Spiral 2-4

Function synthesis with:
Muxes (Shannon's Theorem)
Memories

e USCViterbi

School of Engineering

Learning Outcomes

* | canimplement logic for any truth table by using Shannon's
theorem to decompose the function to create two smaller
functions and a 2-to-1 mux

— | can recursively apply Shannon's theorem k times to decompose any
size truth table to arrive at 2k smaller functions and a 2*-to-1 mux

* | canimplement logic for any truth table by using a memory
as a look-up table

— lunderstand how to determine the necessary dimensions of the
memory

— lunderstand how to reinterpret input combinations as address inputs
to determine the correct row to place the desired output

e USCViterbi

School of Engineering

Function Synthesis Techniques

* Given a combination function (i.e.

XY Z|P

truth table or other description) e

what methods can we use to arrive 0 1 01

. . 0 1 1|1

at a circuit? L

1 0 1|1

Karnaugh maps e

— Sum of minterms / Produce of 11 11
maXte rms Primes between

0-7
— Neither of these scale well to larger
number of inputs

* Now we will see a few others

Implementing functions with muxes

SHANNON'S THEOREM

Simplify This

* Given F(x,y,z) =x'yz+vy'Z,
simplify F(0,y,z) =

then simplify F(1,y,z) =

* Given G(a,b,c,d) = bd’ + ab’cd + ac’d’
G(1,1,c,d) =

School of Engineering

2-to-1 Mux: Another View

Old Views:

1-bit wide 2-to-1 IN1— j

mux

if(s==0)
Y = INO
else
Y = IN1

New View:

We can show the function of a

2-to-1 mux as a splitter where s

the variable 's' decides which
Input passes upwards

USC Viterbi24®

e USCViterbi

School of Engineering

3-bit Prime Number Function

XY Z|P XY z|P E
0 000 0 0 of0}

00 1|0 0 0 1[0FRy

ol ol T ,?OFF-set

01 11 01 1|1

10 0]|0 1 0 0|0

10 1|1 10 11

11 0]|0 11 0|0

11 1|1 11 11

Primes between Truth Table
0-7

if(z==0)
z ——> output O
else

0 1 output 1

e USCViterbi

School of Engineering

Function Implementation w/ Muxes

* Implementing a function using muxes relies is
based on Shannon’s expansion theorem which

states:
— F(X3, X5, X)) = X" ¢F(0,X,,..., X)) + X, oF(1,X,,...,X,)

— X, can be pulled out of F if we substitute an appropriate
constant and qualify it with X," or X,

* Now recall a 2-to-1 mux can be built as:
— F=S"e|, + Se|,
— Comparing the two equations, Shannon’s theorem says we
can use X, as our select bit to a 2-to-1 mux with

F(O,X,,...X,) as input 0 of our mux and F(1,X,,...,X,) as input
1

USC Viterbi2

School of Engineering

Binary Decision Trees & Muxes

R P O O|=<
R O +» O|N
= = O O|m

F(,y,z

A

Y Z|F
0 0fO
0 1(0
1 0|1
1 1|1
0 0fO
0 1|1
1 0|0
1 1|1
F(x,y,z)

r P O O|=<
= O +» O|N
= O = O m

F(1,y,2)

F(x.y.2)

F(0,0,z) F(0,1,z) F(1,0z) F(1,12)

VANVARVANNA

o 0 1 1 O 1 0 1

=

Splitting on X

We can use smaller

muxes by breaking the

truth table into fewer

disjoint sets

— This increases the

amount of logic at the
inputs though

Break the truth table

into groups based on

some number (k) of

MSB’s

For each group,

describe F as a function

of the

n-k LSB’s

Put the k MSB’s
on the selects

Splitting on X

We can use smaller

muxes by breaking the

truth table into fewer

disjoint sets

— This increases the

amount of logic at the
inputs though

Break the truth table

into groups based on

some number (k) of

MSB’s

For each group,

describe F as a function

of the

n-k LSB’s

y XOr z
(y'z +y2z’)

(y’ +2)

Put the k MSB’s
on the selects

X1Y|[Z2]6G
O[0]O0
O[11]10

O 1101
1111
O[0]O0
O[11]1

1 1101
111]0

y XOr z

Shannon’s Theorem

e F(Xy,X,,...,X) =X,"*F(0,X,,....X,) + X, oF(1,X,,....X)

 Now recall a 2-to-1 mux can be built as:
— F=S"el,+Sel,
— Comparing the two equations, Shannon’s theorem says we can use X,

as our select bit to a 2-to-1 mux with F(0,X,,...X.) as input O of our mux
and F(1,X,,...,X,) as input 1

* We can recursively apply Shannon’s theorem to pull
out more variables:

— F(X, X5y X) =
X,"X,’®F(0,0,....X,) + X;"X,*F(0,1,...,.X,) +
X, X, *F(1,0,...,.X.) + X;X,oF(1,1,....X.) +

e USCViterbi

Additional Logic

F(x,y,z) can be
broken into several

 Muxes allow us to break a x|y |z]|F disjoint functions
function into some number of ol o JF@
smaller, disjoint functions 00 7
. 1 1
 Use MSB’s to choose which . \
. 7z —
small function we want o| 1] 4T %
. . 01 z’ y |
* By including the use of 1 | o S .
inverters we can use a mux o 1
. . . 0 1 V4
with n-1 select bits (given a 1 0 1 , —{o,
function of n-var’s) 1] 1 5,0
* Break the truth table into ool M@ ‘
groups of 2 rows 11 z *
. 111 Put the n-1
* For each group, put Fin terms MSB’s on the

of:z, 2,0, or1 selects

As Far as We like

We can take this tactic all
the way down and use ONLY
a mux to implement any
function

Connect the input variables
to the select bits of the mux

The output of the mux is
the output of the function

Whatever the output
should be for each input
value, attach that to the
input of the mux

/'0

/'l

/'l

L— 00— |

_— 17 |

_— 1= |

L— 00—

_— 1

e USCViterbi

School of Engineering

Splitting on Z

X
* We can always rearrange our

: . y
variables if it helps make the
function simpler to implement -
X|yY|z]|F Z[X|Y]F F
ololo O]l 0]O ,
ol 111 O]l 1]0
0 0 "
110l o0 110160
11111 111]0 y
ololo Ol 0]1
ol 111 Ol 1]1]1
1 1
110l o 1]0]1 .

i, TS("Viterbi

School of Engineering

Implementing Logic Functions

 We can use muxes to implement any arbitrary
logic function

— Choose one variable to split the large function into
two smaller functions: f(0,x2,x3,...) and
f(1,x2,x3,...)

— A 2-to-1 mux will produce the output bit and the
chosen "split" variable will be the select

— Implement f(0,x2,x3,...) using any known method
and connect it to input O of the 2-to-1 mux

— Implement f(1,x2,x3,...) using any known method
and connect it to input 1 of the 2-to-1 mux

e USCViterbi

School of Engineering

Implementing an Initial State

e Since the NSL is just a combinational function of the
current state and inputs, we can use Shannon's
theorem (i.e. muxes)to find an implementation
rather than K-Maps

NSL

I
= I
| Do
Qo(®) | —{—% OFL
— | SM (Output
| | (State Memory) Function Logic)
Qu(t)y D: R Stk == —— -
1 e | | I
| I PRE 1Qo(t) |
I | T D Q 1 } '
I | | I
_____________ ! | >CIC_|E<R | | !
RESET I
I 0 I | |
11 | : o || |
| b "RE o :Ql(t) : |
I
CLK L __|
-
L — _ RESFT _ _|
Current StaE:eedback

- 00000000 USCViterbi
Example 1

* Implement D1 & DO using 2-to-1 muxes with S as the select

Next State
Current State Output
S=0 S=1
Ql*= | QO*= Ql* | QO*
State Q: | Q State D1 DO State b1 | =DO A
GO1 0 0 GO0 1 1 G10 0 1 1
G10 0 1 GO1 0 0 Gl1 1 0 1
GO0 1 1 GO0 1 1 G10 0 1 0
G1l1 1 0 GO1 0 0 Gl1 1 0 0
Q1 xnor QO D1 Q1 xnor QO DO
DO = Q1 xnor QO
Q1 xor QO Q1 xnor QO (Since both inputs are

xnor, we don't need the
mux)

- 00000000 USCViterbi
Example 2

School of Engineering

* Implement D1 and DO using (2) 4-to-1 muxes with
Q1,Q0 as the selects

Current Next State
Output
State S=0 S=1

State | Q; | Qg | State | Q,* | Q,* | State | Q.* | Qy* SSG MTG MSG
SS 0|0 MS 1 0 MT 1 1 1 0 0
N/A | O 1 X d d X d d
MT 1 1 MS 1 0 MS 1 0
MS 110 SS 0 0 SS 0 0

1 S

anything D1 anything
1 0

0

0

USC Viterbi&+2

School of Engineering

Example 3 :

(EL S

* Implement D using a mux L : ;
Current State Next State
HL=00 HL=01 HL=11 HL=10
Symbol Q Sym. Q* Sym. Q* Sym. Q* Sym. Q*
OFF 0 ON 1 OFF 0 OFF 0 X d
ON 1 ON 1 ON 1 OFF 0 X d

Note: The State Value, Q forms the Pump output (i.e. 1 when we want the pump to be on and 0 othewise)

Due to don't care:
Option 1: H'L'
Option 2: L' D

Option 1: H'
Option 2: H'+L'

Example 4

USC Viterbi&

School of Engineering

Do a K-Map for each column

° Implement)O using a mux separately since the mux
’ splits them
Next State
Current State Outp

X=0 X=1N_ ut

State Q2 Q1 Qo State* D2 D1 DO | State* D2 Dl\\ DO Z
Sinit 0 0 0 Sinit 0 0 0 S1 0 1 1 0
S10 0 0 1 Sinit 0 0 0 S101 0 1 0 0
S1 0 1 1 S10 0 0 1 S1 0 1 1 0
S101 0 1 0 S10 0 0 1 S1011 1 1 0 0
S1011 1 1 0 S10 0 0 1 S1 0 1 1 1

Q2+ Q1 DO
Q2+(Q1 xnor QO)

Summary

* Shannon's theorem allows us to decompose
an ARBITRARILY large function into many
smaller functions

 This allows a method that can scale for a
function with many variables

* |tis at the heart of many computer algorithms
that will find logic implementation given high-
level descriptions of a function

Using a LookUp-Table to implement a function

MEMORIES

- 00000000 USCViterbi
School of Engineering

Memories as Look-Up Tables

* One major application of memories in
digital design is to use them as LUT’s (Look-
Up Tables) to implement logic functions

* Given a logic function use a memory to
hold all the possible answers and feed the
inputs of the function to the address inputs
to look-up the answer

e USCViterbi

School of Engineering

Implementing Functions w/ Memories

8x1 Memory 8x1 Memory
Z > A 0 > A
Xx|y|z]|F ol 1l "ol 1l
Y > A, 1 > A,
O(0]|0]1 X J{ A, 110 1 J{ A, 110
0O10[1]60
2|1 X,Y,Z inputs 2|1
0 110 1 3 1 “look up” 3 1
ol1l1111 the correct
4l o0 answer 4|0
1]]0(0}]O
5 5
1]1]0(1]60 0 0
1]11]0]o0 °1 0 °1 0
11111 11 11
Arbitrary Dy Do
LOgiC 4 4
Function F 0

e USCViterbi

School of Engineering

Implementing Functions w/ Memories

8x2 Memory 8x2 Memory

O
o
[EN
>
o

<
\ 4
>
=
o
\ 4
>
=

[EN

v

>
N

w

- (o - o = o o o
w

- - = o - o o o

R Ol O| FRLP| O kK| EFL| O

= (@) o = o = = o
o

R|lRr|R|IRPR|IO|O|O|O]IX
R|Rr|lO|O|lFR|[R|lO|O]I

Rl|lo|lRr|lO|lR|O|FR|[O]O
Rl |lRP|O|R,R|O|O|O
R |lO|lO|rR|OfFR|[RLR|OT1W

Full Adder D; | Dy D; | Dy

e USCViterbi

Example 1

* Implement D1 & DO using a memory

Current State Next State
=0 S=1

State | Q, | Q,| State | Q1* | Qo Steat 01* | Qo*
Gol | 0| o] Goo 1 | 1 |cw| o 1
G0 | 0| 1| co1 0| o0 |cuw| 1 0
Goo | 1| 1] Goo 1 | 1 |G| o 1
Gt | 1]0] Go1 0| o0 |cuw| 1 0

QO
Q1

School of Engineering

8x2 Memory

—

—

o
o = = o = o o =
= o o = = o o =

Example 2

* Implement D using a memory

\ 4

USC Viterbi@

School of Engineering

Current State Next State
HL=00 HL=01 HL=11 HL=10
Symbol Q Sym. Q* Sym. Q* Sym. Q* Sym. Q*
OFF 0 ON 1 OFF 0 OFF 0 X d
ON 1 ON 1 ON 1 OFF 0 X d

\ 4

\ 4

8x1 Memory
A 1
Al
A, 1

0

1

1

0

DO

e USCViterbi

School of Engineering

Example 3

* Implement D1 and DO using a memory

8x2 Memory
Current Next State R
Output QO Ao ol 1160
State S=0 S=1 Q1 — A,
State | Q; | Q, | State | Q,* | Q,* | State | Q,;* | Q* | SSG MTG MSG s — A, 1 B B
SS 0] O MS 1 0 MT 1 1 1 0 0 2 0 0
NA | 0| 1 X d d X d d d d d 3 1 0
MT 1 1 MS 1 0 MS 1 0 0 1 0 4 1 1
MS 110 SS 0 0 SS 0 0 0 0 1
5 - -
610 0
11 0
D, [Do

e USCViterbi

4x4 Multiplier Example

Determine the dimensions of
the memory that would be
necessary to implement a
4x4-bit unsigned multiplier
with inputs X[3:0] and Y[3:0]
and outputs P[??:0]
(Question: How many bits
are needed for P).

Example:
X3X,X,X,=0010
Y,Y,Y,Y,=0001

P=X*Y=2%1=2
= 00010

YO
Y1l
Y2
Y3
X0
X1
X2
X3

School of Engineering

AO ROM
Al
A2 ofololo]o 000
A3
A4 2(ololo]o 000
A5
A6 20{00l0]o0 1/0]0
A7
33[olo0lo0]o0 010
ws 1] 1] 1] 0 0] 0|1
P7 PO

e USCViterbi

School of Engineering

Implementing Functions w/ Memories

* To implement a function w/ n-variables and m outputs
e Just place the output truth table values in the memory

* Memory will have dimensions: 2" rows and m columns

— Still does not scale terribly well (i.e. n-inputs requires
memory w/ 2" outputs)

— But it is easy and since we can change the contents of
memories it allows us to create "reconfigurable" logic

— This idea is at the heart of FPGAs

