
2-4.1

Spiral 2-4

Function synthesis with:
Muxes (Shannon's Theorem)

Memories

2-4.2

Learning Outcomes

• I can implement logic for any truth table by using Shannon's
theorem to decompose the function to create two smaller
functions and a 2-to-1 mux
– I can recursively apply Shannon's theorem k times to decompose any

size truth table to arrive at 2k smaller functions and a 2k-to-1 mux

• I can implement logic for any truth table by using a memory
as a look-up table
– I understand how to determine the necessary dimensions of the

memory

– I understand how to reinterpret input combinations as address inputs
to determine the correct row to place the desired output

2-4.3

Function Synthesis Techniques

• Given a combination function (i.e.
truth table or other description)
what methods can we use to arrive
at a circuit?

– Karnaugh maps

– Sum of minterms / Produce of
maxterms

– Neither of these scale well to larger
number of inputs

• Now we will see a few others

X Y Z P

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 1

Primes between

0-7

2-4.4

SHANNON'S THEOREM
Implementing functions with muxes

2-4.5

Simplify This

• Given F(x,y,z) = x’yz + y’z’,
simplify F(0,y,z) =

then simplify F(1,y,z) =

• Given G(a,b,c,d) = bd’ + ab’cd + ac’d’
G(1,1,c,d) =

2-4.6

2-to-1 Mux: Another View

IN0

S

IN1

Y
if(s==0)

Y = IN0

else

Y = IN1

s

I0 I1

Y

I0

I1

Y

S

1-bit wide 2-to-1

mux

1

0

1

(I0)

We can show the function of a

2-to-1 mux as a splitter where

the variable 's' decides which

input passes upwards

Old Views:

New View:

2-4.7

3-bit Prime Number Function

x

y

z

0 1

0 1

0 1

X Y Z P

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 1

X Y Z P

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 1

Truth Table

ON-set

OFF-set

0 0 1 1 0 1 0 1

Primes between

0-7

z

0 1

F

I 1
S

I 0

z

0 1

if(z==0)

output 0

else

output 1

2-4.8

Function Implementation w/ Muxes

• Implementing a function using muxes relies is
based on Shannon’s expansion theorem which
states:
– F(X1,X2,…,Xn) = X1’•F(0,X2,…,Xn) + X1•F(1,X2,…,Xn)

– X1 can be pulled out of F if we substitute an appropriate
constant and qualify it with X1’ or X1

• Now recall a 2-to-1 mux can be built as:
– F = S’•I0 + S•I1

– Comparing the two equations, Shannon’s theorem says we
can use X1 as our select bit to a 2-to-1 mux with
F(0,X2,…Xn) as input 0 of our mux and F(1,X2,…,Xn) as input
1

2-4.9

Binary Decision Trees & Muxes

x

y

z

0 1

0 1

0 1

0 0 1 1 0 1 0 1

F(x,y,z)

F(0,y,z) F(1,y,z)

X Y Z F

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 1

Y Z F

0 0 0

0 1 0

1 0 1

1 1 1

Y Z F

0 0 0

0 1 1

1 0 0

1 1 1

Z F

0 0

1 0

Z F

0 1

1 1

Z F

0 0

1 1

Z F

0 0

1 1

F(x,y,z)

F(0,y,z)

F(1,y,z)

F(0,0,z)

F(0,1,z)

F(1,0,z)

F(1,1,z)

F(0,0,z) F(0,1,z) F(1,0,z) F(1,1,z)

X Y Z F

0

0 0 0

0 1 0

1 0 1

1 1 1

1

0 0 0

0 1 1

1 0 0

1 1 1
F(x,y,z)

0 1

0 1
F(0,y,z) F(1,y,z)

F(0,0,z) F(0,1,z) F(1,0,z) F(1,1,z)

0 0 1 1 0 1 0 1

x

y

z

0 1

0 1 0 1 0 1 0 1

2-4.10

Splitting on X

• We can use smaller
muxes by breaking the
truth table into fewer
disjoint sets
– This increases the

amount of logic at the
inputs though

• Break the truth table
into groups based on
some number (k) of
MSB’s

• For each group,
describe F as a function
of the
n-k LSB’s

X Y Z F

0

0 0 0

0 1 1

1 0 1

1 1 0

1

0 0 1

0 1 1

1 0 0

1 1 1

Put the k MSB’s

on the selects

I1

Y

S

I0
F

X

2-4.11

Splitting on X

• We can use smaller
muxes by breaking the
truth table into fewer
disjoint sets
– This increases the

amount of logic at the
inputs though

• Break the truth table
into groups based on
some number (k) of
MSB’s

• For each group,
describe F as a function
of the
n-k LSB’s

X Y Z F

0

0 0 0

0 1 1

1 0 1

1 1 0

1

0 0 1

0 1 1

1 0 0

1 1 1

Put the k MSB’s

on the selects

I1

Y

S

I0Z

Y

Z

Y

F

X

y xor z

(y’z + yz’)

(y’ + z)

2-4.12

Implement G

X Y Z G

0

0 0 0

0 1 0

1 0 1

1 1 1

1

0 0 0

0 1 1

1 0 1

1 1 0

I1

Y

S

I0
G

X

y

y xor z

2-4.13

Shannon’s Theorem

• F(X1,X2,…,Xn) = X1’•F(0,X2,…,Xn) + X1•F(1,X2,…,Xn)

• Now recall a 2-to-1 mux can be built as:
– F = S’•I0 + S•I1

– Comparing the two equations, Shannon’s theorem says we can use X1

as our select bit to a 2-to-1 mux with F(0,X2,…Xn) as input 0 of our mux
and F(1,X2,…,Xn) as input 1

• We can recursively apply Shannon’s theorem to pull
out more variables:

– F(X1,X2,…,Xn) =
X1’X2’•F(0,0,…,Xn) + X1’X2•F(0,1,…,Xn) +
X1X2’•F(1,0,…,Xn) + X1X2•F(1,1,…,Xn) +

2-4.14

Additional Logic

• Muxes allow us to break a
function into some number of
smaller, disjoint functions

• Use MSB’s to choose which
small function we want

• By including the use of
inverters we can use a mux
with n-1 select bits (given a
function of n-var’s)

• Break the truth table into
groups of 2 rows

• For each group, put F in terms
of: z, z’, 0, or 1

X Y Z F

0 0
0 0

z
1 1

0 1
0 1

z’
1 0

1 0
0 1

1
1 1

1 1
0 0

z
1 1

z

z’

1

z

x y

F

Put the n-1

MSB’s on the

selects

D
0

D1

D2

D
3

S
1

S
0

Y

F0(z)

F1(z)

F2(z)

F3(z)

F(x,y,z) can be

broken into several

disjoint functions

2-4.15

More Practice

X Y Z G

0 0
0 0

1 0

0 1
0 1

1 1

1 0
0 0

1 1

1 1
0 1

1 0

x y

G

D
0

D1

D
2

D
3

S1

S
0

Y

0

1

z

z'

2-4.16

As Far as We like

• We can take this tactic all
the way down and use ONLY
a mux to implement any
function

• Connect the input variables
to the select bits of the mux

• The output of the mux is
the output of the function

• Whatever the output
should be for each input
value, attach that to the
input of the mux

X Y Z F

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 1

1 1 0 0

1 1 1 1

0

1

1

0

1

1

0

1

x y z

F

D0

D1

D2

D3

S1

S0

Y

S2

D4

D5

D6

D7

2-4.17

Splitting on Z

• We can always rearrange our
variables if it helps make the
function simpler to implement

X Y Z F

0

0 0 0

0 1 1

1 0 0

1 1 1

1

0 0 0

0 1 1

1 0 0

1 1 1

x

y

z

0 1

0 1

0 1

0 1 0 1 0 1 0 1

F

Z X Y F

0

0 0 0

0 1 0

1 0 0

1 1 0

1

0 0 1

0 1 1

1 0 1

1 1 1

y

x

z

0 1

0 1

0 1

0 0 0 0 1 1 1 1

F

0 1

F

z

0 1

2-4.18

Implementing Logic Functions

• We can use muxes to implement any arbitrary
logic function

– Choose one variable to split the large function into
two smaller functions: f(0,x2,x3,…) and
f(1,x2,x3,…)

– A 2-to-1 mux will produce the output bit and the
chosen "split" variable will be the select

– Implement f(0,x2,x3,…) using any known method
and connect it to input 0 of the 2-to-1 mux

– Implement f(1,x2,x3,…) using any known method
and connect it to input 1 of the 2-to-1 mux

2-4.19

Implementing an Initial State

• Since the NSL is just a combinational function of the
current state and inputs, we can use Shannon's
theorem (i.e. muxes)to find an implementation
rather than K-Maps

CLK

D Q

D Q

A

OFL

(Output

Function Logic)
SM

(State Memory)

D0

D1

Q0(t)

Q1(t)

Q1(t)

Q0(t)

S

Current State Feedback

CLK

CLK

PRE

CLR

0

RESET

PRE

CLR

0

RESET

NSL

(Next State Logic)

2-4.20

Example 1

• Implement D1 & D0 using 2-to-1 muxes with S as the select

Current State
Next State

Output
S = 0 S = 1

State Q1 Q0 State
Q1*=

D1

Q0*=

D0
State

Q1*

=D1

Q0*

=D0
A

G01 0 0 G00 1 1 G10 0 1 1

G10 0 1 G01 0 0 G11 1 0 1

G00 1 1 G00 1 1 G10 0 1 0

G11 1 0 G01 0 0 G11 1 0 0

I1

Y

S

I0

S

D1Q1 xnor Q0

Q1 xor Q0 I1

Y

S

I0

S

D0Q1 xnor Q0

Q1 xnor Q0
D0 = Q1 xnor Q0
(Since both inputs are

xnor, we don't need the

mux)

2-4.21

Example 2
• Implement D1 and D0 using (2) 4-to-1 muxes with

Q1,Q0 as the selects

Current

State

Next State
Output

S = 0 S = 1

State Q1 Q0 State Q1* Q0* State Q1* Q0* SSG MTG MSG

SS 0 0 MS 1 0 MT 1 1 1 0 0

N/A 0 1 X d d X d d d d d

MT 1 1 MS 1 0 MS 1 0 0 1 0

MS 1 0 SS 0 0 SS 0 0 0 0 1

D
0

D
1

D
2

D
3

S
1

S
0

Y

Q1 Q0

D1

1

anything

1

0

D
0

D
1

D
2

D
3

S
1

S
0

Y

Q1 Q0

D1

S

anything

0

0

2-4.22

Example 3

• Implement D using a mux
Current State Next State

H L = 0 0 H L = 0 1 H L = 1 1 H L = 1 0

Symbol Q Sym. Q* Sym. Q* Sym. Q* Sym. Q*
OFF 0 ON 1 OFF 0 OFF 0 X d

ON 1 ON 1 ON 1 OFF 0 X d

Note: The State Value, Q forms the Pump output (i.e. 1 when we want the pump to be on and 0 othewise)

OFF
P=0

ON
P=1

H’HL

L’

I1

Y

S

I0

Q

D

Due to don't care:

Option 1: H'L'

Option 2: L'

Option 1: H'

Option 2: H'+L'

2-4.23

Example 4
• Implement D0 using a mux.

Current State
Next State Outp

utX = 0 X = 1

State Q2 Q1 Q0 State* D2 D1 D0 State* D2 D1 D0 Z

Sinit 0 0 0 Sinit 0 0 0 S1 0 1 1 0

S10 0 0 1 Sinit 0 0 0 S101 0 1 0 0

S1 0 1 1 S10 0 0 1 S1 0 1 1 0

S101 0 1 0 S10 0 0 1 S1011 1 1 0 0

S1011 1 1 0 S10 0 0 1 S1 0 1 1 1

I1

Y

S

I0

X

D0Q2 + Q1

Q2+(Q1 xnor Q0)

Do a K-Map for each column

separately since the mux

splits them

2-4.24

Summary

• Shannon's theorem allows us to decompose
an ARBITRARILY large function into many
smaller functions

• This allows a method that can scale for a
function with many variables

• It is at the heart of many computer algorithms
that will find logic implementation given high-
level descriptions of a function

2-4.25

MEMORIES
Using a LookUp-Table to implement a function

2-4.26

Memories as Look-Up Tables

• One major application of memories in
digital design is to use them as LUT’s (Look-
Up Tables) to implement logic functions

• Given a logic function use a memory to
hold all the possible answers and feed the
inputs of the function to the address inputs
to look-up the answer

2-4.27

Implementing Functions w/ Memories

1

0

1

1

0

0

0

1

A2

A0

A1

D0

0

1

2

3

4

5

6

7

8x1 Memory

X Y Z F

0 0 0 1

0 0 1 0

0 1 0 1

0 1 1 1

1 0 0 0

1 0 1 0

1 1 0 0

1 1 1 1

Arbitrary

Logic

Function

X

Z

Y

F

1

0

1

1

0

0

0

1

A2

A0

A1

D0

0

1

2

3

4

5

6

7

8x1 Memory

1

0

1

0

X,Y,Z inputs

“look up”

the correct

answer

2-4.28

Implementing Functions w/ Memories

0 0

0 1

0 1

1 0

0 1

1 0

1 0

1 1

A2

A0

A1

D1

0

1

2

3

4

5

6

7

8x2 Memory

X Y Ci Co S

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

Full Adder

X

Ci

Y

Co

8x2 Memory

D0

S

0 0

0 1

0 1

1 0

0 1

1 0

1 0

1 1

A2

A0

A1

D1

0

1

2

3

4

5

6

7

1

1

0

1

D0

0
1+0+1 = 10

2-4.29

Example 1

• Implement D1 & D0 using a memory

Current State
Next State

S = 0 S = 1

State Q1 Q0 State Q1* Q0*
Stat

e
Q1* Q0*

G01 0 0 G00 1 1 G10 0 1

G10 0 1 G01 0 0 G11 1 0

G00 1 1 G00 1 1 G10 0 1

G11 1 0 G01 0 0 G11 1 0

1 1

0 0

0 0

1 1

0 1

1 0

1 0

0 1

A2

A0

A1

D1

0

1

2

3

4

5

6

7

8x2 Memory

D0

S

Q1

Q0

D1 D0

2-4.30

Example 2

• Implement D using a memory
Current State Next State

H L = 0 0 H L = 0 1 H L = 1 1 H L = 1 0

Symbol Q Sym. Q* Sym. Q* Sym. Q* Sym. Q*
OFF 0 ON 1 OFF 0 OFF 0 X d

ON 1 ON 1 ON 1 OFF 0 X d

OFF
P=0

ON
P=1

H’HL

L’

1

1

-

0

1

1

-

0

A2

A0

A1

D0

0

1

2

3

4

5

6

7

8x1 Memory

Q

H

L

D

2-4.31

Example 3
• Implement D1 and D0 using a memory

Current

State

Next State
Output

S = 0 S = 1

State Q1 Q0 State Q1* Q0* State Q1* Q0* SSG MTG MSG

SS 0 0 MS 1 0 MT 1 1 1 0 0

N/A 0 1 X d d X d d d d d

MT 1 1 MS 1 0 MS 1 0 0 1 0

MS 1 0 SS 0 0 SS 0 0 0 0 1

1 0

- -

0 0

1 0

1 1

- -

0 0

1 0

A2

A0

A1

D1

0

1

2

3

4

5

6

7

8x2 Memory

D0

S

Q1

Q0

D1 D0

2-4.32

4x4 Multiplier Example

Determine the dimensions of
the memory that would be
necessary to implement a
4x4-bit unsigned multiplier
with inputs X[3:0] and Y[3:0]
and outputs P[??:0]

(Question: How many bits
are needed for P).

Example:

X3X2X1X0=0010

Y3Y2Y1Y0=0001

P = X * Y = 2 * 1 = 2

= 00010

ROM

...

A2

A0

A1Y1

Y0

Y2

Y3 A3

A6

A4

A5X1

X0

X2

X3 A7

P7 P0

0

2

20

33

255

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

1 1 1 0 0 0 0 1

2-4.33

Implementing Functions w/ Memories

• To implement a function w/ n-variables and m outputs

• Just place the output truth table values in the memory

• Memory will have dimensions: 2n rows and m columns

– Still does not scale terribly well (i.e. n-inputs requires
memory w/ 2n outputs)

– But it is easy and since we can change the contents of
memories it allows us to create "reconfigurable" logic

– This idea is at the heart of FPGAs

