
2-2.1

Spiral 2-2

Arithmetic Components and Their Efficient
Implementations

2-2.2

Learning Outcomes

• I know how to combine overflow and
subtraction results to determine comparison
results of both signed and unsigned numbers

• I understand how combination multipliers can
be built

• I understand how hierarchical carry lookahead
logic can be used to produce logarithmic time
delay for an adder

2-2.3

DATAPATH COMPONENTS

2-2.4

Digital System Design

• Control (CU) and Datapath Unit (DPU) paradigm
– Separate logic into datapath elements that operate on data and

control elements that generate control signals for datapath elements

– Datapath: Adders, muxes, comparators, counters, registers (shift, with
enables, etc.), memories, FIFO’s

– Control Unit: State machines/sequencers

Datapath

Control

…

…

Control

Signals

Condition

Signals

Data

Inputs

Data

Outputs

clk

reset

2-2.5

OVERFLOW & COMPARISON

Detecting Overflow Helps Us Perform Comparison

2-2.6

Overflow

• Overflow occurs when the result of an
arithmetic operation is too large to be
represented with the given number of bits

– Unsigned overflow occurs when adding or
subtracting unsigned numbers

– Signed (2’s complement overflow) overflow occurs
when adding or subtracting 2’s complement
numbers

2-2.7

Unsigned Overflow

0000
0001

0010

0011

0100

0101

0110

0111

1000

1111

1110

1101

1100

1011

1010

1001

0

+1

+2

+3

+4

+5

+6

+7

+8
+9

+10

+11

+12

+13

+14

+15

Overflow occurs when you cross

this discontinuity

10

Plus 7

10 + 7 = 17

With 4-bit unsigned numbers we

can only represent 0 – 15. Thus,

we say overflow has occurred.

2-2.8

2’s Complement Overflow

0000
0001

0010

0011

0100

0101

0110

0111

1000

1111

1110

1101

1100

1011

1010

1001

0

+1

+2

+3

+4

+5

+6

+7

-8
-7

-6

-5

-4

-3

-2

-1

Overflow occurs when you cross this

discontinuity

-6 + -4 = -10

With 4-bit 2’s complement

numbers we can only represent

-8 to +7. Thus, we say overflow

has occurred.

5 + 7 = +12

2-2.9

Testing for Overflow

• Most fundamental test
– Check if answer is wrong (i.e. Positive + Positive yields a

negative)

• Unsigned overflow test [Different for add or sub]
– Addition: If carry-out of final position equals '1'

– Subtraction: If carry-out of final addition equals '0'

• Signed (2’s complement) overflow test [Same for add
or sub]
– Only occurs if two positives are added and result is

negative or two negatives are added and result is positive

– Alternate test: if carry-in and carry-out of final position
are different

2-2.10

Testing for Unsigned Overflow

• Unsigned Overflow has occurred if…

– Unsigned Addition: If final carry-out = 1

– Unsigned Subtraction: If final carry-out = 0

1011

+ 0110

1011

+ 0011

1011

- 0110

0110

- 1011

2-2.11

Testing for Unsigned Overflow

• Unsigned Overflow has occurred if…

– Unsigned Addition: If final carry-out = 1

– Unsigned Subtraction: If final carry-out = 0

1011

+ 0110

0001

1011

+ 0011

1110

111

Final carry-out = 1,

thus overflow

110

Final carry-out = 0,

thus no overflow

0

1011

- 0110

0110

- 1011

0110

0100

+ 1

1011

1011

1001

+ 1

0101

10111

Final carry-out = 1,

thus no overflow
Final carry-out = 0,

thus overflow

2-2.12

Testing for 2’s Comp. Overflow

• 2’s Complement Overflow Occurs If…

– Test 1: If pos. + pos. = neg. or neg. + neg. = pos.

– Test 2: If carry-in to MSB position and carry-out of MSB
position are different

0101

+ 0110

(5)

(6)

1100

+ 1001

(-4)

(-7)

0011

+ 0010

(3)

(2)

1110

+ 1010

(-2)

(-6)

2-2.13

Testing for 2’s Comp. Overflow

• 2’s Complement Overflow Occurs If…

– Test 1: If pos. + pos. = neg. or neg. + neg. = pos.

– Test 2: If carry-in to MSB position and carry-out of MSB
position are different

0101

+ 0110

1011

10

Carry-in to MSB and

carry-out of MSB

position are

different…Overflow!

(5)

(6)

(-5)

1100

+ 1001

0101

01

Carry-in to MSB and

carry-out of MSB

position are

different…Overflow!

(-4)

(-7)

(+5)

0011

+ 0010

0101

00

Carry-in to MSB and

carry-out of MSB position

are same…No Overflow!

(3)

(2)

(5)

1110

+ 1010

1000

11

Carry-in to MSB and carry-

out of MSB position are

same…No Overflow!

(-2)

(-6)

(-8)

2-2.14

Checking for Overflow

• Produce additional outputs to indicate if
unsigned (UOV) or signed (SOV) overflow
has occurred

Full

Adder

X Y

Cin

S

Cout
Full

Adder

X Y

Cin

S

Cout
Full

Adder

X Y

Cin

S

Cout
Full

Adder

X Y

Cin

S

Cout

2-2.15

COMPARISON

2-2.16

Comparison Via Subtraction

• Suppose we want to compare two numbers: A & B

• Suppose we let DIFF = A-B…what could the result tell
us

– If DIFF < 0, then A < B

– If DIFF = 0, then A=B

– IF DIFF > 0, then A > B

• How would we know DIFF == 0?

– If all bits of our answer are 0…check with a NOR gate.

• How would we know DIFF < 0 (i.e. negative)?

– Signed: Check MSB! (but what about overflow)

– Unsigned: Huh? In unsigned there are no negative results

2-2.17

Computing A<B from "Negative" Result

Unsigned

• Perform A-B

• If A-B would yield a negative
result, this will appear as
"overflow" in an unsigned
subtraction

• And we know unsigned
subtraction overflow occurs
if Cout = 0

• So just check if Cout=0

Signed

• Perform A-B

• If there is no overflow (V=0),
simply check if MSB = 1

• But if there is overflow??
– Recall overflow has the effect of

flipping the sign of the result to
the opposite of what it should be.

• So if there is overflow (V=1)
check is MSB = 0 (i.e. positive)

• Summary: A-B is "truly'
negative if V=0 & MSB=1 or
V=1 & MSB=0

2-2.18

Unsigned Comparator

• A comparator can be built by using a subtractor

DIFF[3:0]

Subtractor

A[3:0]

B[3:0]

A=B

A>B

Res[3:0]

C4
A<B

A

B

2-2.19

Signed Comparator

• A comparator can be built by using a subtractor

DIFF[3:0]

Subtractor

A[3:0]

B[3:0]

A=B

A>B

Res[3:0]

C4
A<B

A

B

2-2.20

ADDER TIMING

2-2.21

Addition – Full Adders

• Be sure to connect first Cin to 0

0110

+ 0111

= X

= Y

Full

Adder

X Y

Cin

S

Cout

0 1

Full

Adder

X Y

Cin

S

Cout
Full

Adder

X Y

Cin

S

Cout
Full

Adder

X Y

Cin

S

Cout

1 11 10 0

0

2-2.22

Timing

• A chain of full adders presents an interesting timing analysis
problem

• To correctly compute its own Sum and Carry-out, each full
adder requires the carry-out bit from the previous full adder

• Because hardware works in parallel, the full adders further
down the chain may momentarily produce the wrong outputs
because the carry has not had time to propagate to them

Full

Adder

X Y

Cin

S

Cout 0Full

Adder

X Y

Cin

S

Cout
Full

Adder

X Y

Cin

S

Cout
Full

Adder

X Y

Cin

S

Cout

2-2.23

Timing Example
• Assume that we were adding one set of inputs and

then change to a new set of inputs:

0000

Full

Adder

X Y

Cin

S

Cout

1

0Full

Adder

X Y

Cin

S

Cout
Full

Adder

X Y

Cin

S

Cout
Full

Adder

X Y

Cin

S

Cout

000

1

0

1

0

0

0

0

0

1111

+ 0001

0000

= X

= Y

1111Old inputs: New inputs:

Old inputs:

0010

+ 0001

0011

= X

= Y

0100

2-2.24

Timing
• At the time just before we enter the new

input values, all carries are 0’s
0000

Full

Adder

X Y

Cin

S

Cout 0Full

Adder

X Y

Cin

S

Cout
Full

Adder

X Y

Cin

S

Cout
Full

Adder

X Y

Cin

S

Cout

Time

-1

1

0

1

0

0

0

0

0

New inputs:

Old inputs:

1000

0010

+ 0001

0011

= X

= Y

0100

2-2.25

Timing
• Now we enter the new inputs and all the FA’s

starting adding their respective inputs
1111

Full

Adder

X Y

Cin

S

Cout

1

0Full

Adder

X Y

Cin

S

Cout
Full

Adder

X Y

Cin

S

Cout
Full

Adder

X Y

Cin

S

Cout

000

Time

0

0000

New inputs:

Due to propagation delay, the carries are still from the old inputs

1111

+ 0001

0000

= X

= Y

1111

2-2.26

Timing

• Each adder computes from the current inputs (notice the
sum of 1110 is incorrect at this point)

1111

Full

Adder

X Y

Cin

S

Cout

1

0

1
0Full

Adder

X Y

Cin

S

Cout
Full

Adder

X Y

Cin

S

Cout
Full

Adder

X Y

Cin

S

Cout

0

1

0

0

1

0

0

1

0

Time

1

Now the carries are all based off the new inputs

1111

+ 0001

0000

= X

= Y

1111

2-2.27

Timing

• The carry is “rippling” through each adder
1111

Full

Adder

X Y

Cin

S

Cout

1

0

1
0Full

Adder

X Y

Cin

S

Cout
Full

Adder

X Y

Cin

S

Cout
Full

Adder

X Y

Cin

S

Cout

0

0

1

0

1

0

0

1

0

Time

2

1111

+ 0001

0000

= X

= Y

1111

2-2.28

Timing

1111

Full

Adder

X Y

Cin

S

Cout

1

0

1
0Full

Adder

X Y

Cin

S

Cout
Full

Adder

X Y

Cin

S

Cout
Full

Adder

X Y

Cin

S

Cout

0

0

1

0

0

1

0

1

0

Time

3

• The carry is “rippling” through each adder

1111

+ 0001

0000

= X

= Y

1111

2-2.29

Timing

• Only after the carry propagates through all the adders is the
sum valid and correct

1111

+ 0001

0000

= X

= Y

1111

Full

Adder

X Y

Cin

S

Cout

1 1

0

1
0Full

Adder

X Y

Cin

S

Cout
Full

Adder

X Y

Cin

S

Cout
Full

Adder

X Y

Cin

S

Cout

1 0

0

1

1 0

0

1

1 0

0

1

Time

4

2-2.30

“Ripple-Carry” Adder

• The longest path through a
chain of full adders is the
carry path

• We say that the carry
“ripples” through the adder

Full

Adder

X Y

Cin

S

Cout

1 1

0

1
0Full

Adder

X Y

Cin

S

Cout
Full

Adder

X Y

Cin

S

Cout
Full

Adder

X Y

Cin

S

Cout

1 0

0

1

1 0

0

1

1 0

0

1

C1C2C3C4 C0

C1

C2

C3

C4

Carry ripples through

time

2-2.31

Ripple Carry Adder Delay

• An n-bit ripple carry adder has a worst case
delay proportional to n (i.e. n-bits => n
columns of addition => n-full adders)

Full

Adder

X Y

Cin

S

Cout

1 1

0

1
0Full

Adder

X Y

Cin

S

Cout
Full

Adder

X Y

Cin

S

Cout
Full

Adder

X Y

Cin

S

Cout

1 0

0

1

1 0

0

1

1 0

0

1

2-2.32

Glitches

• Transient, incorrect output values due to
differing arrival times of gate inputs

2-2.33

Output Glitches

• Delay of the carry
causes glitches on the
sum bits

• Glitch = momentarily,
incorrect output value

Full

Adder

X Y

Cin

S

Cout

1
0Full

Adder

X Y

Cin

S

Cout
Full

Adder

X Y

Cin

S

Cout
Full

Adder

X Y

Cin

S

Cout

1

0→1

0→1→0

S3

Glitch = “momentary,

incorrect output value”

Inputs change

from

0010 + 0001

to

1111 + 0001

Correct carry

finally arrives

so that

correct sum

will be

generated

0→1

early

late

S3

0→0

2-2.34

Critical Path

• Critical Path = Longest possible delay path

X Y

S

CiCo

X Y

S

CiCo FAFA

X Y

S

CiCo

X Y

S

CiCo FAFA

Critical Path

Assume tsum = 5 ns,

tcarry= 4 ns

4 ns8 ns12 ns

17 ns

16 ns

13 ns 9 ns 5 ns

2-2.35

MULTIPLIERS

2-2.36

Unsigned Multiplication Review

• Same rules as decimal multiplication

• Multiply each bit of Q by M shifting as you go

• An m-bit * n-bit mult. produces an m+n bit result
(i.e. n-bit * n-bit produces 2*n bit result)

• Notice each partial product is a shifted copy of M or 0 (zero)

1010
* 1011

M (Multiplicand)
Q (Multiplier)

2-2.37

Unsigned Multiplication Review

• Same rules as decimal multiplication

• Multiply each bit of Q by M shifting as you go

• An m-bit * n-bit mult. produces an m+n bit result
(i.e. n-bit * n-bit produces 2*n bit result)

• Notice each partial product is a shifted copy of M or 0 (zero)

1010
* 1011

1010

1010_

0000__

+ 1010___

01101110

M (Multiplicand)
Q (Multiplier)

PP(Partial

Products)

P (Product)

2-2.38

Signed Multiplication Techniques

• When adding signed (2’s comp.) numbers, some new
issues arise

• Must sign extend partial products (out to 2n bits)

1001
* 0110

0000

1001_

1001__

+ 0000___

00110110

= -7
= +6

= +54

Without Sign Extension…

Wrong Answer!

1001
* 0110

00000000

1111001_

111001__

+ 00000___

11010110

= -7
= +6

= -42

With Sign Extension…

Correct Answer!

2-2.39

Signed Multiplication Techniques

• Also, must worry about negative multiplier
– MSB of multiplier has negative weight

– If MSB=1, multiply by -1 (i.e. take 2’s comp. of multiplicand)

1100
* 1010

00000000

1111100_

000000__

+ 11100___

11011000

= -4
= -6

= -40

With Sign Extension but w/o

consideration of MSB…

Wrong Answer!

With Sign Extension and w/

consideration of MSB…

Correct Answer!

1100
* 1010

00000000

1111100_

000000__

+ 00100___

00011000

= -4
= -6

= +24

Place Value: -8

Multiply by -1

2-2.40

Combinational Multiplier

• Partial Product (PPi) Generation

– Multiply Q[i] * M
• if Q[i]=0 => PPi = 0

• if Q[i]=1 => PPi = M

2-2.41

Combinational Multiplier

• Partial Product (PPi) Generation

– Multiply Q[i] * M
• if Q[i]=0 => PPi = 0

• if Q[i]=1 => PPi = M

– AND gates can be used to generate each partial
product

M[3] M[2] M[1] M[0]M[3] M[2] M[1] M[0]

Q[i]=0

if…

Q[i]=1

if…

0000 1111

0000 M[3] M[2] M[1] M[0]

2-2.42

Multiplication Overview

• Multiplication approaches:
– Sequential: Shift-and-Add produces one product bit per clock cycle time

(usually slow)

– Combinational: Array multiplier uses an array of adders

• Can be as simple as N-1 ripple-carry adders for an NxN multiplication

m3 m2 m1 m0

x q3 q2 q1 q0

m3q0 m2q0 m1q0 m0q0

m3q1 m2q1 m1q1 m0q1 -

m3q2 m2q2 m1q2 m0q2 - -

+ m3q3 m2q3 m1q3 m0q3 - - -

p7 p6 p5 p4 p3 p2 p1 p0

m3·q0 m2·q0 m1·q0 m0·q0

m3·q1 m2·q1 m1·q1 m0·q1

m3·q2 m2·q2 m1·q2 m0·q2

m3·q3 m2·q3 m1·q3 m0·q3

m3 m2 m1 m0

q0

q1

q2

q3

AND Gate Array produces partial
product terms

2-2.43

Combinational Multiplier

• Partial Products must be added together

• Combinational multipliers require long
propagation delay through the adders

– propagation delay is proportional to the number
of partial products (i.e. number of bits of input)
and the width of each adder

2-2.44

Array Multiplier

• Maximum delay = ?

– Do you look for the longest path or the shortest path between any input and output?

– Compare with the delay of a shift-and-add method

FA

X Y

S

CiCo FA

X Y

S

CiCo FA

X Y

S

CiCo HA

X Y

S

Co

m3q1 m2q1 m1q1 m0q1
0 m3q0 m2q0 m1q0 m0q0

FA

X Y

S

CiCo FA

X Y

S

CiCo FA

X Y

S

CiCo HA

X Y

S

Co

m3q2 m2q2 m1q2 m0q2

FA

X Y

S

CiCo FA

X Y

S

CiCo FA

X Y

S

CiCo HA

X Y

S

Co

m3q3 m2q3 m1q3 m0q3

P[1] P[0]P[3] P[2]P[4]P[5]P[6]P[7]

Can this be a HA?

2-2.45

Pipelined Multiplier

• Now try to pipeline the previous design

HA

X

S

YCo FA

X Y

S

CiCo FA

X Y

S

CiCo HA

X Y

S

Co

m3q1 m2q1 m1q1 m0q1m3q0 m2q0 m1q0 m0q0

FA

X Y

S

CiCo FA

X Y

S

CiCo FA

X Y

S

CiCo HA

X Y

S

Co

FA

X Y

S

CiCo FA

X Y

S

CiCo FA

X Y

S

CiCo HA

X Y

S

Co

P[1] P[0]P[3] P[2]P[4]P[5]P[6]P[7]

m3q2 m2q2 m1q2 m0q2

m3q3 m2q3 m1q3 m0q3

Determine the maximum stage delay to decide the pipeline clock rate.
Assume zero-delay for stage latches. How does the latency of the pipeline compare with the simple

combinational array of the previous stage?

2-2.46

Carry-Save Multiplier

• Instead of propagating the carries to the left in the same row, carries are
now sent down to the next stage to reduce stage delay and facilitate
pipelining

The upper three stages are 3-bit
Carry Save Adders (CSA’s) each

with 2-gate delays.

The last stage is a Ripple Carry
Adder (RCA) which requires

longer delay. It can be replaced
by a CLA for larger multipliers.

FA

X Y

S

CiCo FA

X Y

S

CiCo FA

X Y

S

Co

0 0 0
m3q0 m2q0 m1q0 m0q0

FA

X Y

S

CiCo FA

X Y

S

CiCo FA

X Y

S

Co

FA

X Y

S

CiCo FA

X Y

S

CiCo FA

X Y

S

Co

m2q3 m1q3 m0q3

P[1] P[0]P[3] P[2]P[4]P[5]P[6]P[7]

Ci

m2q1 m1q1 m0q1

Ci

m2q2 m1q2 m0q2

FA

X Y

S

CiCo FA

X Y

S

CiCo FA

X Y

S

Co

Ci

Ci 0

m3q2

m3q3

m3q1

RCA

CSA’s

2-2.47

Carry Save Adders

• Consider the decimal addition of

47 + 96 + 58 = 201

• One way is to add 47 to 96 to get 143 and then add 58

• Here the ten’s column cannot be added until the carry is produced

• In the carry-save style, we add the one’s column and ten’s column
simultaneous

4 7

+ 9 6

1 4 3

+ 5 8

2 0 1

4 7

9 6

+ 5 8

2 1

+ 1 8 _

2 0 1

1

1

1
2

1

3

456

1

2

34

2-2.48

Carry-Save (3,2) Adders

• A carry save adder is also called a (3,2)
adder or a (3,2) counter (refer to
Computer Arithmetic Algorithms by
Israel Koren) as it takes three vectors,
adds them up, and reduces them to
two vectors, namely a sum vector and a
carry vector

• CSA’s are based on the principle that
carries do not have to be added as soon
as possible, but can be combined in a
later step

• An n-bit CSA consist of n disjoint full
adders

0 1 0 1

1 0 0 1

+ 1 0 1 1

1 0 0 1 _

0 1 1 1
Carry vector

Sum vector

FA

X Y

S

Co

Z

FA

X Y

S

Co

Z

FA

X Y

S

Co

Z

FA

X Y

S

Co

Z

A[3] B[3] C[3] A[2] B[2] C[2] A[1] B[1] C[1] A[0] B[0] C[0]

C[4] S[3] C[3] S[2] C[2] S[1] C[1] S[0]

2-2.49

Adder Propagation Delay

X Y

S

CiCo

X Y

S

CiCo FAFA

X Y

S

CiCo

X Y

S

CiCo FAFA 0

1111
+ 0001

000

2-2.50

X Y

S

CiCo

X Y

S

CiCo FAFA

X Y

S

CiCo

X Y

S

CiCo FAFA 0

1111
+ 0001

000

1 1 1 1 1000

Adder Propagation Delay

2-2.51

X Y

S

CiCo

X Y

S

CiCo FAFA

X Y

S

CiCo

X Y

S

CiCo FAFA

1 1 1 1 1000

0

0

1

111

000

1111
+ 0001

Adder Propagation Delay

2-2.52

X Y

S

CiCo

X Y

S

CiCo FAFA

X Y

S

CiCo

X Y

S

CiCo FAFA

1 1 1 1 1000

0

0

1

011

1

1111
+ 0001

11

00

Adder Propagation Delay

2-2.53

X Y

S

CiCo

X Y

S

CiCo FAFA

X Y

S

CiCo

X Y

S

CiCo FAFA

1 1 1 1 1000

0

0

1

01

1

1111
+ 0001

0

10

Adder Propagation Delay

2-2.54

X Y

S

CiCo

X Y

S

CiCo FAFA

X Y

S

CiCo

X Y

S

CiCo FAFA

1 1 1 1 1000

0

0

1

0

1

1111
+ 0001

0

1

0

1

Adder Propagation Delay

2-2.55

Critical Path

• Critical Path = Longest possible delay path

X Y

S

CiCo

X Y

S

CiCo FAFA

X Y

S

CiCo

X Y

S

CiCo FAFA

Critical Path

Assume tsum = 5 ns,

tcarry= 4 ns

4 ns8 ns12 ns

17 ns

16 ns

13 ns 9 ns 5 ns

2-2.56

Combinational Multiplier

2-2.57

Combinational Multiplier

2-2.58

Combinational Multiplier

2-2.59

Combinational Multiplier

2-2.60

Combinational Multiplier

2-2.61

Combinational Multiplier

2-2.62

Combinational Multiplier

2-2.63

Combinational Multiplier

2-2.64

Combinational Multiplier

2-2.65

Critical Paths

Critical Path 1

Critical Path 2

2-2.66

Combinational Multiplier Analysis

• Large Area due to (n-1) m-bit adders

– n-1 because the first adder adds the first two
partial products and then each adder afterwards
adds one more partial product

• Propagation delay is in two dimensions

– proportional to m+n

2-2.67

FAST ADDERS

Carry-Lookahead Adders

2-2.68

Ripple Carry Adders

• Ripple-carry adders (RCA) are slow due to
carry propagation

– At least 2 levels of logic per full adder

2 13456

2-2.69

Fast Adders

• Rather than calculating one carry at a time and passing it
down the chain, can we compute a group of carries at the
same time

• To do this, let us define some new signals for each column of
addition:
– pi = Propagate: This column will propagate a carry-in (if there is one)

to the carry-out.
pi is true when Ai or Bi is 1 => pi = Ai + Bi

– gi = Generate: This column will generate a carry-out whether or not
the carry-in is ‘1’
gi is true when Ai and Bi is 1 => gi = Ai • Bi

• Using these signals, we can define the carry-out (ci+1) as:

ci+1 = gi + pici

2-2.70

Carry Lookahead Logic

• Define each carry in terms of pi, gi and the
initial carry-in (c0) and not in terms of carry
chain (intermediate carries: c1,c2,c3,…)

• c1 =

• c2 =

• c3 =

• c4 =

2-2.71

Carry Lookahead Logic

• Define each carry in terms of pi, gi and the
initial carry-in (c0) and not in terms of carry
chain (intermediate carries: c1,c2,c3,…)

• c1 = g0 + p0c0

• c2 = g1 + p1c1 = g1 + p1g0 + p1p0c0

• c3 = …

• c4 = …

2-2.72

Carry Lookahead Analogy

• Consider the carry-chain like a long tube broken into
segments. Each segment is controlled by a valve
(propagate signal) and can insert a fluid into that
segment (generate signal)

• The carry-out of the diagram below will be true if g1
is true or p1 is true and g0 is true, or p1, p0 and c1 is
true

2-2.73

CLA4

C4

A3 B3 A2 B2 A1 B1 A0 B0

C1C2C3C4

C
a

rr
y
-L

o
o

k
a

h
e

a
d

L
o

g
ic

 (
C

L
L

)
P

G
g0 p0g1 p1g2 p2g3 p3

C0

S3 S2 S1 S0

2-2.74

Carry Lookahead Adder

• Use carry-lookahead logic
to generate all the carries
in one shot and then
create the sum

• Example 4-bit CLA shown
below

2-2.75

Carry Lookahead Adder

• Use carry-lookahead logic
to generate all the carries
in one shot and then
create the sum

• Example 4-bit CLA shown
below

1

3 3

4

1

33

2-2.76

4-bit Adders

• 74LS283 chip implements a 4-bit adder using
CLA methodology

A3A2A1A0
+ B3B2B1B0
S4S3S2S1S0

= A

= B

= S

A3 B3 A2 B2 A1 B1 A0 B0

CinCout

S3 S2 S1 S0

74LS283

2-2.77

16-Bit CLA
• But how would we make a 16-bit adder?

• Should we really just chain these fast 4-bit adders together?
– Or can we do better?

16-bit RCA Delay = 16*2 = 32 gate delays

Delay of the above adder design = 3+2+2+3 = 10 gates

Let us improve by looking ahead at a higher level to

produce C16, C12, C8, C4 in parallel

A[15:12] B[15:12] A[11:8] B[11:8] A[7:4] B[7:4] A[3:0] B[3:0]

S[15:12] S[11:8] S[7:4] S[3:0]C16

C4C8C12

C0

7 35
10

Define P and G as the overall Propagate and Generate

signals for a set of 4 bits

P = p3 p2 p1 p0

G = g3 + p3g2 + p3p2g1 + p3p2p1g0

PG PG PG PG

What’s the difference
between the equation
for G here and C4 on
the previous slides

2-2.78

REVIEW ON YOUR OWN FOR CLA
LAB

2-2.79

16-bit CLA Closer Look
• Each 4-bit CLA only propagates its overall carry-in if each of the 4 columns propagates:

– P0 = p3 p2 p1 p0

– P1 = p7 p6 p5 p4

– P2 = p11 p10 p9 p8

– P3 = p15 p14 p13 p12

• Each 4-bit CLA generates a carry if any column generates and the more significant columns
propagate

– G0 = g3 + (p3 g2) + (p3 p2 g1)+(p3 p2 p1 g0)

– …

– G3 = g15 + (p15 g14) + (p15 p14 g13)+(p15 p14 p13 g12)

• The higher order CLL logic (producing C4,C8,C12,C16) then is realized as:

– (C4) =>C1 = G0 + (P0 c0)

– …

– (C16) => C4 = G3 + (P3 G2) + (P3 P2 G1) +(P3 P2 P1 G0)+ (P3 P2 P1 P0 c0)

• These equations are exactly the same CLL logic we derived earlier

2-2.80

16-Bit CLA

• Understanding 16-bit CLA hierarchy…

CLL CLL CLL CLL

C16

C4C8C12

C0

Delay =

= ___ = Delay in producing pi,gi

= ___ = Delay in producing Pi*,Gi*

= ___ = Delay in producing C4,C8,C12,C16

= ___ = Delay in producing c15

= ___ = Delay in producing S15

P

CLL
p3 g3

c4

p2 g2c3 p1 g1c2 p0 g0c1

c0

P* G*

GP GP GP G
G

c15

2-2.81

64-Bit CLA

• We can reuse the same CLL logic to build a 64-bit CLA

= ___ = Delay in producing S63

Is the delay in producing s63 the same as in s35?

= ___ = Delay in producing S2

= ___ = Delay in producing S0

CLL CLL CLL CLL

C16C32C48

P

CLL
p3 g3

c4

p2 g2c3 p1 g1c2 p0 g0c1
c0

P* G*

GP GP GP G
G

C52C56C60

c63

C36C40C44 C20C24C28 C4C8C12

C0

s35

= ___ = Delay in producing pi*,gi*

= ___ = Delay in producing Pj**,Gj**

= ___ = Delay in producing C48

= ___ = Delay in producing C60

= ___ = Delay in producing C63

= ___ = Delay in producing S63

= _____ Total Delay

2-2.82

Summary

• You should now be able to build:

– Fast Adders

– Comparators

