

USC Viterbi School of Engineering

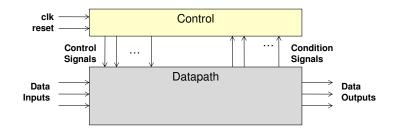
Learning Outcomes

- I understand the control inputs to counters
- I can design logic to control the inputs of counters to create a desired count sequence
- I understand how smaller adder blocks can be combined to form larger ones
- I can build larger arithmetic circuits from smaller building blocks
- I understand the timing and control input differences between asynchronous and synchronous memories

Spiral 2-2

Arithmetic Components and Their Efficient Implementations

- Control (CU) and Datapath Unit (DPU) paradigm
 - Separate logic into datapath elements that operate on data and control elements that generate control signals for datapath elements
 - Datapath: Adders, muxes, comparators, counters, registers (shift, with enables, etc.), memories, FIFO's
 - Control Unit: State machines/sequencers



DATAPATH COMPONENTS

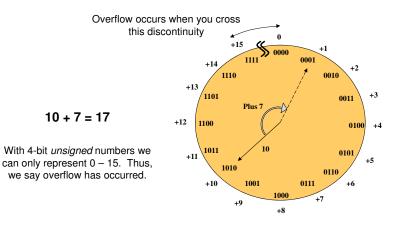
Overflow

- Overflow occurs when the result of an arithmetic operation is ______ to be represented with the given number of bits
 - Unsigned overflow occurs when adding or subtracting unsigned numbers
 - Signed (2's complement overflow) overflow occurs when adding or subtracting 2's complement numbers

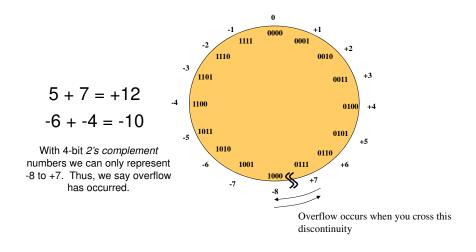
Detecting Overflow Helps Us Perform Comparison

OVERFLOW & COMPARISON

Unsigned Overflow



2's Complement Overflow



Testing for Overflow

- Most fundamental test
 - Check if answer is _____ (i.e. Positive + Positive yields a negative)
- Unsigned overflow test [Different for add or sub]
 - Addition: If carry-out of final position equals
 - Subtraction: If carry-out of final addition equals _____
- Signed (2's complement) overflow test [Same for add or sub]
 - Only occurs if _____
 - Alternate test: if ______ of final column are different

Testing for Unsigned Overflow

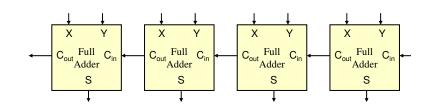
- Unsigned Overflow has occurred if...
 - Unsigned Addition: If final carry-out = ____
 - Unsigned Subtraction: If final carry-out = ____

Testing for 2's Comp. Overflow

- 2's Complement Overflow Occurs If...
 - Test 1: If pos. + pos. = neg. or neg. + neg. = pos.
 - Test 2: If carry-in to MSB position and carry-out of MSB position are different

Checking for Overflow

 Produce additional outputs to indicate if unsigned (UOV) or signed (SOV) overflow has occurred



COMPARISON

USC Viterbi School of Engineering

Computing A<B from "Negative" Result

Unsigned

- Perform A-B
- If A-B would yield a negative result, this will appear as _____in an unsigned subtraction
- And we know unsigned subtraction overflow occurs if ______
- So just check if _____

Signed

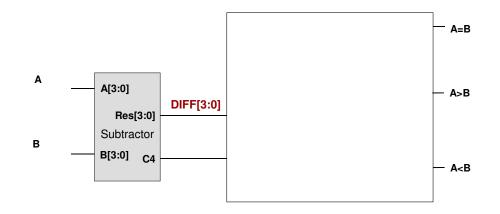
- Perform A-B
- If A-B would yield a negative result, this will appear as
 If there is no overflow (V=0), simply check if ______
 - But if there is overflow??
 - Recall overflow has the effect of flipping the sign of the result to the opposite of what it should be.
 - So if *there is overflow (V=1)* check is (i.e. positive)
 - Summary: A-B is "truly" negative if:

Comparison Via Subtraction

- Suppose we want to compare two numbers: A & B
- Suppose we let DIFF = A-B...what could the result tell us
 - If DIFF < 0, then _____</p>
 - If DIFF = 0, then _____
 - IF DIFF > 0, then _____
- How would we know DIFF == 0?
 - If all bits of our answer
- How would we know DIFF < 0 (i.e. negative)?
 - Signed: _____! (but what about overflow)
 - Unsigned: Huh? In unsigned there are no negative results

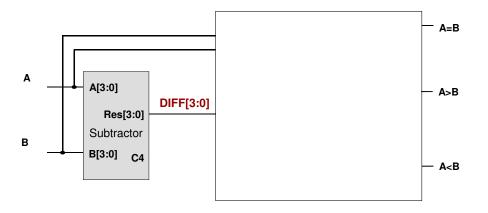
Unsigned Comparator

• A comparator can be built by using a subtractor



Signed Comparator

• A comparator can be built by using a subtractor



Summary

- You should now be able to build:
 - Fast Adders
 - Comparators

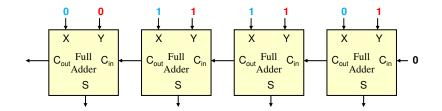
USC Viterbi 2-2.20

Addition - Full Adders

• Be sure to connect first C_{in} to 0

$$0110 = X$$

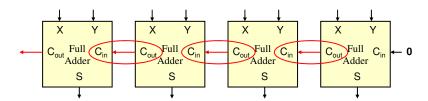
+ $0111 = Y$



ADDER TIMING

Timing

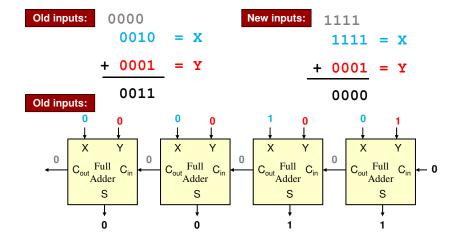
- A chain of full adders presents an interesting timing analysis problem
- To correctly compute its own Sum and Carry-out, each full adder requires the carry-out bit from the _____ full adder
- Because hardware works in parallel, the full adders further down the chain may ______ produce the _____ outputs because the carry has not had time to _____ to them



USCViterbi (2-2.22)

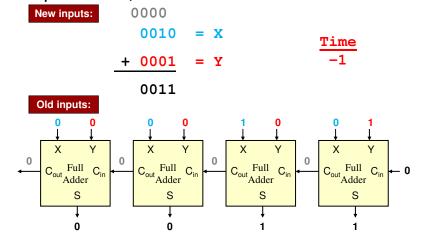
Timing Example

 Assume that we were adding one set of inputs and then change to a new set of inputs:



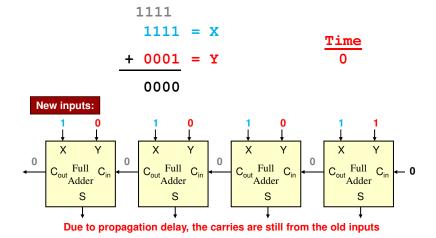
Timing

 At the time just before we enter the new input values, all carries are 0's



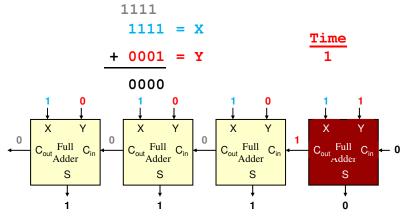
Timing

 Now we enter the new inputs and all the FA's starting adding their respective inputs



Timing

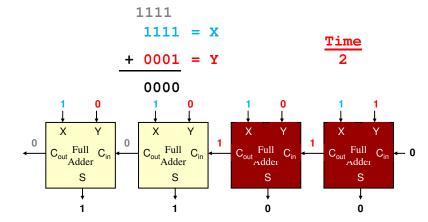
 Each adder computes from the current inputs (notice the sum of 1110 is incorrect at this point)



Now the carries are all based off the new inputs

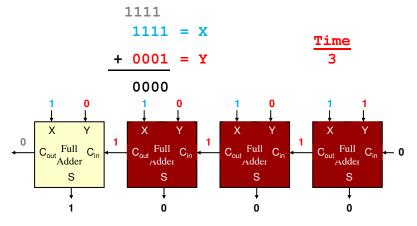
Timing

• The carry is "rippling" through each adder



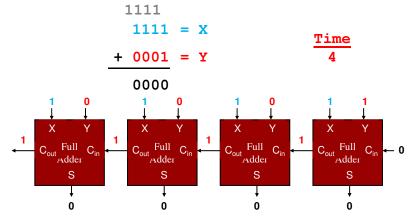
Timing

• The carry is "rippling" through each adder



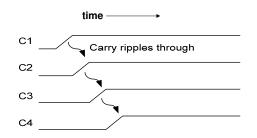
Timing

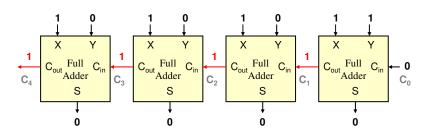
 Only after the carry propagates through all the adders is the sum valid and correct



"Ripple-Carry" Adder

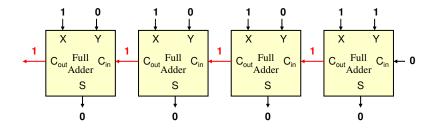
- The longest path through a chain of full adders is the carry path
- We say that the carry
 "_____" through the
 adder





Ripple Carry Adder Delay

 An n-bit ripple carry adder has a worst case delay proportional to _____

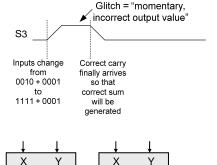


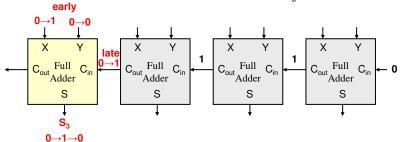
Glitches

______ output values due to _____ arrival times of gate inputs

Output Glitches

- Delay of the carry causes glitches on the sum bits
- Glitch = momentarily, incorrect output value



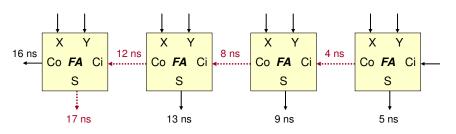


Critical Path

• Critical Path = _____ possible delay path

Assume
$$t_{sum} = 5 \text{ ns},$$

 $t_{carry} = 4 \text{ ns}$



····· Critical Path

USC Viter bi 2-2.34 School of Engineering

MULTIPLIERS

Unsigned Multiplication Review

- Same rules as decimal multiplication
- Multiply each bit of Q by M shifting as you go
- An m-bit * n-bit mult. produces an _____ bit result
 (i.e. n-bit * n-bit produces _____ bit result)
- Notice each partial product is a shifted copy of M or 0 (zero)

Signed Multiplication Techniques

- When adding signed (2's comp.) numbers, some new issues arise
- Must _____

Signed Multiplication Techniques

- · Also, must worry about negative multiplier
 - MSB of multiplier has negative weight
 - If MSB=1, _____

$$1100 = -4$$
***** $1010 = -6$

USC Viterbi (2-2.39) School of Engineering

Combinational Multiplier

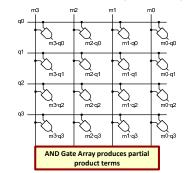
- Partial Product (PP_i) Generation
 - Multiply Q[i] * M
 - if Q[i]=0 => PP_i = ____
 - if Q[i]=1 => PP_i = ____
 - gates can be used to generate each partial product

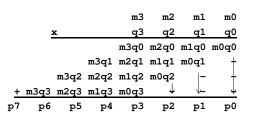
Combinational Multiplier

- Partial Product (PP_i) Generation
 - Multiply Q[i] * M
 - if Q[i]=0 => PP_i = ____
 - if Q[i]=1 => PP_i = ____

Multiplication Overview

- Multiplication approaches:
 - Sequential: Shift-and-Add produces one product bit per clock cycle time (usually slow)
 - Combinational: Array multiplier uses an array of adders
 - Can be as simple as N-1 ripple-carry adders for an NxN multiplication

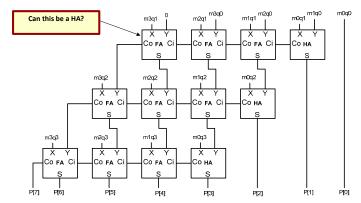




Combinational Multiplier

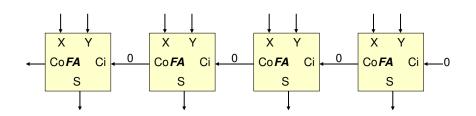
- Partial Products must be added together
- Combinational multipliers require long propagation delay through the adders
 - propagation delay is proportional to the number of partial products (i.e. number of bits of input) and the width of each adder

Array Multiplier



- Maximum delay =
 - Do you look for the longest path or the shortest path between any input and output?
 - Compare with the delay of a shift-and-add method

Adder Propagation Delay



Critical Path

Critical Path = Longest possible delay path

Assume
$$t_{sum} = 5 \text{ ns}$$
, $t_{carry} = 4 \text{ ns}$

16 ns

Co FA Ci
S
S
S
 $t_{carry} = 4 \text{ ns}$

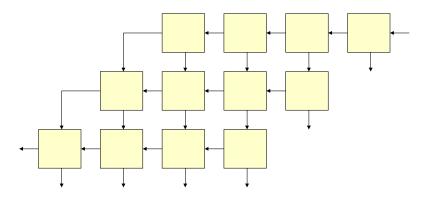
Co FA Ci
S
S
 $t_{carry} = 4 \text{ ns}$

OFA Ci
S
S
 $t_{carry} = 4 \text{ ns}$

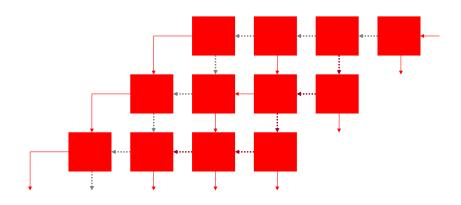
OFA Ci
S
 $t_{carry} = 4 \text{ ns}$
S
 $t_{carry} = 4$

← Critical Path

Combinational Multiplier



Critical Paths



Critical Path 1

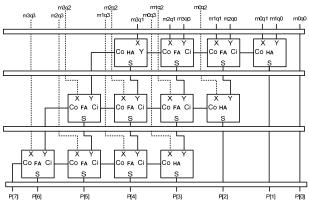
◆ Critical Path 2

Combinational Multiplier Analysis

- Large Area due to ______-bit adders
 - n-1 because the first adder adds the first two partial products and then each adder afterwards adds one more partial product
- Propagation delay is in two dimensions
 - proportional to _____

Pipelined Multiplier

• Now try to pipeline the previous design

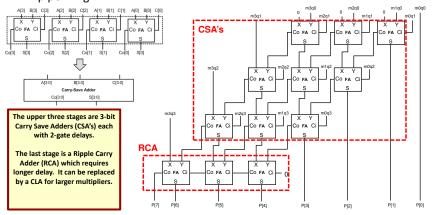


Determine the maximum stage delay to decide the pipeline clock rate.

Assume zero-delay for stage latches. How does the latency of the pipeline compare with the simple combinational array of the previous stage?

Carry-Save Multiplier

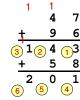
Instead of propagating the carries to the left in the same row, carries are now sent down to the next stage to reduce stage delay and facilitate pipelining

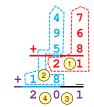


Carry Save Adders

Consider the decimal addition of

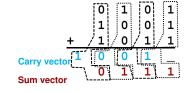
- One way is to add ______ to get ____ and _____
- Here the column cannot be added is produced
- In the carry-save style, we add the ____ column and ____ column simultaneous





Carry-Save (3,2) Adders

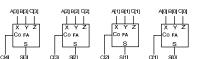
• A carry save adder is also called a (3,2) adder or a (3,2) counter (refer to Computer Arithmetic Algorithms by Israel Koren) as it takes three vectors, adds them up, and reduces them to two vectors, namely a sum vector and a carry vector



• CSA's are based on the principle that carries do not have to be added combined

• An n-bit CSA consist of n disjoint full

adders

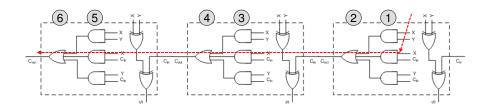


Carry-Lookahead Adders

FAST ADDERS

Ripple Carry Adders

- Ripple-carry adders (RCA) are slow due to carry propagation
 - At least 2 levels of logic per full adder



Fast Adders

- Rather than calculating one carry at a time and passing it down the chain, can we compute a group of carries at the same time
- To do this, let us define some new signals for each column of addition:

-	p _i =: This column will propagate a carry-in (if there is
	one) to the carry-out.
	p_i is true when A_i or B_i is 1 => p_i =
_	g _i =: This column will generate a carry-out whether or
	not the carry-in is '1'
	g_i is true when A_i and B_i is 1 => g_i =

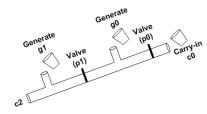
• Using these signals, we can define the carry-out (c_{i+1}) as:

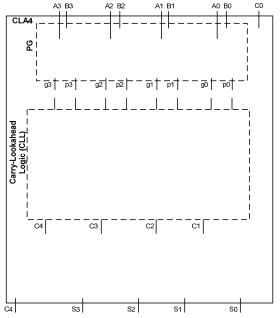
Carry Lookahead Logic

- Define each carry in terms of p_i, g_i and the initial carry-in (c₀) and not in terms of carry chain (intermediate carries: c1,c2,c3,...)
- c1 =
- c2 =
- c3 =
- c4 =

Carry Lookahead Analogy

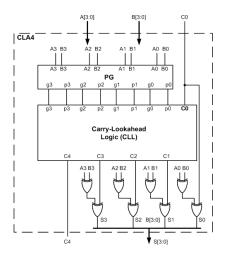
- Consider the carry-chain like a long tube broken into segments. Each segment is controlled by a valve (propagate signal) and can insert a fluid into that segment (generate signal)
- The carry-out of the diagram below will be true if g1 is true or p1 is true and g0 is true, or p1, p0 and c1 is true





Carry Lookahead Adder

- Use carry-lookahead logic to generate all the carries in one shot and then create the sum
- Example 4-bit CLA shown below
- · How many levels of logic is the adder?

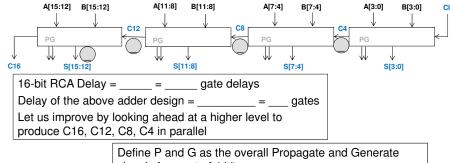


4-bit Adders

• 74LS283 chip implements a 4-bit adder using **CLA** methodology

16-Bit CLA

- But how would we make a 16-bit adder?
- Should we really just chain these fast 4-bit adders together?
 - Or can we do better?



What's the difference between the equation for G here and C4 on the previous slides

signals for a set of 4 bits

 $G = g3 + p3 \cdot g2 + p3 \cdot p2 \cdot g1 + p3 \cdot p2 \cdot p1 \cdot g0$

REVIEW ON YOUR OWN FOR CLA LAB

16-bit CLA Closer Look

- Each 4-bit CLA only propagates its overall carry-in if each of the 4 columns propagates:
 - P0 = p3• p2 •p1 •p0
 - P1 = p7• p6 •p5 •p4
 - P2 = p11• p10 •p9 •p8
 - P3 = p15• p14 •p13 •p12
- Each 4-bit CLA generates a carry if any column generates and the more significant columns propagate
 - G0 = g3 + (p3 \bullet g2) + (p3 \bullet p2 \bullet g1)+(p3 \bullet p2 \bullet p1 \bullet g0)
 - _
 - $G3 = g15 + (p15 \cdot g14) + (p15 \cdot p14 \cdot g13) + (p15 \cdot p14 \cdot p13 \cdot g12)$
- The higher order CLL logic (producing C4,C8,C12,C16) then is realized as:
 - (C4) =>C1 = G0 + (P0 •c0)

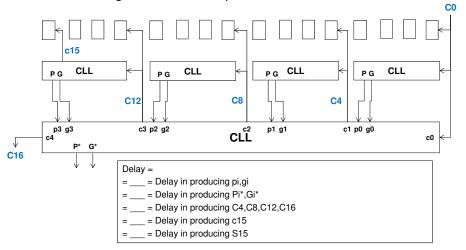
= ___ = Delay in producing S2

= ___ = Delay in producing S0

- ..
- (C16) => C4 = G3 + (P3 \bullet G2) + (P3 \bullet P2 \bullet G1) + (P3 \bullet P2 \bullet P1 \bullet G0) + (P3 \bullet P2 \bullet P1 \bullet P0 \bullet C0)
- · These equations are exactly the same CLL logic we derived earlier

16-Bit CLA

Understanding 16-bit CLA hierarchy...



64-Bit CLA

• We can reuse the same CLL logic to build a 64-bit CLA 0000 0000 C40 C36 C12 C8 **C60** C56 C44 C28 C24 CLL CLL PG CLL CLL C48 C32 C16 CLL c2 p3 g3 c3 p2 g2 p1 g1 c1 p0 g0 c0 = ___ = Delay in producing S63 = Delay in producing pi*,gi* = Delay in producing Pi**, Gi** Is the delay in producing s63 the same as in s35?

= ___ = Delay in producing C48

= ___ = Delay in producing C60

= Delay in producing C63

= Delay in producing S63

Total Delay