

• I can implement logic for any truth table by using Shannon's theorem to decompose the function to create two smaller functions and a 2-to-1 mux

- I can recursively apply Shannon's theorem k times to decompose any size truth table to arrive at 2k smaller functions and a 2k-to-1 mux
- I can implement logic for any truth table by using a memory as a look-up table
 - I understand how to determine the necessary dimensions of the
 - I understand how to reinterpret input combinations as address inputs to determine the correct row to place the desired output

Spiral 2-4

Function synthesis with: Muxes (Shannon's Theorem) Memories

Function Synthesis Techniques

- Given a combination function (i.e. truth table or other description) what methods can we use to arrive at a circuit?

- Neither of these larger number of inputs
- Now we will see a few others

Implementing functions with muxes

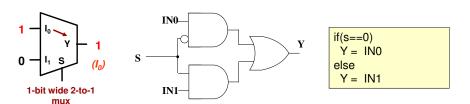
SHANNON'S THEOREM

Simplify This

- Given F(x,y,z) = x'yz + y'z', simplify F(0,y,z) =
 - then simplify F(1,y,z) =
- Given G(a,b,c,d) = bd' + ab'cd + ac'd'
 G(1,1,c,d) =

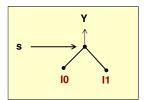
2-to-1 Mux: Another View

Old Views:

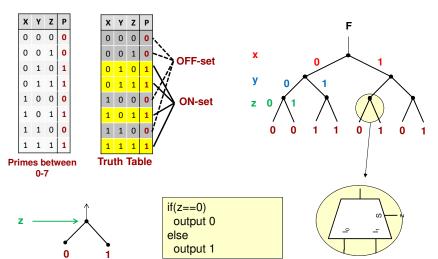


New View:

We can show the function of a 2-to-1 mux as a splitter where the variable 's' decides which input passes upwards



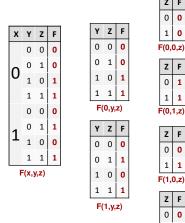
3-bit Prime Number Function

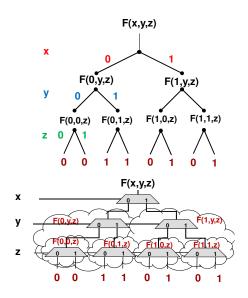


Function Implementation w/ Muxes

- Implementing a function using muxes relies is based on Shannon's expansion theorem which states:
 - $F(X_1, X_2, ..., X_n) = X_1' \cdot F(0, X_2, ..., X_n) + X_1 \cdot F(1, X_2, ..., X_n)$
 - X₁ can be pulled out of F if we substitute an appropriate constant and qualify it with X₁' or X₁
- Now recall a 2-to-1 mux can be built as:
 - $F = S' \bullet I_0 + S \bullet I_1$
 - Comparing the two equations, Shannon's theorem says we can use X_1 as our select bit to a 2-to-1 mux with $F(0,X_2,...X_n)$ as input 0 of our mux and $F(1,X_2,...,X_n)$ as input 1

Binary Decision Trees & Muxes





Splitting on X

- We can use smaller muxes by breaking the truth table into fewer disjoint sets
 - This increases the amount of logic at the inputs though
- Break the truth table into groups based on some number (k) of MSB's
- For each group, describe F as a function of the n-k LSB's

X	Υ	z	F
	0	0	0
^	0	1	1
0	1	0	1
	1	1	0
	0	0	1
4	0	1	1
1	1	0	0
	1	1	1

Put the k MSB's on the selects

USC Viterbi School of Engineering

Implement G

F(1,1,z)

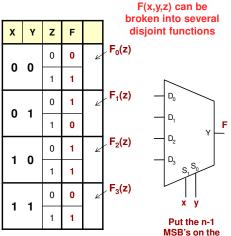
х	Υ	z	G
	0	0	0
	0	1	0
0	1	0	1
	1	1	1
	0	0	0
,	0	1	1
1	1	0	1
	1	1	0

- $F(X_1, X_2, ..., X_n) = X_1' \bullet F(0, X_2, ..., X_n) + X_1 \bullet F(1, X_2, ..., X_n)$
- Now recall a 2-to-1 mux can be built as:
 - $F = S' \bullet I_0 + S \bullet I_1$
 - Comparing the two equations, Shannon's theorem says we can use X_1 as our select bit to a 2-to-1 mux with $F(0,X_2,...X_n)$ as input 0 of our mux and $F(1,X_2,...,X_n)$ as input 1
- We can recursively apply Shannon's theorem to pull out more variables:

$$- F(X_1, X_2, ..., X_n) = X_1'X_2' \bullet F(0,0,...,X_n) + X_1'X_2 \bullet F(0,1,...,X_n) + X_1X_2' \bullet F(1,0,...,X_n) + X_1X_2 \bullet F(1,1,...,X_n) +$$

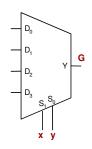
Additional Logic

- Muxes allow us to break a function into some number of smaller, disjoint functions
- Use MSB's to choose which small function we want
- By including the use of inverters we can use a mux with n-1 select bits (given a function of n-var's)
- Break the truth table into groups of 2 rows
- For each group, put F in terms of: z, z', 0, or 1



More Practice

х	Y	Z	G	
0	^	0	0	
0	0	1	0	
0	1	0	1	
U	1	1	1	
4	0	0	0	
1	U	1	1	
4	1	0	1	
1	1	1	0	



selects

As Far as We like

- We can take this tactic all the way down and use ONLY a mux to implement any function
- Connect the input variables to the select bits of the mux
- The output of the mux is the output of the function
- Whatever the output should be for each input value, attach that to the input of the mux

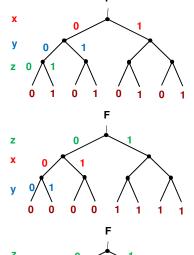
X	Υ	Z	F	
0	0	0	0 -	0 D ₀
0	0	1	1 -	→ 1 □ D ₁
0	1	0	1 -	→ 1 — D₂
0	1	1	0 -	0 D ₃
1	0	0	1 -	→ 1 □ D ₄
1	0	1	1 -	→ 1 — D ₅
1	1	0	0 -	$\begin{array}{c} \bullet \\ \bullet $
1	1	1	1 -	1 D ₇

Splitting on Z

 We can always rearrange our variables if it helps make the function simpler to implement

Х	Υ	Z	F
	0	0	0
١	0	1	1
0	1	0	0
	1	1	1
	0	0	0
4	0	1	1
1	1	0	0
	1	1	1

Z	Х	Υ	F
	0	0	0
	0	1	0
0	1	0	0
	1	1	0
	0	0	1
4	0	1	1
1	1	0	1
	1	1	1



Implementing Logic Functions

We can use muxes to implement any arbitrary logic function

Choose one variable to	the large functior
into two smaller functions:	and

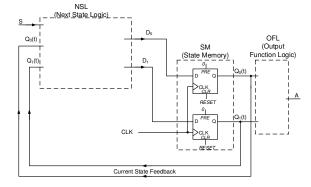
A 2-to-1 mux will produce the _____ bit and the chosen "split" variable will be the _____

 Implement f(0,x2,x3,...) using any known method and connect it to ______ of the 2-to-1 mux

 Implement f(1,x2,x3,...) using any known method and connect it to ______ of the 2-to-1 mux

Implementing an Initial State

 Since the NSL is just a combinational function of the current state and inputs, we can use Shannon's theorem (i.e. muxes)to find an implementation rather than K-Maps



Example 1

Implement D1 & D0 using 2-to-1 muxes with S as the select

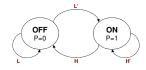
Current State				Output					
	in Otal	.0	S	S = 0		S	S = 1		
State	Q ₁	Q_0	State	Q1*= D1	Q0*= D0	State	Q1* =D1	Q0* =D0	Α
G01	0	0	G00	1	1	G10	0	1	1
G10	0	1	G01	0	0	G11	1	0	1
G00	1	1	G00	1	1	G10	0	1	0
G11	1	0	G01	0	0	G11	1	0	0

Example 2

 Implement D1 and D0 using (2) 4-to-1 muxes with Q1,Q0 as the selects

Cu	Current			N	ext	State	Output				
St	tate		S = 0			S = 1			Output		
State	Q ₁	Qo	State	Q ₁ *	Q _o *	State	Q ₁ *	Q _o *	SSG	MTG	MSG
SS	0	0	MS	1	0	МТ	1	1	1	0	0
N/A	0	1	х	d	d	х	d	d	d	d	d
МТ	1	1	MS	1	0	MS	1	0	0	1	0
MS	1	0	ss	0	0	SS	0	0	0	0	1

Example 3



• Implement D using a mux

Current State			Next State										
		H L = (H L = 0 0 H L = 0 1		H L = 1 1		H L = 10						
Symbol	Q	Sym.	Q*	Sym.	Q*	Sym.	Q*	Sym.	Q*				
OFF	0	ON	1	OFF	0	OFF	0	Х	d				
ON	1	ON	1	ON	1	OFF	0	Х	d				

Note: The State Value, Q forms the Pump output (i.e. 1 when we want the pump to be on and 0 othewise)

Example 4

• Implement D0 using a mux.

		. Ctata		Next State								Outp
	urren	State	•	X = 0				X = 1				ut
State	Q2	Q1	Q0	State*	D2	D1	D0	State*	D2	D1	D0	Z
Sinit	0	0	0	Sinit	0	0	0	S1	0	1	1	0
S10	0	0	1	Sinit	0	0	0	S101	0	1	0	0
S1	0	1	1	S10	0	0	1	S1	0	1	1	0
S101	0	1	0	S10	0	0	1	S1011	1	1	0	0
S1011	1	1	0	S10	0	0	1	S1	0	1	1	1

Summary

•	Shannon	s theorem allows us to decompose
	an	large function into
		smaller functions

•	This allows a method that can _	for a
	function with	

•	It is at the heart of many computer algorithms
	that will find logic implementation given high-
	level descriptions of a function

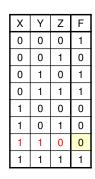
Using a LookUp-Table to implement a function

MEMORIES

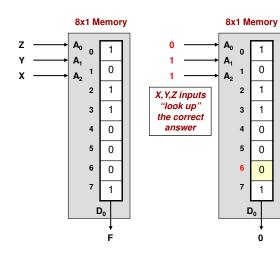
Memories as Look-Up Tables

- One major application of memories in digital design is to use them as ______'s (Look-Up Tables) to implement logic functions
- Given a logic function use a memory to hold all the _____ and feed the inputs of the function to the address inputs to look-up the answer

Implementing Functions w/ Memories



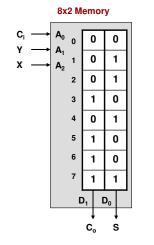
Arbitrary Logic Function

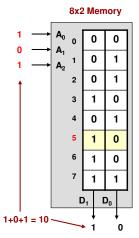


USC Viter bi (2-4.27) School of Engineering

Implementing Functions w/ Memories

Χ	Υ	C _i	င	S				
0	0	0	0	0				
0	0	1	0	1				
0	1	0	0	1				
0	1	1	1	0				
1	0	0	0	1				
1	0	1	1	0				
1	1	0	1	0				
1 1 1 1 1								
Full Adder								





Example 1

• Implement D1 & D0 using a memory

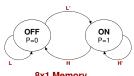
Curre	Current State			Next State							
Ourie	iii Oto	alC .	S	= 0	S = 1						
State	Q ₁	Q_0	State	Q1*	Q0*	Stat e	Q1*	Q0*			
G01	0	0	G00	1	1	G10	0	1			
G10	0	1	G01	0	0	G11	1	0			
G00	1	1	G00	1	1	G10	0	1			
G11	1	0	G01	0	0	G11	1	0			

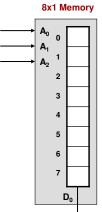


Example 2

• Implement D using a memory

Current Sta	te	Next State								
		H L = 0	0 0	H L = 0 1		H L = 11		H L = 10		
Symbol	Q	Sym.	Q*	Sym.	Q*	Sym.	Q*	Sym.	Q*	
OFF	0	ON	1	OFF	0	OFF	0	Х	d	
ON	1	ON	1	ON	1	OFF	0	Х	d	

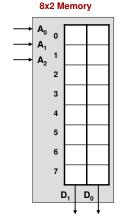




Example 3

• Implement D1 and D0 using a memory

Cu	Current			N	ext	State	Outmut				
St	tate		S	= 0		S = 1			Output		
State	Q ₁	Q ₀	State	Q ₁ *	Q ₀ *	State	Q ₁ *	Q ₀ *	SSG	MTG	MSG
ss	0	0	MS	1	0	МТ	1	1	1	0	0
N/A	0	1	х	d	d	х	d	d	d	d	d
МТ	1	1	MS	1	0	MS	1	0	0	1	0
MS	1	0	SS	0	0	SS	0	0	0	0	1



4x4 Multiplier Example

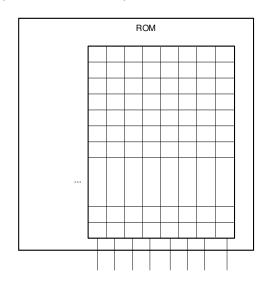
Determine the dimensions of the memory that would be necessary to implement a 4x4-bit unsigned multiplier with inputs X[3:0] and Y[3:0] and outputs P[??:0] (Question: How many bits

are needed for P).

Example:

 $X_3 X_2 X_1 X_0 = 0010$ $Y_3 Y_2 Y_1 Y_0 = 0001$

P = X * Y = 2 * 1 = 2 = 00010



Implementing Functions w/ Memories

- To implement a function w/ n-variables and m outputs
- Just place the output truth table values in the memory
- Memory will have dimensions: 2ⁿ rows and m columns
 - Still does not ______ terribly well (i.e. n-inputs requires memory w/ 2ⁿ outputs)
 - But it is easy and since we can change the contents of memories it allows us to create "______" logic
 - This idea is at the heart of _____