
2-2.1

Spiral 2-2

Arithmetic Components and Their Efficient
Implementations

2-2.2

Learning Outcomes

• I understand the control inputs to counters

• I can design logic to control the inputs of

counters to create a desired count sequence

• I understand how smaller adder blocks can be

combined to form larger ones

• I can build larger arithmetic circuits from

smaller building blocks

• I understand the timing and control input

differences between asynchronous and

synchronous memories

2-2.3

DATAPATH COMPONENTS

2-2.4

Digital System Design

• Control (CU) and Datapath Unit (DPU) paradigm

– Separate logic into datapath elements that operate on data and

control elements that generate control signals for datapath elements

– Datapath: Adders, muxes, comparators, counters, registers (shift, with

enables, etc.), memories, FIFO’s

– Control Unit: State machines/sequencers

Datapath

Control

…

…

Control
Signals

Condition
Signals

Data
Inputs

Data
Outputs

clk
reset

2-2.5

OVERFLOW & COMPARISON

Detecting Overflow Helps Us Perform Comparison

2-2.6

Overflow

• Overflow occurs when the result of an

arithmetic operation is __________ to be

represented with the given number of bits

– Unsigned overflow occurs when adding or

subtracting unsigned numbers

– Signed (2’s complement overflow) overflow occurs

when adding or subtracting 2’s complement

numbers

2-2.7

Unsigned Overflow

0000

0001

0010

0011

0100

0101

0110

0111

1000

1111

1110

1101

1100

1011

1010

1001

0

+1

+2

+3

+4

+5

+6

+7

+8

+9

+10

+11

+12

+13

+14

+15

Overflow occurs when you cross

this discontinuity

10

Plus 7

10 + 7 = 17

With 4-bit unsigned numbers we

can only represent 0 – 15. Thus,

we say overflow has occurred.

2-2.8

2’s Complement Overflow

0000

0001

0010

0011

0100

0101

0110

0111

1000

1111

1110

1101

1100

1011

1010

1001

0

+1

+2

+3

+4

+5

+6

+7

-8

-7

-6

-5

-4

-3

-2

-1

Overflow occurs when you cross this

discontinuity

-6 + -4 = -10

With 4-bit 2’s complement

numbers we can only represent

-8 to +7. Thus, we say overflow

has occurred.

5 + 7 = +12

2-2.9

Testing for Overflow

• Most fundamental test

– Check if answer is _______ (i.e. Positive + Positive yields a
negative)

• Unsigned overflow test [Different for add or sub]

– Addition: If carry-out of final position equals ____

– Subtraction: If carry-out of final addition equals ____

• Signed (2’s complement) overflow test [Same for add
or sub]

– Only occurs if ________________________________

– Alternate test: if ____________________ of final column
are different

2-2.10

Testing for Unsigned Overflow

• Unsigned Overflow has occurred if…

– Unsigned Addition: If final carry-out = ___

– Unsigned Subtraction: If final carry-out = ___

1011

+ 0110

1011

+ 0011

1011

- 0110

0110

- 1011

2-2.11

Testing for 2’s Comp. Overflow

• 2’s Complement Overflow Occurs If…

– Test 1: If pos. + pos. = neg. or neg. + neg. = pos.

– Test 2: If carry-in to MSB position and carry-out of MSB

position are different

0101

+ 0110

(5)

(6)

1100

+ 1001

(-4)

(-7)

0011

+ 0010

(3)

(2)

1110

+ 1010

(-2)

(-6)

2-2.12

Checking for Overflow

• Produce additional outputs to indicate if

unsigned (UOV) or signed (SOV) overflow

has occurred

Full

Adder

X Y

Cin

S

Cout
Full

Adder

X Y

Cin

S

Cout
Full

Adder

X Y

Cin

S

Cout
Full

Adder

X Y

Cin

S

Cout

2-2.13

COMPARISON

2-2.14

Comparison Via Subtraction

• Suppose we want to compare two numbers: A & B

• Suppose we let DIFF = A-B…what could the result tell

us

– If DIFF < 0, then _______

– If DIFF = 0, then _______

– IF DIFF > 0, then _______

• How would we know DIFF == 0?

– If all bits of our answer _________________________.

• How would we know DIFF < 0 (i.e. negative)?

– Signed: __________! (but what about overflow)

– Unsigned: Huh? In unsigned there are no negative results

2-2.15

Computing A<B from "Negative" Result

Unsigned

• Perform A-B

• If A-B would yield a negative

result, this will appear as

__________in an unsigned

subtraction

• And we know unsigned

subtraction overflow occurs

if __________

• So just check if _______

Signed

• Perform A-B

• If there is no overflow (V=0),

simply check if _________

• But if there is overflow??

– Recall overflow has the effect of

flipping the sign of the result to

the opposite of what it should be.

• So if there is overflow (V=1)

check is ________(i.e. positive)

• Summary: A-B is "truly"

negative if:

2-2.16

Unsigned Comparator

• A comparator can be built by using a subtractor

DIFF[3:0]

Subtractor

A[3:0]

B[3:0]

A=B

A>B

Res[3:0]

C4
A<B

A

B

2-2.17

Signed Comparator

• A comparator can be built by using a subtractor

DIFF[3:0]

Subtractor

A[3:0]

B[3:0]

A=B

A>B

Res[3:0]

C4
A<B

A

B

2-2.18

Summary

• You should now be able to build:

– Fast Adders

– Comparators

2-2.19

ADDER TIMING

2-2.20

Addition – Full Adders

• Be sure to connect first Cin to 0

0110

+ 0111

= X

= Y

Full

Adder

X Y

Cin

S

Cout

0 1

Full

Adder

X Y

Cin

S

Cout
Full

Adder

X Y

Cin

S

Cout
Full

Adder

X Y

Cin

S

Cout

1 11 10 0

0

2-2.21

Timing

• A chain of full adders presents an interesting timing analysis
problem

• To correctly compute its own Sum and Carry-out, each full
adder requires the carry-out bit from the ________ full adder

• Because hardware works in parallel, the full adders further
down the chain may _____________ produce the _______
outputs because the carry has not had time to ___________
to them

Full

Adder

X Y

Cin

S

Cout 0Full

Adder

X Y

Cin

S

Cout
Full

Adder

X Y

Cin

S

Cout
Full

Adder

X Y

Cin

S

Cout

2-2.22

Timing Example
• Assume that we were adding one set of inputs and

then change to a new set of inputs:

0000

Full

Adder

X Y

Cin

S

Cout

1

0Full

Adder

X Y

Cin

S

Cout
Full

Adder

X Y

Cin

S

Cout
Full

Adder

X Y

Cin

S

Cout

000

1

0

1

0

0

0

0

0

1111

+ 0001

0000

= X

= Y

1111Old inputs: New inputs:

Old inputs:

0010

+ 0001

0011

= X

= Y

0100

2-2.23

Timing
• At the time just before we enter the new

input values, all carries are 0’s
0000

Full

Adder

X Y

Cin

S

Cout 0Full

Adder

X Y

Cin

S

Cout
Full

Adder

X Y

Cin

S

Cout
Full

Adder

X Y

Cin

S

Cout

Time

-1

1

0

1

0

0

0

0

0

New inputs:

Old inputs:

1000

0010

+ 0001

0011

= X

= Y

0100

2-2.24

Timing
• Now we enter the new inputs and all the FA’s

starting adding their respective inputs
1111

Full

Adder

X Y

Cin

S

Cout

1

0Full

Adder

X Y

Cin

S

Cout
Full

Adder

X Y

Cin

S

Cout
Full

Adder

X Y

Cin

S

Cout

000

Time

0

0000

New inputs:

Due to propagation delay, the carries are still from the old inputs

1111

+ 0001

0000

= X

= Y

1111

2-2.25

Timing

• Each adder computes from the current inputs (notice the
sum of 1110 is incorrect at this point)

1111

Full

Adder

X Y

Cin

S

Cout

1

0

1
0Full

Adder

X Y

Cin

S

Cout
Full

Adder

X Y

Cin

S

Cout
Full

Adder

X Y

Cin

S

Cout

0

1

0

0

1

0

0

1

0

Time

1

Now the carries are all based off the new inputs

1111

+ 0001

0000

= X

= Y

1111

2-2.26

Timing

• The carry is “rippling” through each adder

1111

Full

Adder

X Y

Cin

S

Cout

1

0

1
0Full

Adder

X Y

Cin

S

Cout
Full

Adder

X Y

Cin

S

Cout
Full

Adder

X Y

Cin

S

Cout

0

0

1

0

1

0

0

1

0

Time

2

1111

+ 0001

0000

= X

= Y

1111

2-2.27

Timing

1111

Full

Adder

X Y

Cin

S

Cout

1

0

1
0Full

Adder

X Y

Cin

S

Cout
Full

Adder

X Y

Cin

S

Cout
Full

Adder

X Y

Cin

S

Cout

0

0

1

0

0

1

0

1

0

Time

3

• The carry is “rippling” through each adder

1111

+ 0001

0000

= X

= Y

1111

2-2.28

Timing

• Only after the carry propagates through all the adders is the
sum valid and correct

1111

+ 0001

0000

= X

= Y

1111

Full

Adder

X Y

Cin

S

Cout

1 1

0

1
0Full

Adder

X Y

Cin

S

Cout
Full

Adder

X Y

Cin

S

Cout
Full

Adder

X Y

Cin

S

Cout

1 0

0

1

1 0

0

1

1 0

0

1

Time

4

2-2.29

“Ripple-Carry” Adder

• The longest path through a

chain of full adders is the

carry path

• We say that the carry

“_________” through the

adder

Full

Adder

X Y

Cin

S

Cout

1 1

0

1
0Full

Adder

X Y

Cin

S

Cout
Full

Adder

X Y

Cin

S

Cout
Full

Adder

X Y

Cin

S

Cout

1 0

0

1

1 0

0

1

1 0

0

1

C1C2C3C4 C0

time

2-2.30

Ripple Carry Adder Delay

• An n-bit ripple carry adder has a worst case

delay proportional to _____

Full

Adder

X Y

Cin

S

Cout

1 1

0

1
0Full

Adder

X Y

Cin

S

Cout
Full

Adder

X Y

Cin

S

Cout
Full

Adder

X Y

Cin

S

Cout

1 0

0

1

1 0

0

1

1 0

0

1

2-2.31

Glitches

• ______________, ___________ output values

due to _____________ arrival times of gate

inputs

2-2.32

Output Glitches

• Delay of the carry

causes glitches on the

sum bits

• Glitch = momentarily,

incorrect output value

Full

Adder

X Y

Cin

S

Cout

1
0Full

Adder

X Y

Cin

S

Cout
Full

Adder

X Y

Cin

S

Cout
Full

Adder

X Y

Cin

S

Cout

1

0→1

0→1→0

0→1

early

late

S3

0→0

2-2.33

Critical Path

• Critical Path = __________ possible delay path

X Y

S

CiCo

X Y

S

CiCo FAFA

X Y

S

CiCo

X Y

S

CiCo FAFA

Critical Path

Assume tsum = 5 ns,

tcarry= 4 ns

4 ns8 ns12 ns

17 ns

16 ns

13 ns 9 ns 5 ns

2-2.34

MULTIPLIERS

2-2.35

Unsigned Multiplication Review

• Same rules as decimal multiplication

• Multiply each bit of Q by M shifting as you go

• An m-bit * n-bit mult. produces an __________ bit result

(i.e. n-bit * n-bit produces ______ bit result)

• Notice each partial product is a shifted copy of M or 0 (zero)

1010
* 1011

M (Multiplicand)
Q (Multiplier)

2-2.36

Signed Multiplication Techniques

• When adding signed (2’s comp.) numbers, some new
issues arise

• Must _________________________________

1001
* 0110

= -7
= +6

1001
* 0110

= -7
= +6

2-2.37

Signed Multiplication Techniques

• Also, must worry about negative multiplier

– MSB of multiplier has negative weight

– If MSB=1, ___

1100
* 1010

= -4
= -6

1100
* 1010

= -4
= -6

2-2.38

Combinational Multiplier

• Partial Product (PPi) Generation

– Multiply Q[i] * M

• if Q[i]=0 => PPi = ____

• if Q[i]=1 => PPi = ____

2-2.39

Combinational Multiplier

• Partial Product (PPi) Generation

– Multiply Q[i] * M

• if Q[i]=0 => PPi = ___

• if Q[i]=1 => PPi = ___

– _____ gates can be used to generate each partial

product

M[3] M[2] M[1] M[0]M[3] M[2] M[1] M[0]

Q[i]=0

if…

Q[i]=1

if…

2-2.40

Multiplication Overview

• Multiplication approaches:

– Sequential: Shift-and-Add produces one product bit per clock cycle time

(usually slow)

– Combinational: Array multiplier uses an array of adders

• Can be as simple as N-1 ripple-carry adders for an NxN multiplication

m3 m2 m1 m0

x q3 q2 q1 q0

m3q0 m2q0 m1q0 m0q0

m3q1 m2q1 m1q1 m0q1 -

m3q2 m2q2 m1q2 m0q2 - -

+ m3q3 m2q3 m1q3 m0q3 - - -

p7 p6 p5 p4 p3 p2 p1 p0

AND Gate Array produces partial

product terms

2-2.41

Combinational Multiplier

• Partial Products must be added together

• Combinational multipliers require long

propagation delay through the adders

– propagation delay is proportional to the number

of partial products (i.e. number of bits of input)

and the width of each adder

2-2.42

Array Multiplier

• Maximum delay = ____________________

– Do you look for the longest path or the shortest path between any input and output?

– Compare with the delay of a shift-and-add method

Can this be a HA?

2-2.43

Adder Propagation Delay

X Y

S

CiCo

X Y

S

CiCo FAFA

X Y

S

CiCo

X Y

S

CiCo FAFA 0

1111
+ 0001

000

2-2.44

Critical Path

• Critical Path = Longest possible delay path

X Y

S

CiCo

X Y

S

CiCo FAFA

X Y

S

CiCo

X Y

S

CiCo FAFA

Critical Path

Assume tsum = 5 ns,

tcarry= 4 ns

4 ns8 ns12 ns

17 ns

16 ns

13 ns 9 ns 5 ns

2-2.45

Combinational Multiplier

2-2.46

Critical Paths

Critical Path 1

Critical Path 2

2-2.47

Combinational Multiplier Analysis

• Large Area due to ____________-bit adders

– n-1 because the first adder adds the first two

partial products and then each adder afterwards

adds one more partial product

• Propagation delay is in two dimensions

– proportional to ________

2-2.48

Pipelined Multiplier

• Now try to pipeline the previous design

Determine the maximum stage delay to decide the pipeline clock rate.

Assume zero-delay for stage latches. How does the latency of the pipeline compare with the simple

combinational array of the previous stage?

2-2.49

Carry-Save Multiplier

• Instead of propagating the carries to the left in the same row, carries are

now sent down to the next stage to reduce stage delay and facilitate

pipelining

The upper three stages are 3-bit

Carry Save Adders (CSA’s) each

with 2-gate delays.

The last stage is a Ripple Carry

Adder (RCA) which requires

longer delay. It can be replaced

by a CLA for larger multipliers.

FA

X Y

S

CiCo FA

X Y

S

CiCo FA

X Y

S

Co

0 0 0
m3q0 m2q0 m1q0 m0q0

FA

X Y

S

CiCo FA

X Y

S

CiCo FA

X Y

S

Co

FA

X Y

S

CiCo FA

X Y

S

CiCo FA

X Y

S

Co

m2q3 m1q3 m0q3

P[1] P[0]P[3] P[2]P[4]P[5]P[6]P[7]

Ci

m2q1 m1q1 m0q1

Ci

m2q2 m1q2 m0q2

FA

X Y

S

CiCo FA

X Y

S

CiCo FA

X Y

S

Co

Ci

Ci 0

m3q2

m3q3

m3q1

RCA

CSA’s

2-2.50

Carry Save Adders

• Consider the decimal addition of

47 + 96 + 58 = 201

• One way is to add ________ to get ____ and _____

• Here the _____ column cannot be added ___________ is produced

• In the carry-save style, we add the ____ column and _____ column

simultaneous

4 7

+ 9 6

1 4 3

+ 5 8

2 0 1

4 7

9 6

+ 5 8

2 1

+ 1 8 _

2 0 1

1

1

1
2

1

3

456

1

2

34

2-2.51

Carry-Save (3,2) Adders

• A carry save adder is also called a (3,2)

adder or a (3,2) counter (refer to

Computer Arithmetic Algorithms by

Israel Koren) as it takes three vectors,

adds them up, and reduces them to

two vectors, namely a sum vector and a

carry vector

• CSA’s are based on the principle that

carries do not have to be added

_______________, but can be

combined ______________

• An n-bit CSA consist of n disjoint full

adders

0 1 0 1

1 0 0 1

+ 1 0 1 1

1 0 0 1 _

0 1 1 1
Carry vector

Sum vector

2-2.52

FAST ADDERS

Carry-Lookahead Adders

2-2.53

Ripple Carry Adders

• Ripple-carry adders (RCA) are slow due to

carry propagation

– At least 2 levels of logic per full adder

2 13456

2-2.54

Fast Adders

• Rather than calculating one carry at a time and passing it

down the chain, can we compute a group of carries at the

same time

• To do this, let us define some new signals for each column of

addition:

– pi = _____________: This column will propagate a carry-in (if there is

one) to the carry-out.

pi is true when Ai or Bi is 1 => pi = ____________

– gi = _____________: This column will generate a carry-out whether or

not the carry-in is ‘1’

gi is true when Ai and Bi is 1 => gi = __________

• Using these signals, we can define the carry-out (ci+1) as:

ci+1 = _________

2-2.55

Carry Lookahead Logic

• Define each carry in terms of pi, gi and the

initial carry-in (c0) and not in terms of carry

chain (intermediate carries: c1,c2,c3,…)

• c1 =

• c2 =

• c3 =

• c4 =

2-2.56

Carry Lookahead Analogy

• Consider the carry-chain like a long tube broken into

segments. Each segment is controlled by a valve

(propagate signal) and can insert a fluid into that

segment (generate signal)

• The carry-out of the diagram below will be true if g1

is true or p1 is true and g0 is true, or p1, p0 and c1 is

true

2-2.57

2-2.58

Carry Lookahead Adder

• Use carry-lookahead logic

to generate all the carries

in one shot and then

create the sum

• Example 4-bit CLA shown

below

• How many levels of logic is

the adder?

2-2.59

4-bit Adders

• 74LS283 chip implements a 4-bit adder using

CLA methodology
A3A2A1A0

+ B3B2B1B0
S4S3S2S1S0

= A

= B

= S

A3 B3 A2 B2 A1 B1 A0 B0

CinCout

S3 S2 S1 S0

74LS283

2-2.60

16-Bit CLA
• But how would we make a 16-bit adder?

• Should we really just chain these fast 4-bit adders together?

– Or can we do better?

16-bit RCA Delay = _____ = _____ gate delays

Delay of the above adder design = _________ = ___ gates

Let us improve by looking ahead at a higher level to

produce C16, C12, C8, C4 in parallel

A[15:12] B[15:12] A[11:8] B[11:8] A[7:4] B[7:4] A[3:0] B[3:0]

S[15:12] S[11:8] S[7:4] S[3:0]C16

C4C8C12

C0

_ __
_

Define P and G as the overall Propagate and Generate

signals for a set of 4 bits

P = p3 • p2 • p1 • p0

G = g3 + p3•g2 + p3•p2•g1 + p3•p2•p1•g0

PG PG PG PG

What’s the difference

between the equation

for G here and C4 on

the previous slides

2-2.61

REVIEW ON YOUR OWN FOR CLA

LAB

2-2.62

16-bit CLA Closer Look

• Each 4-bit CLA only propagates its overall carry-in if each of the 4 columns propagates:

– P0 = p3• p2 •p1 •p0

– P1 = p7• p6 •p5 •p4

– P2 = p11• p10 •p9 •p8

– P3 = p15• p14 •p13 •p12

• Each 4-bit CLA generates a carry if any column generates and the more significant columns

propagate

– G0 = g3 + (p3 •g2) + (p3 •p2 •g1)+(p3 •p2 •p1 •g0)

– …

– G3 = g15 + (p15 •g14) + (p15 •p14 •g13)+(p15 •p14 •p13 •g12)

• The higher order CLL logic (producing C4,C8,C12,C16) then is realized as:

– (C4) =>C1 = G0 + (P0 •c0)

– …

– (C16) => C4 = G3 + (P3 •G2) + (P3 •P2 •G1) +(P3 • P2 • P1 • G0)+ (P3 •P2 •P1 •P0 •c0)

• These equations are exactly the same CLL logic we derived earlier

2-2.63

16-Bit CLA

• Understanding 16-bit CLA hierarchy…

CLL CLL CLL CLL

C16

C4C8C12

C0

Delay =

= ___ = Delay in producing pi,gi

= ___ = Delay in producing Pi*,Gi*

= ___ = Delay in producing C4,C8,C12,C16

= ___ = Delay in producing c15

= ___ = Delay in producing S15

P

CLL
p3 g3

c4

p2 g2c3 p1 g1c2 p0 g0c1

c0

P* G*

GP GP GP G
G

c15

2-2.64

64-Bit CLA

• We can reuse the same CLL logic to build a 64-bit CLA

= ___ = Delay in producing S63

Is the delay in producing s63 the same as in s35?

= ___ = Delay in producing S2

= ___ = Delay in producing S0

CLL CLL CLL CLL

C16C32C48

P

CLL
p3 g3

c4

p2 g2c3 p1 g1c2 p0 g0c1
c0

P* G*

GP GP GP G
G

C52C56C60

c63

C36C40C44 C20C24C28 C4C8C12

C0

s35

= ___ = Delay in producing pi*,gi*

= ___ = Delay in producing Pj**,Gj**

= ___ = Delay in producing C48

= ___ = Delay in producing C60

= ___ = Delay in producing C63

= ___ = Delay in producing S63

= _____ Total Delay

