
2-3.1

Spiral 2-3

Negative Logic

One-hot State Assignment

System Design Examples

2-3.2

Learning Outcomes

• I understand the active-low signal convention and how to

interface circuits that use both active-high and active-low

signals

• I can take any state diagram and create a corresponding state

machine using one-hot implementation by using one FF per

state and creating the D-input circuit by converting each

incoming transition arrow to a state into a logic gate and OR-

ing them together

• I understand how to decompose an algorithm into states for

each step and appropriate datapath units for each operator

2-3.3

NEGATIVE (ACTIVE-LO) LOGIC

2-3.4

DeMorgan Equivalents

=

=

=

=

2-3.5

Negative Logic

• Recall it is up to us humans to _______________ to the two voltage levels

– Thus, far we’ve used (unknowingly) the ___________ logic convention where

1 means true and 0 means false

– In _____________ logic 0 means true and 1 means false

volts

time

1=true/on

0=false/off

volts

time

1=false/off

0=true/on

___________ Logic

Convention

___________ Logic

Convention

(Value/Meaning) (Value/Meaning)

2-3.6

Why Active-low

• Some digital circuits are better at _________

(draining/sucking) electric current than

_____________ (producing) current

Active-hi output Active-low output

LED is on when

gate outputs '1'

LED is on when

gate outputs '0'

2-3.7

Negative Logic ‘AND’ Function

X Y Z

0 0 0

0 1 0

1 0 0

1 1 1

X Y Z

1 1 1

1 0 1

0 1 1

0 0 0

X Y Z

0 0 0

0 1 1

1 0 1

1 1 1

P.L.
AND

X

Y
Z

P.L. P.L.

P.L.

AND

X

Y
Z

N.L. AND

N.L. N.L.

N.L.
AND

X

Y
Z

N.L. N.L.

Traditional AND gate

functionality assumes

positive logic

convention

Given negative logic

signals, we can invert to

positive logic, perform the

AND operation, then

convert back to negative

logic

However, we then see that

an OR gate implements the

negative logic ‘AND’

function

Traditional

P.L. AND

N.L. AND

function

N.L. AND =

P.L. OR

2-3.8

Negative Logic ‘OR’ Function

X Y Z

0 0 0

0 1 1

1 0 1

1 1 1

X Y Z

0 0 0

0 1 0

1 0 0

1 1 1

X Y Z

1 1 1

1 0 0

0 1 0

0 0 0

Traditional OR gate

functionality assumes

positive logic

convention

Given negative logic

signals, we can invert to

positive logic, perform the

OR operation, then convert

back to negative logic

However, we then see that

an AND gate implements

the negative logic ‘OR’

function

Traditional

P.L. OR

N.L. OR

function

N.L. OR =

P.L. AND

P.L.
OR

X

Y
Z

P.L. P.L.
P.L.
OR

X

Y
Z

N.L. OR

N.L. N.L.

2-3.9

Negative Logic

A negative logic OR function is equivalent to an AND gate

=

=

A negative logic AND function is equivalent to an OR gate

These are the preferred way of showing the N.L. functions because the inversion

bubbles explicitly show where N.L. is being converted to P.L. and the basic gate

schematics retain their meaning (when we see an AND gate we know we’re doing some

king of AND function with the bubbles indicating N.L.)

2-3.10

Active-hi vs. Active-low

• Active-hi convention

– 1 = on/true/active

– 0 = off/false/inactive

• Active-low convention

– 0 = on/true/active

– 1 = off/false/inactive

• To convert between conventions

– ___________________

2-3.11

Enables

1

0

0

0

0

0

0

When E=0,
inputs is
ignored

1

0

0

1

0

0

1

Since E=1,
outputs will
function normally

Since E=0,
all outputs = 0

When E=1,
inputs will cause the
appropriate output to

go active

2-3.12

Decoder w/ Active Low Enable and Outputs

A

B

/D0

/D1

/D2

/D3
/E

Enable
Bubbles and signals starting with a

slash '/' indicate an active-low input

or output…not an inverter…the

inverters are actually in the logic

diagram on the next pages…

2-3.13

Active-Lo Outputs

When E=inactive (inactive means 0), Outputs turn off (off means 1)

When E=active (active means 1), Selected outputs turn on (on means 0)

2-3.14

Active-Lo Enable

When E=inactive (inactive means 1), Outputs turn off (off means 0)

When E=active (active means 0), Selected outputs turn on (on means 1)

2-3.15

Active-Lo Enable

When E=inactive (inactive means 1), Outputs turn off (off means 1)

When E=active (active means 0), Selected outputs turn on (on means 0)

2-3.16

Decoder w/ Multiple Enables

• When a decoder has multiple enables, all enables

________________ for the decoder to be enabled

3 Enables
/G1 must equal 0
/G2 must equal 0

and E must equal 1

2-3.17

Active Low CLR and PRESET

• The reset signal might also be active low

(0 = Reset, 1 = Normal operations)

• FFs can be made with active low /CLR & /PRE

Logic

/RESET

1

When /RESET = 0,
/CLR is activated

and Q is forced to 0

/RESET

_

_

D Q

CLK

PRE

CLR

2-3.18

Active Low CLR and PRESET

• Need to be able to initialize Q to a known value (0 or

1)

Logic

/RESET

1

When /RESET = 1,
/CLR is inactive and
Q looks at D at each

clock edge

/RESET

Q* = _

_

D Q

CLK

PRE

CLR

2-3.19

ONE-HOT STATE ASSIGNMENT

2-3.20

Digital System Representation

Main Street

Turn

Sensor

S1

Turn

Sensor

S2

Overall sensor

output

S = S1 + S2

Input
Function

Logic
(IFL)

Next State
Logic
(NSL)

State
Memory

(SM)

Output Function
Logic
(OFL)

S
S1

S2

FF
inputs

FF
outputs

O
u

tp
u

ts

Raw inputs
Conditioned

inputs

State Diagram

2-3.21

Encoded State Assignment Review
State Diagrams

1. States

2. Transition Conditions

3. Outputs

State Machine

1. State Memory => FF’s

– n-FF’s => 2n states

2. Next State Logic (NSL) +

Input Function Logic (IFL)

– combinational logic for FF inputs

3. Output Function Logic (OFL)

– MOORE: f(state)

– MEALY: f(state + inputs)

SM

NSL

OFLD Q

Q

D Q

Q

Q0

Q1

D0

D1

X

CLK

F

(Input) (Next State) (Current State)

(Output)

State Diagram for “101”

Sequence Detector

X=1

S101S10S1Sinit

X=0 X=1

X=0

X=1

F=1
X=1 X=0

X=0

On Reset

(power on)

F=0F=0F=0

State Machines require sequential logic to

remember the current state
(w/ just combo logic we could only look at the

current value of X, but now we can take 4 separate
actions when X=0)

2-3.22

State Assignment

• Design of the traffic light controller with main turn arrow

• Represent states with some binary code, but what kind?

– Encoded: 3 States => __________ : ___=SSG, ___=MSG, ___=MTG

– One-hot: Separate FF per state: ___=SSG, ____=MSG, ____=MTG

Main Street

Turn

Sensor

S1

Turn

Sensor

S2

Overall sensor

output

S = S1 + S2

State
Diagram

2-3.23

NSL Implementation in 1-Hot Method

• In one-hot assignment, NSL is

designed by simple observation

• For each state, examine each

____________ transition

– Each incoming arrow will be one case in

our logic

– We can just ____ each condition together

• Describe each transition as a

combination of what state it

originates from & any associated

conditions

• Ex. Two arrows converge on MS:

“QMS should be ‘1’ on the next clock

when…

– Current state is _____...OR…

– Current state is ____AND _____

QSS QMT QMS

SS 1 0 0

MT 0 1 0

MS 0 0 1

One-hot State Assignment

2-3.24

NSL Implementation in 1-Hot Method

• Two arrows converge on MS:

“QMS should be ‘1’ on the next

clock when…

– Current state is MT ...OR…

– Current stat is SS AND S=0

• Q*MS = DMS = QMT + QSS••••S’

• Q*MT = DMT =

• Q*SS = DSS =

• What about initial state? Preset

the appropriate flop.

QSS QMT QMS

SS 1 0 0

MT 0 1 0

MS 0 0 1

One-hot State Assignment

2-3.25

MULTIPLICATION TECHNIQUES

Array Multiplier (Combinational)

Add and Shift Method (Sequential)

2-3.26

Multiplication Techniques

• A multiplier unit can be

– Purely Combinational: Each partial product is

produced in ____________ and fed into an

_______ of adders to generate the product

– Sequential and Combinational: Produce and add 1

partial product at a time (_______________)

2-3.27

Combinational Multiplier Analysis

• Large Area due to ____________-bit adders

– n-1 because the first adder adds the first two

partial products and then each adder afterwards

adds one more partial product

• Propagation delay is in two dimensions

– proportional to ________

2-3.28

Add and Shift Method

• Sequential algorithm

• n-bit * n-bit multiply

• Adds 1 partial product per clock

• Shift running sum 1-bit right each clock

• Three n-bit Registers, 1 Adder

• At start:

– M = Multiplicand

– Q = Multiplier

– A = Answer => initialized to 0

• After completion

– A and Q concatenate to form 2n-bit answer

2-3.29

0 0

1010

C A Q

0

M

Cout

Cin

0

1010 = M

* 1011 = Q

Add and Shift Hardware

0 0 0 1 0 1 1

2-3.30

Add and Shift Algorithm

• C=___, A=____

• Repeat the following _____________

– If Q[0] = 0, A = _______

Else if Q[0] = 1, A= ______

– Shift _____ 1-bit (0→___________)

2-3.31

1010

* 1011

2-3.32

0 0

1010

C A Q

0

M

Cout

Cin

0

C A Q

1010 = M

* 1011 = Q

Add and Shift Multiplication

00000 1011

0 0 0 1 0 1 1

M = 1010

01101110 = Ans

2-3.33

1010

C A Q

0

M

Cout

Cin

0

C A Q

1010 = M

* 1011 = Q

Add and Shift Multiplication

00000 1011

Add1010 10110

Shift0101 01010

Add1111 01010

Shift0111 10100

No Add0111 10100

Shift0011 11010

1010

* 1011

0

0 0 1 1 0 1 1 1 0

Final Product

Add1101 11010

Shift0110 11100

0110 1110 11010=

Finished

M = 1010

+ 1010---

01101110

+ 0000--

0011110

+ 1010

+ 1010-

011110

1010
01101110 = Ans

2-3.34

1101 * 0101 Example

C=0

M=1101

A=0000 Q=0101 Description

0 1101 0101 A=A+M

Shift Right C,A,Q

A=A+0

Shift Right C,A,Q

A=A+M

Shift Right C,A,Q

A=A+0

Shift Right C,A,Q

0 0

1101

C A Q

0

M

Cout

Cin

0

0 0 0 0 1 0 1

2-3.35

Sequential Multiplier Analysis

• Pros:

– ______________________________________

• Cons:

– ______________________________________

2-3.36

Digital System Design

• Control and Datapath Unit paradigm

– Separate logic into datapath elements that operate on data and

control elements that generate control signals for datapath elements

– Datapath: Adders, muxes, comparators, counters, registers (w/

enables)

– Control Unit: State machines/sequencers

Datapath

Control

…

…

Control
Signals

Condition
Signals

Data
Inputs

Data
Outputs

clk
reset

2-3.37

Let's Practice our Design Skills

• Break design into control and datapath

– This is the datapath

– 1 Adder

– 2-to-1 mux

– 2 shift registers (A/Q)

– 1 normal reg (M)

– 1 FF w/ Enable (C)

0 0

1010

C A Q

0

M

Cout

Cin

0

0 0 0 1 0 1 1

2-3.38

State Machine Control

• From our high level datapath we can arrive at

a high-level state diagram

2-3.39

Refining our Design

• But now we need to refine our design to

actual components, specific control bits, etc.

2-3.40

Sample Shift Register
• Shift registers come in

many flavors, we'll just look
at one example

• 4-bit Bi-directional Shift
Register
– RST: synchronous reset

– S[1:0]: Hold, Right Shift, Left
Shift, or Load

– DSL and DSR
• Data to shift in from left or right

CLK ACLR S1 S0 Q*[3:0] (case)

0,1 X X X Q[3:0]

 ↑ 1 X X 0000 Reset

 ↑ 0 0 0 Q[3:0] Hold

 ↑ 0 0 1 DSR,Q[3:1] Right

 ↑ 0 1 0 Q[2:0],DSL Left

↑ 0 1 1 D[0:3] Load

2-3.41

Shift Registers

2-3.42

Complete the DataPath
Assume you build

the state machine

below and

produce 4-signals

that tell us which

state we are in:

• Qwait

• Qadd

• Qsh

• Qdone

2-3.43

SIMPLE & PRIORITY ENCODERS

2-3.44

Encoders

• Another common datapath component

• Opposite function of decoders

• Takes in 2n inputs and produces an n-bit

number

0

0

0

0

1

0

0

0

0

0

1

Assume One

active input

That number input

gets encoded in

binary

410

Binary

Encoder

I1

I2 Y0

Y1

Y2

I0

I3

I4

I5

I6

I7

2-3.45

Encoders

• What’s inside an encoder?

I0 I1 I2 I3 I4 I5 I6 I7 Y2 Y1 Y0

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

Deriving equations for Y0, Y1, Y2 is made simpler

because of the assumption that only 1 input can be

active at a time.

Binary
Encoder

I1

I2 Y0

Y1

Y2

I0

I3

I4

I5

I6

I7

2-3.46

Encoders

• What’s inside an encoder?

I0 I1 I2 I3 I4 I5 I6 I7 Y2 Y1 Y0

1 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 1

0 0 1 0 0 0 0 0 0 1 0

0 0 0 1 0 0 0 0 0 1 1

0 0 0 0 1 0 0 0 1 0 0

0 0 0 0 0 1 0 0 1 0 1

0 0 0 0 0 0 1 0 1 1 0

0 0 0 0 0 0 0 1 1 1 1

Y2 = ________________

Y1 = ________________

Y0 = ________________

Binary
Encoder

I1

I2 Y0

Y1

Y2

I0

I3

I4

I5

I6

I7

2-3.47

Encoders

• A simple binary encoder can be made with

just ________ gates

2-3.48

Problems

• There is a problem…

– Our assumption is that only 1 input can be active

at a time

– What happens if 2 or more inputs are active or if 0

inputs are active

2-3.49

2 or More Active Inputs

• What if I5 and I2 are active

at the same time?

– Substitute values into

equation

• Output will be ‘111’ = 7

• Output is neither 2 nor 5,

it’s something different, 7

0

0

1

0

0

1

0

0

Y2 = I4 + I5 + I6 + I7

Y1 = I2 + I3 + I6 + I7

Y0 = I1 + I3 + I5 + I7

Binary
Encoder

I1

I2 Y0

Y1

Y2

I0

I3

I4

I5

I6

I7

2-3.50

0 Active Inputs

• What if no inputs are active?
– Substitute values into equation

• Output will be _________________

• Problem: ‘000’ means that input 0 was active
– Can’t ______________________ between when ‘000’ means input 0 was

active or no inputs was active

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

Binary
Encoder

I1

I2 Y0

Y1

Y2

I0

I3

I4

I5

I6

I7

Binary
Encoder

I1

I2 Y0

Y1

Y2

I0

I3

I4

I5

I6

I7

2-3.51

Priority Encoders

• Fix the 2 problems seen above

• Problem of more than 2 active inputs
– Assign priority to inputs and only encode the highest priority active input

• Problem of zero active inputs
– Create an extra output to indicate if any inputs are active

– We will call this output the “Valid” output (/V)

0

0

1

0

0

1

0

0

1

0

1

0

If multiple inputs are
active only the highest

priority active input
(I5) is encoded

Highest
priority

Lowest
priority

/ V = Valid (a.k.a
/EO=Enabled Output)
is active if ANY inputs

are active

2-3.52

Priority Encoders

• Fix the 2 problems seen above

• Problem of more than 2 active inputs
– Assign priority to inputs and only encode the highest priority active

input

• Problem of zero active inputs
– Create an extra output to indicate if any inputs are active

0

0

0

0

0

0

0

0

0

0

0

1

No inputs are active
Output is still 000 but
/V tells us that this is
not because I0 was

active

/ V = Valid (a.k.a
/EO=Enabled Output)
is inactive if no inputs

are active

2-3.53

Encoder Application: Interrupts

• I/O Devices in a computer need to request attention from the CPU…they
need to “interrupt” the processor

• CPU cannot have a dedicated line to each I/O device (too many inputs and
outputs) plus it can only service one device at a time

Network

Card

Key-

board

Sound USB

Ctrl.
Processor

(CPU)
INTR INTR

INTRINTR

2-3.54

Encoder Application: Interrupts

• Solution: Priority Encoder

• /INT input of CPU indicates SOME device is requesting
attention

• INT_ID inputs identify who is requesting attention

Y2

I0
I1
I2
I3
I4
I5
I6
I7

/V

Y0

Y1Priority
Encoder

Network

Card

Key-

board

Sound USB

Ctrl.
Processor

(CPU)
INTR INTR

INTRINTR

/INT

INT_ID

0

0
0
0

2-3.55

Encoder Application: Interrupts

• Example: Sound and Network request interrupt at the same
time

• Network is highest priority and is encoded

• After network is handled, sound will cause interrupt

Y2

I0
I1
I2
I3
I4
I5
I6
I7

/V

Y0

Y1Priority
Encoder

Network

Card

Key-

board

Sound USB

Ctrl.
Processor

(CPU)
INTR INTR

INTRINTR

/INT

INT_ID

1

1
0

0

0
0
0

0

0

0

1

1

3

=

2-3.56

VENDING MACHINE

2-3.57

Vending Machine Controller

• Consider a vending machine that sells Coke,

Diet Coke, Sprite and Dr. Pepper

– Drinks cost ______

– Sensors indicate (for 1 clock cycle) when a user

has entered a nickel, dime, quarter, or dollar bill

– Max. input amount is ____ (beyond that the

machine is not responsible for counting)

– Individual buttons for each drink allow the user

to select their drink and if at least $1 has been

entered, a release signal for each drink should

be asserted

– Making change will be considered in a future lab

2-3.58

Digital System Design

• Control and Datapath Unit paradigm

– Separate logic into datapath elements that operate on data and

control elements that generate control signals for datapath elements

– Datapath: Adders, muxes, comparators, counters, registers (w/

enables)

– Control Unit: State machines/sequencers

Datapath

Control

Control
Signals

Condition
Signals

Data
Inputs

Data
Outputs

clk
reset

2-3.59

Money Collection & Release FSM

• Consider the state machine and datapth only

for money collection and release signal

generation
Pseudocode for collection algorithm:

2-3.60

Money Collection Datapath

2-3.61

Sample Operation Waveform

CLK

SNSR25

BTN_DP

LD

M

M >= 100

State

REL_EN

REL_DP

/RESET

