|o0fss|0]|o0O 0 0 1
G11 1 0 GO1 0 0 G11 1 0 0

USC Viterbi@*2>

School of Engincering

Example 3 L~

* Implement D using a mux

Current State Next State
HL=00 HL=01 HL=11 HL=10
Symbol Q Sym. Q* Sym. Q* Sym. Q* Sym. Q*
OFF 0 ON 1 OFF 0 OFF 0 X d
ON 1 ON 1 ON 1 OFF 0 X d

Note: The State Value, Q forms the Pump output (i.e. 1 when we want the pump to be on and 0 othewise)

| USCViterbi

School of Engincering

Example 4
* Implement DO using a mux.
Current State Next State Outp

X=0 X=1 ut

State Q2 | Q1 Qo State* D2 D1 DO | State* D2 D1 DO z
Sinit 0 0 0 Sinit 0 0 0 S1 0 1 1 0
S10 0 0 1 Sinit 0 0 0 5101 0 1 0 0
S1 0 1 1 S10 0 0 1 S1 0 1 1 0
S101 0 1 0 S10 0 0 1 S1011 1 1 0 0
51011 1 1 0 S10 0 0 1 S1 0 1 1 1

| USCViterbi@

Summary

* Shannon's theorem allows us to decompose
an large function into
smaller functions

* This allows a method that can for a
function with

* Itis at the heart of many computer algorithms
that will find logic implementation given high-
level descriptions of a function

| USCViterbi

School of Engincering

Using a LookUp-Table to implement a function

MEMORIES

| USCViterbi@*E5

School of Engincering

Memories as Look-Up Tables

* One major application of memories in
digital design is to use them as s
(Look-Up Tables) to implement logic

functions

* Given a logic function use a memory to
hold all the and feed
the inputs of the function to the address
inputs to look-up the answer

| USCViterbi

School of Engincering

Implementing Functions w/ Memories

8x1 Memory 8x1 Memory
Z — A 0 — A

ol 1 ol 1
X|Y|Z]|F v A, ’ A,
0|0|0]1 X A21 0 1 A21 0
ojo|1]o0

2|1 X,Y,Z inputs 2| 1
O(1]{0]1 3| 1 “look up” K
o1 1 1 the correct

a|l o0 answer a|lo
110010

5 5
1]o]1]o0 0 0
111)o]o &l o &l o
11111 711 711
Arbitrary Do Do
Logic
Function F 0

| USCViterbi@

School of Engincering

Implementing Functions w/ Memories

8x2 Memory 8x2 Memory
C — A 1T —A
) o|jO0]O o/O0]O
x|ylclec|s v —a, o —a
o(o0j0]J0O0]|O X —{A, 1|01 1 —l A, 1|01
0joj1]0]1 2|01 2|01
0/1/0}0 1 s[1]o0 s[1]o0
oj1|1]1]o0
41011 4101
1]o(o]o |1
5
1lol1[1]o 110 110
1l1]{o]1]o0 6110 610
1)1 (1]1[1 7111 7111
Full Adder D;| Dy D, | D,

1+0+1 =10
c, S T~ 1 0

| USCViterbi

School of Engincering

8x2 Memory
* Implement D1 & DO using a memory
Next State — A,
Current State 1
S=0 S=1 A
2
State | Q, [Q, | state | Q1* | Qo | %2 | a1 | qor .
Got | 0| 0| Goo 111]Glo| o 1 4
Gio | o | 1| Got 0| o0 |G| 1 0 5
Goo | 1|1 | Goo 111]Gwo| o 1 6
G |1 |0] Go1 0| o0 |G| 1 0 7
D, | D,

USC\/'iterbi@ | USCX/iterbi
Example 2 : Example 3
. . * Implement D1 and DO using a memory
* Implement D using a memory X ; ,
Current State Next State 8x1 Memory 8x2 Memory
HL=00 HL=01 HL=11 HL=10
Symbol_ [Sym. [@ [sym [@ [sym [@ | Sym. [@ A, Current Next State Output — A,
OFF 0 ON 1 OFF 0 OFF 0 X d A 0 State S=0 s=1 — 0
ON 1] ON 1] ON 1 OFF 0 X d A; 1 State | Q, | Q, | state | ;" | o' | state [@ | @ | ssa | mte | wmsa — A, 1
2 SS (0[O0 | MS | 1 0| MT |1 1 1 0 0 2
3 NA (0|1 X d | d X d d d d d 3
A MT (1|1 MS | 1 0| MS |1 0 0 1 0 4
MS |1|0]|]SS | O o|Jss|o 0 0 0 1
5 5
6 6
7 7
D, D, | D,
| USCWterbi@ | USCX/}terbi
4x4 Multiplier Example Implementing Functions w/ Memories
Determine the dimensions of ROM
* To implement a function w/ n-variables and m outputs
the memory that would be
necessary to implement a * Just place the output truth table values in the memory
4x4-bit unsigned multiplier . . .
with inputs X[3:0] and Y[3:0] * Memory will have dimensions: 2" rows and m columns
and ou.tputs P[??:0] ' — Still does not terribly well (i.e. n-inputs requires
(Question: How many bits memory w/ 2" outputs)
are needed for P). o)
— But it is easy and since we can change the contents of
H H n n H
Example: memories it allows us to create logic
X3X,X;X,=0010 — This idea is at the heart of
Y,Y,Y,Y,=0001
P=X*Y=2%*1=2
= 00010

