| USCViterbi@

School of Engincering

Spiral 2-2

Arithmetic Components and Their Efficient
Implementations

S (/5 Viterb{ £
Learning Outcomes

| understand the control inputs to counters

| can design logic to control the inputs of
counters to create a desired count sequence

| understand how smaller adder blocks can be
combined to form larger ones

| can build larger arithmetic circuits from
smaller building blocks

| understand the timing and control input
differences between asynchronous and
synchronous memories

| USCViterbi@

School of Engincering

DATAPATH COMPONENTS

I (/5 Viterb{ £
Digital System Design

* Control (CU) and Datapath Unit (DPU) paradigm

— Separate logic into datapath elements that operate on data and
control elements that generate control signals for datapath elements

— Datapath: Adders, muxes, comparators, counters, registers (shift, with
enables, etc.), memories, FIFO’s

— Control Unit: State machines/sequencers

clk —> Control
reset ——
Control . | Condition
Signals Signals
Datapath
Data Data
Inputs — | [~ Outputs

—>

| USCViterbi@

School of Engincering

Detecting Overflow Helps Us Perform Comparison

OVERFLOW & COMPARISON

] USCViterbi
Overflow

School of Engincering

» Overflow occurs when the result of an
arithmetic operation is to be
represented with the given number of bits

— Unsigned overflow occurs when adding or
subtracting unsigned numbers

— Signed (2’s complement overflow) overflow occurs
when adding or subtracting 2’s complement
numbers

— 5 Viterh{ 22
Unsigned Overflow

Overflow occurs when you cross
this discontinuity

0

10+7=17

With 4-bit unsigned numbers we
can only represent 0 — 15. Thus,
we say overflow has occurred.

| USCViterbi

School of Engincering

2’s Complement Overflow

5+7=+12
-6+-4=-10

With 4-bit 2’s complement
numbers we can only represent
-8 to +7. Thus, we say overflow

has occurred.

Overflow occurs when you cross this
discontinuity

| USCViterbi@
Testing for Overflow

School of Engincering

* Most fundamental test

— Check if answer is
negative)

* Unsigned overflow test [Different for add or sub]
— Addition: If carry-out of final position equals
— Subtraction: If carry-out of final addition equals

* Signed (2’s complement) overflow test [Same for add
or sub]
— Only occurs if

— Alternate test: if
are different

(i.e. Positive + Positive yields a

of final column

| USCViterbi

School of Engincering

Testing for Unsigned Overflow

* Unsigned Overflow has occurred if...
— Unsigned Addition: If final carry-out=___
— Unsigned Subtraction: If final carry-out=__

1011 1011
+ 0110 + 0011
1011 0110
- 0110 - 1011

| USCViterbi@

School of Engincering

Testing for 2’s Comp. Overflow

* 2’s Complement Overflow Occurs If...
— Test 1: If pos. + pos. = neg. or neg. + neg. = pos.

— Test 2: If carry-in to MSB position and carry-out of MSB
position are different

0101 (5) 1100 (-4)
+ 0110 (6) + 1001 (-7)
0011 (3) 1110 (-2)
+ 0010 (2) + 1010 (-6)

| USCX&teri
Checking for Overflow
* Produce additional outputs to indicate if

unsigned (UOV) or signed (SOV) overflow
has occurred

| | | | ! ! ! |
X Y X Y X Y X Y
' c. ., Full Ci, c., Full G c. ., Full G c. ., Ful Ci, [—
" Adder * Adder ' Adder " Adder
S S S S
! ! ! !

| USCViterbi@

School of Engincering

COMPARISON

| USCViterbi

School of Engincering

Comparison Via Subtraction

* Suppose we want to compare two numbers: A & B
* Suppose we let DIFF = A-B...what could the result tell
us
— If DIFF < 0, then
— If DIFF =0, then
— IF DIFF > 0, then
* How would we know DIFF == 0?
— If all bits of our answer

* How would we know DIFF < O (i.e. negative)?
— Signed: ! (but what about overflow)

— Unsigned: Huh? In unsigned there are no negative results

| USCViterbi@

School of Engincering

Computing A<B from "Negative" Result

Unsigned Signed
* Perform A-B * Perform A-B
* If A-B would yield a negative * If there is no overflow (V=0),
result, this will appear as simply check if
inanunsigned « But if there is overflow??

— Recall overflow has the effect of
flipping the sign of the result to
the opposite of what it should be.

subtraction

* And we know unsigned
subtraction overflow occurs
if * Soif there is overflow (V=1)

« So just check if check is (i.e. positive)

e Summary: A-B is "truly"
negative if:

Unsigned Comparator

* A comparator can be built by using a subtractor

— A=B
A
DIFF[3:0]
Res[3:0]
Subtractor
B
— B[3:0] ¢4
— A<B

— 5 Viterh{
Signed Comparator

e A comparator can be built by using a subtractor

— A=B
A
A[3:0] — A>B
DIFF[3:0]
Res[3:0]
Subtractor
B
B3:0] ¢4
— A<B

| USCX&terbi
Summary

* You should now be able to build:
— Fast Adders
— Comparators

| USCViterbi@

School of Engincering

ADDER TIMING

| USCViterbi

Addition — Full Adders

* Be sure to connect first C to O

0110 = X
+ 0111 =
0 0 1 1 1 1 0 1
1]] ! ! ! !]
X Y X % X % X Y
' c. ., Full Ci, c., Full G c. ., Full G c. ., Ful Cpl—0
" Adder " Adder * Adder " Adder
s s S S

| USC\ﬁterbi@
Timing

* A chain of full adders presents an interesting timing analysis
problem

* To correctly compute its own Sum and Carry-out, each full
adder requires the carry-out bit from the full adder

* Because hardware works in parallel, the full adders further

down the chain may produce the
outputs because the carry has not had time to

to them
!]] ! ! ! !]
X Y X % X \% X \%
« C C © ull (G © ull C ul ¢ l—o0
O A dder™~ P Adder™~— P Adder™~ PAdder "
S S S S
! | ! !

| USCX&terbi
Timing Example

* Assume that we were adding one set of inputs and
then change to a new set of inputs:

| oid inputs: [V | New inputs: [EERERI

0010 =X 1111 = X
+ 0001 =Y + 0001 =
m 0011 0000
0 0 0 0 1 0 0 1
| | | ! ! ! ! |
X Y X Y X Y X Y
0 0 1] 0
D C0u1 i Cin Cout . C'\n Cout L] Cin Coul il Cin “— 0
Add Adder Adder Adder
S S S S
v v ' '
0 0 1 1

| USCViterbi@

School of Engincering
T . .

* At the time just before we enter the new
input values, all carries are 0’s

(o npus: RTINS

0010 =X Time
+ 0001 =Y -1
oidinpurs: TR
0 0 0 0 1 0 0 1
} | |]] | | |
X Y X Y Y X Y
40_ Full . 0 Fu] 0 Full 0 Fu l—o0

DU‘Adder n OUtAdder n OUtAdder n OulAdder n

S S S S

} Il ! }

| USCX&teri
Timing

* Now we enter the new inputs and all the FA’s
starting adding their respective inputs

1111
1111 = X .
Time
+ 0001 =Y 0
0000
1 0 1 0 1 0 1 1
| ! ! ! ! ! ! |
X Y X Y X Y X Y
' 0 C Full C. 0 © Full C. 0 © Full @) 0 C Full C. l—o0
DulAdder n OUtAdder n OUtAdder n OulAdder n
S S S S
! ! ! !

Due to propagation delay, the carries are still from the old inputs

| USC\ﬁterbi@
Timing

* Each adder computes from the current inputs (notice the
sum of 1110 is incorrect at this point)

1111
1111 = X Time
+ 0001 =Y 1
0000
1 0 1 0 1 0 1 1
! | | | ! |
X Y X Y X Y
0 0 0 1
D CcJut L Cin Cout Ll Ci, Cout Ll Cin 0
Add Adder Adder
S S S
! ! !
1 1 1 0

Now the carries are all based off the new inputs

| USCX&terbi
Timing

* The carry is “rippling” through each adder

1111
1111 = X Time
+ 0001 =Y 2
0000
1 0 1 0 1 0 1 1
! | | |
X Y X Y
0 0 1
D Cout Ll Cin Cout 1 Ci, out 0
Adder Add Adder
S S S
! !
1 1 0 0

I USC Viterbi 22
Timing

» The carry is “rippling” through each adder

1111
1111 = X .
Time
+ 0001 =Y 3

0000
1 0 1 0 1 0 1 1
| |
X Y

40_ c.. Ful ¢ ! 0
ou1Aclcler in
S

I USC Viterbi 222
Timing

* Only after the carry propagates through all the adders is the
sum valid and correct

1111
1111 = X .
Time
+ 0001 =Y 4
0000
1 0 1 0 1 0 1 1

— 5 et
“Ripple-Carry” Adder

time ——

* The longest path through a

chain of full adders is the C1 (_{ Cany ripples through
carry path co
* We say that the carry ~
“ ” through the ©3 N
adder ca
1 0 1 0 1 0 1 1
! ! ! ! | ! ! !
X Y X \ X Y X Y
1 1 1 1
D Cou1 Ll Cin Cout Ll Cin Cout Lol Cin Coul LAl Cin 0
c, Adder C, Adder C, Adder c, Adder C,
S s S S
! ! ! !
0 0 0 0

e USCV1terb1
Ripple Carry Adder Delay

* An n-bit ripple carry adder has a worst case
delay proportional to

10 1 0 1 0 11
| | | | ! ! ! |
X Y XY XY X Y
1 Full ! Full 1 Full 1 Full 0
—c c c c c c c Ci [
DUlAdd n UUtAdder n OUtAdde n OUtAdder n
s s s s
v v ' v
0 0 0 0

I USC Viterbi22
Glitches

. , output values
due to arrival times of gate
inputs

e USCV1terb1
Output Glitches

Glitch = “momentary,
)/iincorrect output value”

* Delay of the carry

causes glitches on the s3__
sum bits 1
Inputs change Correct carry
. . fi finall i
* Glitch = momentarily, 001040001 sothat
. to correct sum
Incorrect output value 1111 + 0001 will be
generated
early
| | | | ! | ! |
X Y late X Y ; X Y ; X Y
Cout trll Cin 1 Cout Ll Cln Cout Ll Cln Cout lém Cln 0
Add. Adder Add Add
S S S S
! v v v

| USCViterbi@

Critical Path

e Critical Path =

|

l

l

Assume tg,,, = 5 ns,

l

teary= 4 ns

|

|

|

School of Engincering

|

possible delay path

X Y X Y X Y X Y
16 ns | 12ns .| 8ns .| 4ns .
«—— CO FA Ci |¢reeeres Co FA Ci |reeeeenes Co FA Ci |reeeeeees Co FA Cile—
S S S S
; | | |
17 ns 13 ns 9ns 5ns

L S Critical Path

| USCViterbi

School of Engincering

MULTIPLIERS

| USCViterbi@

School of Engincering

Unsigned Multiplication Review

* Same rules as decimal multiplication
* Multiply each bit of Q by M shifting as you go

* An m-bit * n-bit mult. produces an bit result

(i.e. n-bit * n-bit produces bit result)
* Notice each partial product is a shifted copy of M or 0 (zero)

1010 M
* 1011 O

(Multiplicand)
(Multiplier)

| USCViterbi

School of Engincering

Signed Multiplication Techniques

* When adding signed (2’s comp.) numbers, some new

issues arise
¢ Must
1001 = -7 1001 = -7
* 0110 = +6 * 0110 = +6

| USCViterbi@

School of Engincering

Signed Multiplication Techniques

* Also, must worry about negative multiplier
— MSB of multiplier has negative weight

— If MSB=1,
1100 = -4 1100 = -4
* 1010 = -6 * 1010 = -6

i (/5 Vierbi <1
Combinational Multiplier

* Partial Product (PP,) Generation
— Multiply Q[i] * M
. ifQ]=0=>PP,=
. ifQlil=1=>PP,=__

_USCViterbi@
Combinational Multiplier

School of Engincering

* Partial Product (PP,) Generation
— Multiply Q[i] * M

. ifQ[i]=0=>PP,=___
. ifQi]=1=>PP,=___
- gates can be used to generate each partial
product
M[B] M2l M[1] M[0] M3l M[2] M[1] M[0]

‘||||f ‘||||f
I T T T Q[i]=0 I T T T Qfil=1

| USCViterbi
Multiplication Overview

School of Engincering

* Multiplication approaches:

— Sequential: Shift-and-Add produces one product bit per clock cycle time
(usually slow)

— Combinational: Array multiplier uses an array of adders
¢ Can be as simple as N-1 ripple-carry adders for an NxN multiplication

0

m3 m2 ml m0
m3-q0 m2-q0 m1-q0 m0-q0

at X 93 g2 gl g0
m3g0 m2g0 mlg0 mOqO
ot m3gl m2ql mlgl mOql {

B
_% m3q2 m2g2 mlg2 m0g2 l:
A0

&

m3-q1
Q2

m3-q2

@ + m3g3 m2g3 mlg3 m0qg3 4
p7 p6 p5 p4 p3 p2 pl poO

9@

ealies
el

m3-q3 m2-q3 m1-q3 mo-q3

AND Gate Array produces partial
product terms

S — 5 Vit
Combinational Multiplier

 Partial Products must be added together

* Combinational multipliers require long
propagation delay through the adders

— propagation delay is proportional to the number
of partial products (i.e. number of bits of input)
and the width of each adder

N (5 Vite{€2
Array Multiplier

390 240 m1q0 m0qo
Can this be a HA? m3q1 T m2q1 " lq miq1 " |q mog1 4 .
1 1 1 |
X Y X Y X Y X Y
Co Fa Cit——Co Fa Ci|—Co ra Ci|—Co HA
S S S
m3q2 m2q2 L‘ quZL‘ mezL‘
1 1 | |
X Y X Y X Y X Y
Co FA Ci|——Co Fa Ci|—Co FAa Ci}—Co HA
S S S S
m3q3 mQQSL‘ m1qeL‘ qusL‘
| | | |
X Y XY X Y XY
Co FA Ci|——Co Fa Ci}|—Co Fa Ci|——Co HA
S S S S
Pl PIe) P15 Pl4] PI3] PL2) P[1] Pl0]

* Maximum delay =
— Do you look for the longest path or the shortest path between any input and output?
— Compare with the delay of a shift-and-add method

— 5 Viterh{
Adder Propagation Delay

1111
+ 0001

[| | | | | | |

X Y X Y X Y X Y

] USCWtCFb_i
Critical Path

* Critical Path = Longest possible delay path

Assume tg,,, = 5 ns,

S

CoFA Cil—0

CoFA Cil20

S

CoFA Cil20

S

CoFA C
S

l«—0

l

l

l

l

tcarry=4ns
| | | | | | I
X Y X Y X Y X Y
16 ns .| 12ns .| 8ns .| 4ns .
«— COFA Cilermmen COFA Ci [qeeesenn COFA Ci lqweereeeennn CoFA GCile—
S S S S
: | | |
17 ns 13 ns 9ns 5ns

Critical Path

— 5 Vit
Combinational Multiplier

l l i i
i l i i

USC Viterbi@2

School of Engincering

Critical Paths

€ Critical Path 1
D REEEN Critical Path 2

| USCViterbi@

School of Engincering

Combinational Multiplier Analysis

-bit adders

— n-1 because the first adder adds the first two
partial products and then each adder afterwards
adds one more partial product

* Large Area due to

* Propagation delay is in two dimensions
— proportional to

USC Viterhi@2*®

School of Engincering

Pipelined Multiplier

* Now try to pipeline the previous design

m3g2 m2q2 mig2 mog2
m3as m2as; "'1?32 m3q1m°?3§ m2q1 m3q0 mg1 m2q0 mog1 mig0 M0G0
| | | | | | | |
[]
T | — | — 1
X X Y X Y X Y
Co HA Y [=—HCo Fa Cif—=—Co Fa Ci|—Co HA
| S S S S
T T T I
[]
...... | T |—l .mm: |—l O |—l
X Y X Y X Y X Y
Co Fa Ci|+——Co Fa Ci|+—Co Fa Ci|——Co HA
| S S S S
T T T T
| | |—l |—l |—l |
X Y X Y X Y X Y
Co Fa Ci|—Co Fa Ci|—Co Fa Ci|—Co HA
I_ S S S S
T T T T
[]
T T T T
PI7] PI6] PI5] P4] P[3] PI2] P[] PI0]

Determine the maximum stage delay to decide the pipeline clock rate.
Assume zero-delay for stage latches. How does the latency of the pipeline compare with the simple

combinational array of the previous stage?

USC Viterbi@2>

School of Engincering

Carry-Save Multiplier

* Instead of propagating the carries to the left in the same row, carries are
now sent down to the next stage to reduce stage delay and facilitate

pipelining
AB 83 O AZ BE@ C2) ANl B[Cl AW 8l CO] o ™0 m2q0) ™0 mooo
b foee} M HOS P magl | m2qt n J_ migt J mog1
XY XY XY XY J : I TTTYCY J XY J X Y J
; ') ' B
cora i deorm ciH Heorm ciH dcora ci | CSA’s —co ra ci Co Fa Ci Co Fa Ci
s s s s i s s
1 1 [I I ! 1
Cof3] s[3 Co[2 S[2) Cof1] s[1] Col0] S[O] : 1
20 ! i
2q2 1q2 02
I rakicmatiiesal
- . sug H Co Fa Ci Co Fa Ci Co Fa Ci
e : s s
Col3:0] S[3:0) 1
T T] !
H]
. 193 0g3
The upper three stages are 3-bit meas : XY j"3 X Y jq XY jq H
Carry Save Adders (CSA’s) each I Cora Ci Co Fa Ci rCo Fa Ci
with 2-gate delays. ! S S S
C r|_-- [l

The last stage is a Ripple Carry

PR ——- |
()
>
1
<
1
J_I_,';

Adder (RCA) which requires >|(\I(>|< \I(1

longer delay. It can be replaced Co Fa Gi Co fa Ci Co FA Ci 0:

by a CLA for larger multipliers. T- .T T— :
P7 Pl6] Pl5] Pl P[3) P2 P[1] P[]

| USCViterbi

Carry Save Adders
e Consider the decimal addition of
47 +96 + 58 =201
¢ One way is to add to get and
* Herethe ___ column cannot be added is produced
* Inthe carry-save style, we addthe ____ columnand _____ column

simultaneous

Fh—‘
[)JEN |

ojun

®I-‘ oo@:

USC Viterbi@2s>

School of Engincering

Carry-Save (3,2) Adders

* A carry save adder is also called a (3,2)
adder or a (3,2) counter (refer to
Computer Arithmetic Algorithms by
Israel Koren) as it takes three vectors,

+
adds them up, and reduces them to e r
arry vector,
two vectors, namely a sum vector and a s
um vector
carry vector
* (CSA’s are based on the principle that
carries do not have to be added
A[3] B[3] C[3] A[2] B[2] C[2] A[1] B[1] C[1] A[0] B[0] C[0]
, but can be
. Co FA Co FA Co FA Co FA
combined
clé] s[3 c[3) S[2] Cl21 s cn S[ll)]

* An n-bit CSA consist of n disjoint full
adders

| USCViterbi

School of Engincering

Carry-Lookahead Adders

FAST ADDERS

— 5 Vit
Ripple Carry Adders

* Ripple-carry adders (RCA) are slow due to
carry propagation
— At least 2 levels of logic per full adder

=

| USCViterbi

Fast Adders

* Rather than calculating one carry at a time and passing it
down the chain, can we compute a group of carries at the

same time
* To do this, let us define some new signals for each column of
addition:
- p;= : This column will propagate a carry-in (if there is

one) to the carry-out.
p;is true when A, or B;is 1 => p, =
- g= : This column will generate a carry-out whether or
not the carry-inis ‘1’
g;is true when A;and B;is 1 =>g; =
* Using these signals, we can define the carry-out (c,,) as:

Ciy1 =

USCViterbi®22
Carry Lookahead Logic

* Define each carry in terms of p,, g and the
initial carry-in (c,) and not in terms of carry
chain (intermediate carries: c1,c2,c3,...)

e cl=
* Cc2=
e c3 =
e c4 =

| USCViterbi

School of Engincering

Carry Lookahead Analogy

* Consider the carry-chain like a long tube broken into
segments. Each segment is controlled by a valve
(propagate signal) and can insert a fluid into that
segment (generate signal)

* The carry-out of the diagram below will be true if g1
is true or plis true and g0 is true, or p1, pO and cl is
true

Gene‘a‘e

LY yawe
Gene\'a‘e @ “)0\ Q

AN
ot e ca™

o

2

| USCViterbi@

School of Engincering

A3 B3 A2 B2 A1 B1 A0 BO Cco
[| [|

CLA4I__Tl___—ﬂ—i————ﬂ—————ﬁi-—“l |

[V}
o

SeT el T e T T e T e el T

Carry-Lookahead
Logic (CLL)

| USCViterbi

Carry Lookahead Adder

* Use carry-lookahead logic N T i
. CLA4 - - -]
to generate all the carries we e ae e
in one shot and then SN . -

create the sum

* Example 4-bit CLA shown
below

93 p3 92 p2 91 pl_ a0 p0 GO

* How many levels of logic is
the adder?

I
| |
| |
| |
| |
| |
! i |
| |
| |
| |
| |
| |
|

C3 Cc2 C1
A3B3 A2B2 A1B1 A0 BO
S3 S2 B[3:0] | St S0

ca J’:[zzo]

| USCViterbi@

4-bit Adders

e 7415283 chip implements a 4-bit adder using
CLA methodology

AAAA, = A
+ B,B,B;B, = B
S,S5S,S,S, = S

I I A |

A; B; A, B, A By A By

<+~ Cout 74LS283 Cin jo—
S; S, S S

Pl

USC Viterbi@2®

School of Engincering

16-Bit CLA

¢ But how would we make a 16-bit adder?

¢ Should we really just chain these fast 4-bit adders together?
— Or can we do better?

A[15:12] B[15:12] A[11:8] B[11:8] A[7:4] B[74] A[3:0] B[3:0] co

¢¢gq¢¢%¢¢% ¢M
Cﬁu@ O e O e e

S[15:12] S[11:8] S[7:4] S[3:0]
16-bit RCADelay=__ =__ gate delays
Delay of the above adder design = =__ gates

Let us improve by looking ahead at a higher level to
produce C16, C12, C8, C4 in parallel

Define P and G as the overall Propagate and Generate

What'’s the difference
between the equation
for G here and C4 on
the previous slides

signals for a set of 4 bits
P=p3ep2epiepl
G = g3 + p3eg2 + p3ep2eg1 + p3ep2epieg0

| USCViterbi@

School of Engincering

REVIEW ON YOUR OWN FOR CLA
LAB

I (15 Viterbi &2
16-bit CLA Closer Look

* Each 4-bit CLA only propagates its overall carry-in if each of the 4 columns propagates:
— PO =p3ep2eplepd
— P1=p7ep6 ep5eps
— P2=pllepl0ep9 *p8
— P3=pl5epldepl3 epl2
* Each 4-bit CLA generates a carry if any column generates and the more significant columns
propagate
— GO =g3+(p3 *g2) + (p3 *p2 *g1)+(p3 *p2 *p1 *g0)
— G3=g15+(pl5egl4) + (pl5 epl4 egl3)+(pl5 epld epl3 egl2)
e The higher order CLL logic (producing C4,C8,C12,C16) then is realized as:
— (C4)=>C1 =GO + (PO *c0)
— (C16) => C4 = G3 + (P3 G2) + (P3 ®P2 G1) +(P3 @ P2 ® P1 GO)+ (P3 P2 ¢P1 eP0 ec0)
* These equations are exactly the same CLL logic we derived earlier

I (/5 C Viterbi 22+
16-Bit CLA

¢ Understanding 16-bit CLA hierarchy...

co
DT U0 00O UOUO50 U D
b CLL | pe CLL | o CLL | pe CLL 5
ci2 c8 ca
p3 93 3 p2 g2 2 pigl ¢1 po g0
i— S CL c0 <
e l i Delay =

=____ = Delay in producing pi,gi

=___ = Delay in producing Pi*,Gi*

=___ = Delay in producing C4,C8,C12,C16
=___ =Delay in producing c15

=___ = Delay in producing S15

I (JSC Viterbi22*)
64-Bit CLA

¢ We canreuse the same CLL logic to build a 64-bit CLA co
(000 0000 000 DDI] (000 (000 0000 OOo0 OO0 000 0000 000<—
c56 |C52 Q %40%36 Q %24%20 Q Q Q
P G CLL P G CLL P G CLL pac CLL
c48 C16 J/J ﬂ
p3 g3 c3 p2 92 c2 p1 g1 c1 p0 go
ﬁ S c0 <—

____ = Delay in producing pi*,gi*

____ = Delay in producing Pj**,Gj**

___ = Delay in producing C48

___ = Delay in producing C60

___ = Delay in producing C63

____ = Delay in producing S63
Total Delay

=___ = Delay in producing S63

Is the delay in producing s63 the same as in s35?
=___ =Delay in producing S2

=___ = Delay in producing SO

