

Spiral 2-4

Function synthesis with:
Muxes (Shannon's Theorem)
Memories

Learning Outcomes

- I can implement logic for any truth table by using Shannon's theorem to decompose the function to create two smaller functions and a 2-to-1 mux
 - I can recursively apply Shannon's theorem k times to decompose any size truth table to arrive at 2^k smaller functions and a 2^k-to-1 mux
- I can implement logic for any truth table by using a memory as a look-up table
 - I understand how to determine the necessary dimensions of the memory
 - I understand how to reinterpret input combinations as address inputs to determine the correct row to place the desired output

Function Synthesis Techniques

- Given a combination function (i.e. truth table or other description) what methods can we use to arrive at a circuit?
 - Karnaugh maps
 - Sum of minterms / Produce of maxterms
 - Neither of these scale well to larger number of inputs
- Now we will see a few others

X	Υ	Z	P
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

Primes between 0-7

Implementing functions with muxes

SHANNON'S THEOREM

Simplify This

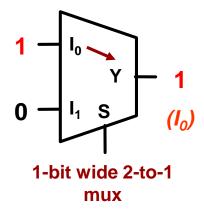
Given F(x,y,z) = x'yz + y'z',
 simplify F(0,y,z) =

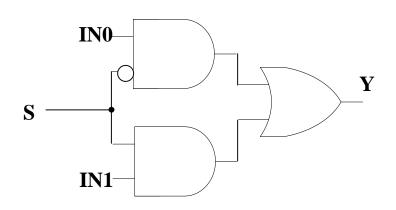
then simplify F(1,y,z) =

Given G(a,b,c,d) = bd' + ab'cd + ac'd'
 G(1,1,c,d) =

2-to-1 Mux: Another View

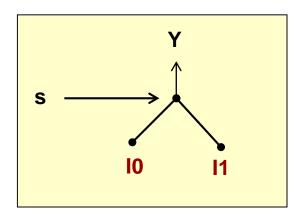
Old Views:



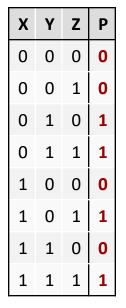


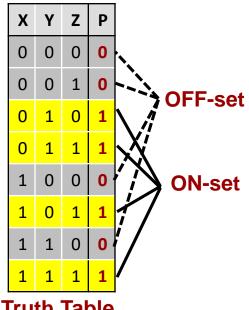
New View:

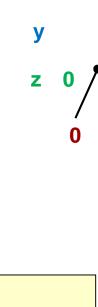
We can show the function of a 2-to-1 mux as a splitter where the variable 's' decides which input passes upwards



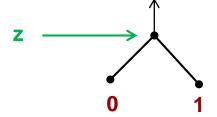
3-bit Prime Number Function

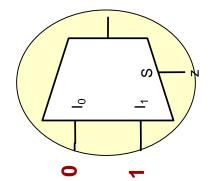






X





F

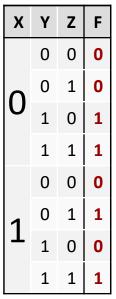
Function Implementation w/ Muxes

 Implementing a function using muxes relies is based on Shannon's expansion theorem which states:

$$- F(X_1, X_2, ..., X_n) = X_1' \bullet F(0, X_2, ..., X_n) + X_1 \bullet F(1, X_2, ..., X_n)$$

- X_1 can be pulled out of F if we substitute an appropriate constant and qualify it with X_1 or X_1
- Now recall a 2-to-1 mux can be built as:
 - $F = S' \bullet I_0 + S \bullet I_1$
 - Comparing the two equations, Shannon's theorem says we can use X_1 as our select bit to a 2-to-1 mux with $F(0,X_2,...,X_n)$ as input 0 of our mux and $F(1,X_2,...,X_n)$ as input 1

Binary Decision Trees & Muxes



F(x,y,z)

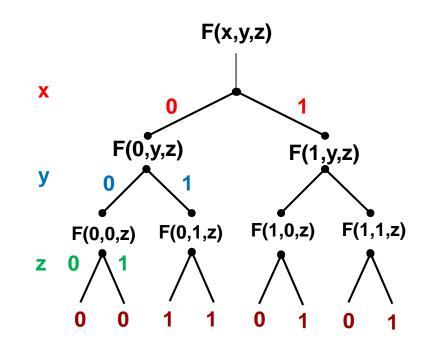
Υ	Z	F
0	0	0
0	1	0
1	0	1
1	1	1
F(0,y,z)		

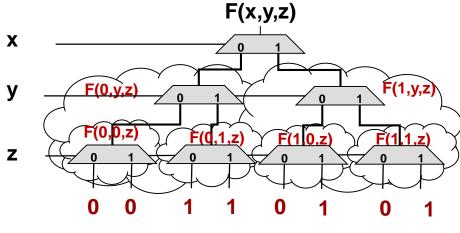
Υ	Z	F
0	0	0
0	1	1
1	0	0
1	1	1

Z	F
0	0
1	0
F(0,	0,z)
Z	F
0	1
١	1
1	1

Z	F	
0	0	
1	1	
F(1,0,z)		

Z	F
0	0
1	1
F(1,	1,z)

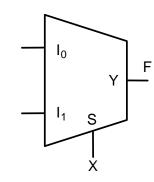




Splitting on X

- We can use smaller muxes by breaking the truth table into fewer disjoint sets
 - This increases the amount of logic at the inputs though
- Break the truth table into groups based on some number (k) of MSB's
- For each group, describe F as a function of the n-k LSB's

X	Y	Z	F
	0	0	0
0	0	1	1
0	1	0	1
	1	1	0
1	0	0	1
	0	1	1
	1	0	0
	1	1	1



Put the k MSB's on the selects

Splitting on X

- We can use smaller muxes by breaking the truth table into fewer disjoint sets
 - This increases the amount of logic at the inputs though
- Break the truth table into groups based on some number (k) of MSB's
- For each group, describe F as a function of the n-k LSB's

Х	Υ	Z	F
	0	0	0
	0	1	1
0	1	0	1
	1	1	0
1	0	0	1
	0	1	1
	1	0	0
	1	1	1

y xor z

(y'z + yz')

Y

Z

10

Y

Z

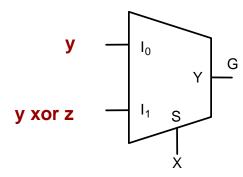
(y' + z)

Put the k MSB's

on the selects

Implement G

Х	Y	Z	G
	0	0	0
	0	1	0
0	1	0	1
	1	1	1
	0	0	0
4	0	1	1
1	1	0	1
	1	1	0



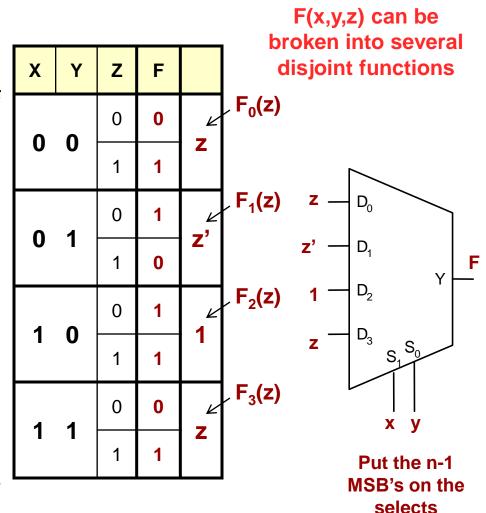
Shannon's Theorem

- $F(X_1, X_2, ..., X_n) = X_1' \bullet F(0, X_2, ..., X_n) + X_1 \bullet F(1, X_2, ..., X_n)$
- Now recall a 2-to-1 mux can be built as:
 - $F = S' \bullet I_0 + S \bullet I_1$
 - Comparing the two equations, Shannon's theorem says we can use X_1 as our select bit to a 2-to-1 mux with $F(0,X_2,...,X_n)$ as input 0 of our mux and $F(1,X_2,...,X_n)$ as input 1
- We can recursively apply Shannon's theorem to pull out more variables:

$$- F(X_1, X_2, ..., X_n) = X_1'X_2' \bullet F(0,0,...,X_n) + X_1'X_2 \bullet F(0,1,...,X_n) + X_1X_2' \bullet F(1,0,...,X_n) + X_1X_2 \bullet F(1,1,...,X_n) +$$

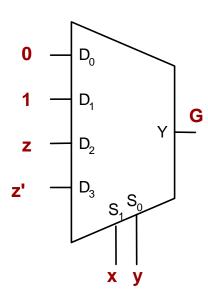
Additional Logic

- Muxes allow us to break a function into some number of smaller, disjoint functions
- Use MSB's to choose which small function we want
- By including the use of inverters we can use a mux with n-1 select bits (given a function of n-var's)
- Break the truth table into groups of 2 rows
- For each group, put F in terms of: z, z', 0, or 1



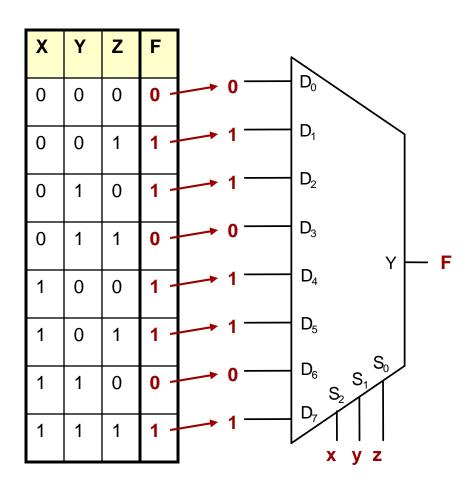
More Practice

Х	Υ	Z	G
0	•	0	0
	0	1	0
0	1	0	1
	1	1	1
4	•	0	0
1	0	1	1
4	1	0	1
1		1	0



As Far as We like

- We can take this tactic all the way down and use ONLY a mux to implement any function
- Connect the input variables to the select bits of the mux
- The output of the mux is the output of the function
- Whatever the output should be for each input value, attach that to the input of the mux

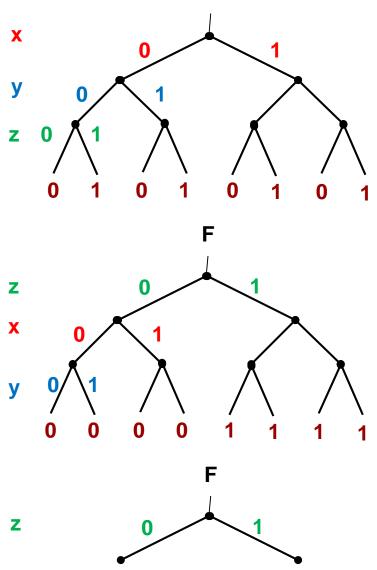


Splitting on Z

 We can always rearrange our variables if it helps make the function simpler to implement

X	Y	Z	F
•	0	0	0
	0	1	1
0	1	0	0
	1	1	1
	0	0	0
4	0	1	1
1	1	0	0
	1	1	1

Z	X	Υ	F
	0	0	0
	0	1	0
0	1	0	0
	1	1	0
	0	0	1
4	0	1	1
1	1	0	1
	1	1	1

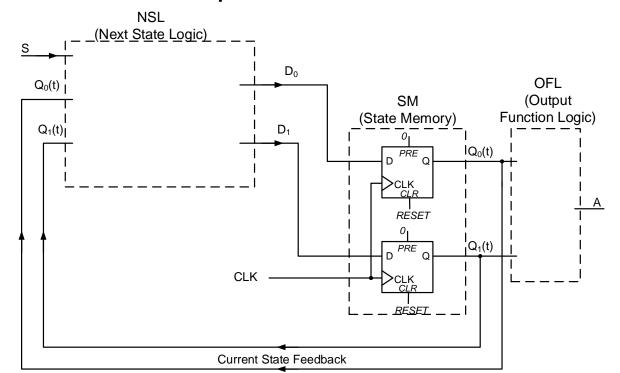


Implementing Logic Functions

- We can use muxes to implement any arbitrary logic function
 - Choose one variable to split the large function into two smaller functions: f(0,x2,x3,...) and f(1,x2,x3,...)
 - A 2-to-1 mux will produce the output bit and the chosen "split" variable will be the select
 - Implement f(0,x2,x3,...) using any known method
 and connect it to input 0 of the 2-to-1 mux
 - Implement f(1,x2,x3,...) using any known method
 and connect it to input 1 of the 2-to-1 mux

Implementing an Initial State

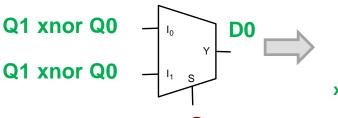
 Since the NSL is just a combinational function of the current state and inputs, we can use Shannon's theorem (i.e. muxes)to find an implementation rather than K-Maps



Implement D1 & D0 using 2-to-1 muxes with S as the select

Curre	nt Stat	-Δ			Output				
Odifo	in Otal		S	S = 0		S	Output		
State	Q ₁	Q_0	State	Q1*= D1	Q0*= D0	State	Q1* =D1	Q0* =D0	А
G01	0	0	G00	1	1	G10	0	1	1
G10	0	1	G01	0	0	G11	1	0	1
G00	1	1	G00	1	1	G10	0	1	0
G11	1	0	G01	0	0	G11	1	0	0

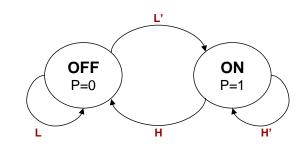




D0 = Q1 xnor Q0 (Since both inputs are xnor, we don't need the mux)

 Implement D1 and D0 using (2) 4-to-1 muxes with Q1,Q0 as the selects

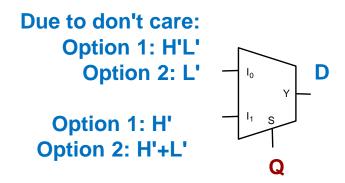
Cu	rrer	nt		N	lext	State	Qutput				
St	tate	!	S	= 0		S	5 = 1		Output		
State	Q ₁	Q _o	State	Q ₁ *	Q ₀ *	State Q ₁ * Q ₀ *		SSG	MTG	MSG	
SS	0	0	MS	1	0	МТ	1	1	1	0	0
N/A	0	1	Х	d	d	Х	d	d	d	d	d
МТ	1	1	MS	1	0	MS	1	0	0	1	0
MS	1	0	SS	0	0	SS	0	0	0	0	1



Implement D using a mux

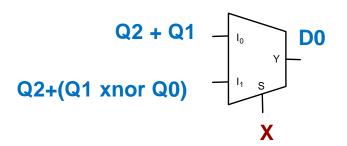
Current Sta	te	Next State									
		H L = 0 0		H L = 0 1		H L = 11		H L = 10			
Symbol	Q	Sym.	Sym. Q*		Q*	Sym. Q*		Sym.	Q*		
OFF	0	ON	1	OFF	0	OFF	0	X	d		
ON	1	ON	ON 1		1	OFF	0	Х	d		

Note: The State Value, Q forms the Pump output (i.e. 1 when we want the pump to be on and 0 othewise)



Implement D0 using a mux. Separately since the mux splits them

		L Chata					Next	State	<u> </u>			Outp
	urren	ı State			X =	0		X = 1				ut
State	Q2	Q1	Q0	State*	State* D2 D1 D0 S				D2	D1	D 0	Z
Sinit	0	0	0	Sinit	0	0	0	S1	0	1	1	0
S10	0	0	1	Sinit	0	0	0	S101	0	1	0	0
S1	0	1	1	S10	0	0	1	S1	0	1	1	0
S101	0	1	0	S10	0	0	1	S1011	1	1	0	0
S1011	1	1	0	S10	0	0	1	S1	0	1	1	1



Summary

- Shannon's theorem allows us to decompose an ARBITRARILY large function into many smaller functions
- This allows a method that can scale for a function with many variables
- It is at the heart of many computer algorithms that will find logic implementation given highlevel descriptions of a function

Using a LookUp-Table to implement a function

MEMORIES

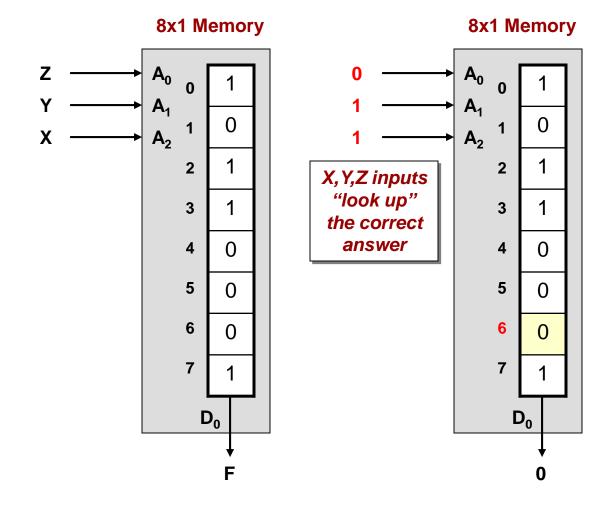
Memories as Look-Up Tables

- One major application of memories in digital design is to use them as LUT's (Look-Up Tables) to implement logic functions
- Given a logic function use a memory to hold all the possible answers and feed the inputs of the function to the address inputs to look-up the answer

Implementing Functions w/ Memories

Χ	Υ	Z	F
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

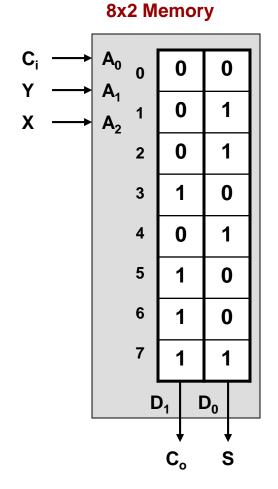
Arbitrary Logic Function



Implementing Functions w/ Memories

Χ	Υ	C_{i}	C _o	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Full Adder

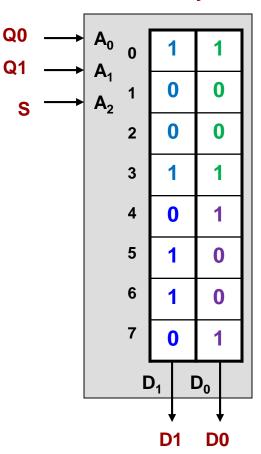


8x2 Memory D_0 1+0+1 = 10 ~

Implement D1 & D0 using a memory

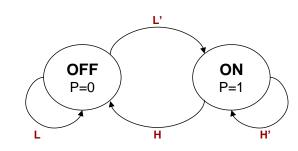
Currei	ot Sta	ato.	Next State								
Currer	ii Ota	alG	S	= 0		S = 1					
State	Q_1	Q_0	State	Q1*	Q0*	Stat e	Q1*	Q0*			
G01	0	0	G00	1	1	G10	0	1			
G10	0	1	G01	0	0	G11	1	0			
G00	1	1	G00	1	1	G10	0	1			
G11	1	0	G01	0	0	G11	1	0			

8x2 Memory

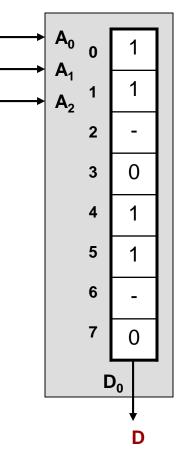


Implement D using a memory

Current State		Next State								
		H L = (0 0	H L = 0 1		H L = 11		H L = 10		
Symbol	Q	Sym.	Sym. Q*		Q*	Sym.	Q*	Sym.	Q*	
OFF	0	ON	1	OFF	0	OFF	0	Х	d	
ON	1	ON 1		ON	1	OFF	0	Х	d	



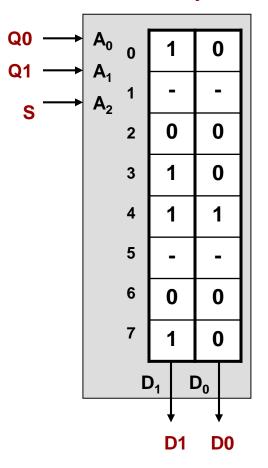
8x1 Memory



Implement D1 and D0 using a memory

Cu	rrer	nt		N	ext	State	Output				
St	tate		S	= 0		S	= 1		Output		
State	Q ₁	Qo	State	Q ₁ *	Q _o *	State Q ₁ * Q ₀ *		SSG	MTG	MSG	
SS	0	0	MS	1	0	МТ	1	1	1	0	0
N/A	0	1	Х	d	d	х	d	d	d	d	d
MT	1	1	MS	1	0	MS	1	0	0	1	0
MS	1	0	SS	0	0	SS	0	0	0	0	1

8x2 Memory



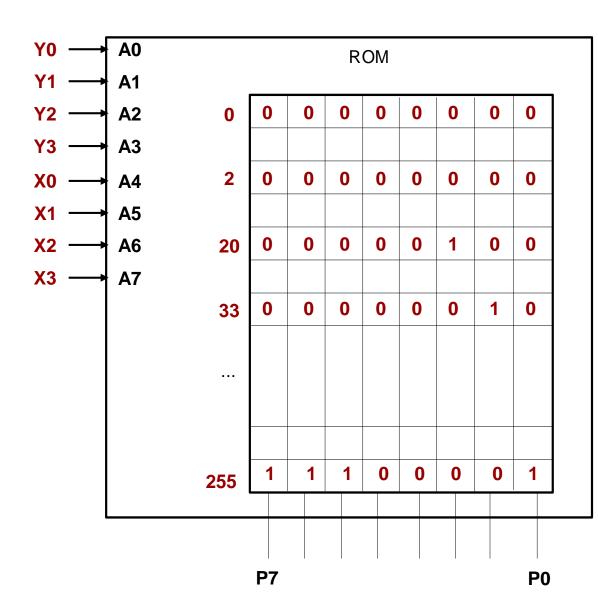
4x4 Multiplier Example

Determine the dimensions of the memory that would be necessary to implement a 4x4-bit unsigned multiplier with inputs X[3:0] and Y[3:0] and outputs P[??:0] (Question: How many bits are needed for P).

Example:

$$X_3 X_2 X_1 X_0 = 0010$$

$$Y_3Y_2Y_1Y_0=0001$$



Implementing Functions w/ Memories

- To implement a function w/ n-variables and m outputs
- Just place the output truth table values in the memory
- Memory will have dimensions: 2ⁿ rows and m columns
 - Still does not scale terribly well (i.e. n-inputs requires memory w/ 2ⁿ outputs)
 - But it is easy and since we can change the contents of memories it allows us to create "reconfigurable" logic
 - This idea is at the heart of FPGAs