Spiral 2-2

Arithmetic Components and Their Efficient
Implementations

Learning Outcomes

* | know how to combine overflow and
subtraction results to determine comparison
results of both signed and unsigned numbers

* | understand how combination multipliers can
oe built

* | understand how hierarchical carry lookahead
ogic can be used to produce logarithmic time
delay for an adder

DATAPATH COMPONENTS

e USCViterb

Digital System Design

e Control (CU) and Datapath Unit (DPU) paradigm

— Separate logic into datapath elements that operate on data and
control elements that generate control signals for datapath elements

— Datapath: Adders, muxes, comparators, counters, registers (shift, with
enables, etc.), memories, FIFO's

— Control Unit: State machines/sequencers

clk —> Control
reset ——>

/
Control Condition
Signals Signals

Datapath

Data i -~ Data
Inputs >

—> —>

Detecting Overflow Helps Us Perform Comparison

OVERFLOW & COMPARISON

Overflow

* Overflow occurs when the result of an
arithmetic operation is too large to be
represented with the given number of bits

— Unsigned overflow occurs when adding or
subtracting unsignhed numbers

— Signed (2’s complement overflow) overflow occurs
when adding or subtracting 2’s complement
numbers

- _________0_000__] USCV1terb
Unsigned Overflow

Overflow occurs when you cross
this discontinuity

+15

10 +7 =17 i

With 4-bit unsigned numbers we
can only represent 0 — 15. Thus,
we say overflow has occurred.

e USCViterb

School of Engineering

2’s Complement Overflow

5+7=+12
6 + -4 =-10

With 4-bit 2’s complement
numbers we can only represent
-8 to +7. Thus, we say overflow

has occurred.

Overflow occurs when you cross this
discontinuity

Testing for Overflow

 Most fundamental test
— Check if answer is wrong (i.e. Positive + Positive yields a
negative)
* Unsigned overflow test [Different for add or sub]
— Addition: If carry-out of final position equals '1'
— Subtraction: If carry-out of final addition equals 'O’

e Signed (2’s complement) overflow test [Same for add
or sub]

— Only occurs if two positives are added and result is
negative or two negatives are added and result is positive

— Alternate test: if carry-in and carry-out of final position
are different

e USCVlterb.

School of Engine

Testing for Unsignhed Overflow

* Unsigned Overflow has occurred if...
— Unsigned Addition: If final carry-out =1
— Unsigned Subtraction: If final carry-out =0

1011 1011
+ 0110 + 0011
1011 0110

- 0110 - 1011

e USCViterb

School of Engineering

Testing for Unsignhed Overflow

* Unsigned Overflow has occurred if...
— Unsigned Addition: If final carry-out =1
— Unsigned Subtraction: If final carry-out =0

111 0011
| < 1011 _ <1011
Final carry-out = 1, Final carry-out =0,
thus overflow + 0110 thusnooverflow + 0011
0001 1110
1 11 01
1011 1011 0110 0110
- 0110 1001 - 1011 0100
+ 1 + 1
Final carry-out =1, 0101 Final carry-out = 0, 1011

thus no overflow thus overflow

e USCVlterb.

School of Engine

Testing for 2's Comp. Overflow

* 2's Complement Overflow Occurs If...
— Test 1: If pos. + pos. = neg. or neg. + neg. = pos.

— Test 2: If carry-in to MSB position and carry-out of MSB
position are different

0101 (5) 1100 (-4)
+ 0110 (6) + 1001 (-7)
0011 (3) 1110 (-2)

+ 0010 (2) + 1010 (-6)

e USCViterb

School of Engineering

Testing for 2's Comp. Overflow

* 2's Complement Overflow Occurs If...
— Test 1: If pos. + pos. = neg. or neg. + neg. = pos.

— Test 2: If carry-in to MSB position and carry-out of MSB
position are different

01 10
| - 0101 (5) | - 1100 (-4)
Carry-in to MSB and Carry-in to MSB and
carry-out of MSB + 0110 (6) carry-out of MSB + 1001 (-7)

position are position are

different...Overflow! 1011 (_5) different...Overflow! 0101 ("'5)

00 11
| - 0011 (3) | - 1110 (-2)
Carry-in to MSB and Carry-in to MSB and carry-

carry-out of MSB position + 0010 (2) out of MSB position are + 1010 (—6)

are same...No Overflow! same...No Overflow!

0101 (5) 1000 (-8)

Checking for Overflow

* Produce additional outputs to indicate if
unsigned (UOV) or signed (SOV) overflow
has occurred

! ! ! ! ! ! ! !
X Y X Y X Y X Y
Full 4 Full 4 Full 4 Full
«—C C. | C C.. | C C. | C C. |—
OUtAdder " OlJtAdder " c)UtAdder " OlJtAdder "
S S S S

COMPARISON

Comparison Via Subtraction

e Suppose we want to compare two numbers: A & B

* Suppose we let DIFF = A-B...what could the result tell
us

— If DIFF<0O,then A< B
— If DIFF =0, then A=B
— IFDIFF>0,then A>B
* How would we know DIFF == 0?

— If all bits of our answer are 0O...check with a NOR gate.

 How would we know DIFF < O (i.e. negative)?
— Signed: Check MSB! (but what about overflow)
— Unsigned: Huh? In unsigned there are no negative results

Computing A<B from "Negative" Resul

Unsigned
e Perform A-B

* If A-B would yield a negative
result, this will appear as
"overflow" in an unsigned
subtraction

 And we know unsigned
subtraction overflow occurs
if Cout=0

* So just check if Cout=0

Signed

Perform A-B

If there is no overflow (V=0),
simply check if MSB =1

But if there is overflow??

— Recall overflow has the effect of
flipping the sign of the result to
the opposite of what it should be.

So if there is overflow (V=1)
check is MSB = 0 (i.e. positive)
Summary: A-B is "truly’
negative if V=0 & MSB=1 or
V=1 & MSB=0

Unsigned Comparator

* A comparator can be built by using a subtractor

A
— A[3:0]
Res[3:0]
5 Subtractor

DIFF[3:0]

— A>B

— A<B

Sighed Comparator

* A comparator can be built by using a subtractor

—1—* A[3:0]

Res[3:0]
Subtractor

—e— B[3:0] 4

DIFF[3:0]

— A>B

— A<B

ADDER TIMING

Addition — Full Adders

* Be sure to connect first C, to O

0110 = X
+ 0111 =Y
0 0 1 1 1 1 0 1
! ! ! ! ! ! ! !
X Y X Y X Y X Y
Full Full Full Full
«—C C C C. C C. C C.l«—20
OUtAddelr " OUItAdder " OUItAdder " OUtAdder "
S S S S

* A chain of full adders presents an interesting timing analysis
problem

* To correctly compute its own Sum and Carry-out, each full
adder requires the carry-out bit from the previous full adder

* Because hardware works in parallel, the full adders further
down the chain may momentarily produce the wrong outputs
because the carry has not had time to propagate to them

! ! ! ! ! ! ! !
X Y X Y X Y X Y
Full - ull - ull - ull
«—C | C C. | C C. | C C.l«—20
OlJtAdder z OUtAdder z OL‘tAdder z OutAdder "
S S S S

Timing Example

* Assume that we were adding one set of inputs and
then change to a new set of inputs:

Old inputs: New inputs: il
1111 = X
+ 0001 =Y
0000
0 1
| |
X Y
- Cout el Cin — 0
er Adder
S S S S
' ' ' '

Old inputs:

0

}

Timing
e At the time just before we enter the new
input values, all carries are 0’s

0000

0010

+ 0001

X
C Full

out

Adder
S

0]

!

Y
Cin

0011

'
0

X

Y

Adder

- 01 USCVlterb.
Timing

* Now we enter the new inputs and all the FA’s
starting adding their respective inputs

1111
1111 = X :
Time
+ 0001 =Y 0
0000
1 0 1 0 1 0 1 1
b b b b
X Y X Y X Y X Y
0 Full . 0 Full . 0 i Full . 0 Full =0
Add Adder Add Add
S S S S
' ' ' '

Due to propagation delay, the carries are still from the old inputs

e USCVlterb,

School of Engine

* Each adder computes from the current inputs (notice the
sum of 1110 is incorrect at this point)

1111
1111 = X i
Time
+ 0001 =Y 1
0000
1 0 1 0 1 0 1 1
! ! ! ! ! !
X Y X Y X Y
.O_ c. Ful ¢ | 0 c. Full ¢ | . c Full ¢ ! 0
OUtAddelr " OUItAdder " OUItAdder "
S S S
v v v
1 1 1 0

Now the carries are all based off the new inputs

Timing
 The carry is “rippling” through each adder
1111
1111 = X .
Time
+ 0001 = Y 2
0000
1 0 1 0 1 0) 1 1
| | | |
X Y X Y
40_ Cout il Cin - Cout Eull Cin - 0
Adder Adder
S S
' '

Timing
* The carry is “rippling” through each adder
1111
1111 =X Time
+ 0001 = Y 3
0000
1 0 1 o) 1 0 1 1
L
X Y
40_ Cout Full C L 0

e USCVlterb,

School of Engine

* Only after the carry propagates through all the adders is the
sum valid and correct

1111
1111 =X Time
+ 0001 =Y 4
0000
1 0 1 0 1 0 1 1

“Ripple-Carry” Adder

* The longest path through a time]
chain of full adders is the C1 /\ Carry ripples through
carry path s)
* We say that the carry N
“ripples” through the adder ©° /\‘
ca e
1 0 1 0 1 0 1 1
| | | | | | | |
X Y X Y X Y X Y
1 1 1 1
] Cout) C|n < Cout ol Cin < Cout ol Cln < Cout el Cin — 0
C4 Add C3 Adder C2 Add C]_ Add CO
S S S S
' ' ' '

Ripple Carry Adder Delay

* An n-bit ripple carry adder has a worst case
delay proportional to n (i.e. n-bits =>n
columns of addition => n-full adders)

1 0 1 0 1 0 1 1
! ! ! ! ! ! ! !
X Y X Y X Y X Y
! Full ! Full ! Full ! Full
7 CoutAd]i1 Cln COUtAdlileI' Cln CoutAdUél Cin COUtAdlii Cin — 0
S S S S
' ' ' '

Glitches

* Transient, incorrect output values due to
differing arrival times of gate inputs

Output Glitches

Glitch = “momentary,
* DE|ay Of the Carry E)/Eincorrect output value”
causes glitches on the s3 | 5
sum bits | ;
Inputs change Correct carry
. . f finally arri
* Glitch = momentarily, 0010+0001 sothat
. to correct sum
incorrect output value 1111 + 0001 will be
generated
early
0—-1 0-0
| | | | | | | |
X Y late X Y . X Y . X Y
D Cout Fml Cin 9_)1 Cout Frll Cin < Cout Flll Cln Cout il Cln — 0
Add Adder Adder Adde
S S S S
' ' ' '

Critical Path

* Critical Path = Longest possible delay path

Assume t,,, = 5 ns,
teary= 4 NS
! ! ! !
X Y X Y X Y X Y
Co FA Ci l@uereeenrend Co FA Ci l@eereeenrend Co FA Ci l@eereeenrend Co FA Ci l<
S. S S S
i l l l
17 ns 13 ns 9ns sns

Critical Path

MULTIPLIERS

e USCVlterb,

School of Engine

Unsigned Multiplication Review

 Same rules as decimal multiplication
* Multiply each bit of Q by M shifting as you go

* An m-bit * n-bit mult. produces an m+n bit result
(i.e. n-bit * n-bit produces 2*n bit result)

* Notice each partial product is a shifted copy of M or 0 (zero)

1010 M (Multiplicand)
* 1011 Q (Multiplier)

e USCVlterb.

School of Engine

Unsigned Multiplication Review

 Same rules as decimal multiplication
* Multiply each bit of Q by M shifting as you go

* An m-bit * n-bit mult. produces an m+n bit result
(i.e. n-bit * n-bit produces 2*n bit result)

* Notice each partial product is a shifted copy of M or 0 (zero)

1010 M (Multiplicand)
* 1011 Q (Multiplier)

1010
1010_ PP (Partial
0000 Products)
+ 1010

01101110 P (Product)

 When adding signed (2’s comp.) numbers, some new
Issues arise

* Must sign extend partial products (out to 2n bits)

Without Sign Extension... With Sign Extension...
Wrong Answer! Correct Answer!
1001 = -7 1001 = -7
* 0110 = +6 * 0110 = +6
0000 00000000
1001 1111001
1001 111001
+ 0000 + 00000

00110110 = +54 11010110 = -42

* Also, must worry about negative multiplier
— MSB of multiplier has negative weight
— If MSB=1, multiply by -1 (i.e. take 2’s comp. of multiplicand)

With Sign Extension but w/o With Sign Extension and w/
consideration of MSB... consideration of MSB...
Wrong Answer! Correct Answer!
1100 = -4 Place Value: -8 1100 = -4
* 1010 = -6 MUyl HTT010 = -6
00000000 00000000
1111100 _ 1111100
000000 000000
+ 11100 + 00100

11011000 = -40 00011000 = +24

Combinational Multiplier

* Partial Product (PP,) Generation
— Multiply Q[i] * M
« if Q[i]=0=> PP, =0
« if Q[i]=1=>PP,= M

Combinational Multiplier

* Partial Product (PP,) Generation
— Multiply Q[i] * M
« if Q[i]=0 => PP, = 0
« ifQ[i]=1=>PP,=M
— AND gates can be used to generate each partial
product

M[3] M[2] M[1] M[O] M[3] M[2] M[1] M[O]
if if

g gUgy T

0 0 0 0 M[3] M[2] M[1] M[O]

i 15 Viterb 22
Multiplication Overview

* Multiplication approaches:

— Sequential: Shift-and-Add produces one product bit per clock cycle time
(usually slow)

— Combinational: Array multiplier uses an array of adders
e Can be as simple as N-1 ripple-carry adders for an NxN multiplication

m3 m2 ml mO

S o w2 om

’@ m3g0 m2q0 mlg0 mOg0
02 A m3gl m2qgl mlql mOqgql {

A
h% m3g2 m2q2 mlg2 m0g2 l_
S

qo0

w2 + m3gq3 m2g3 mlg3 m0g3)

TR

AND Gate Array produces partial
product terms

Combinational Multiplier

e Partial Products must be added together

 Combinational multipliers require long
propagation delay through the adders
— propagation delay is proportional to the number

of partial products (i.e. number of bits of input)
and the width of each adder

Array Multiplier

USC Viterbf22*

School of Engineering

. 0 m3 m2q0 m1q0 mOqg0
Can this be a HA? I\A m3q1l | m2qg1 miqgl mOg1l
| | | |
X Y X Y X Y X Y
Co Fa Ci Co Fa Ci Co Fa Ci Co HA
S S S S
m3q2 m2q2 L‘ mlqg2 L‘ m0q2 L‘
| | | |
X Y X Y X Y X Y
Co Fa Ci Co Fa Ci Co Fa Ci Co HA
S S S S
m3q3 m2q3 miqg3 mog3
| | | |
X Y X Y X Y X Y
Co Fa Ci Co Fa Ci Co Fa Ci Co HA
r S S S S
P[7] P[6] P[5] P[4] P[3] P[2] P[1] P[0]

e Maximum delay =7
— Do you look for the longest path or the shortest path between any input and output?
— Compare with the delay of a shift-and-add method

e USCViterb

Pipelined Multiplier

* Now try to pipeline the previous design

m3g2 m2g2 mig2 mO0g2
m3?3 m2(:13§ ml(:q3§ m3q1m0?3§ m2g1l m3q0 i mlgl m2qg0 mO0gl m1qg0 mO0q0
: H P | 1 | : | | | I |
[]
: P b I a1 : I I I |
s i . A EAR RN XY
: P —-Co HA Y H—Co FA Ci|——Co Fa Ci Co HA
A ils Jiil s il s 5
] e . 1 e 1 [| 1
| _| _| _| |
§ Px Y i x v x Y X Y
+ {Co Fa CifH—{Co Fa CifH—{Co Fa Ci Co HA
§ § S § S § S S
' ' I ' I L I I
| \—| \—| \—| |
X Y X Y X Y X Y
Co Fa Ci Co ra Ci Co Fa Ci Co HA
r S S S S
I I I I
[]
| | | | | | | |
P[7] P[6] P[5] P[4] P[3] P[2] P[1] P[O]

Determine the maximum stage delay to decide the pipeline clock rate.
Assume zero-delay for stage latches. How does the latency of the pipeline compare with the simple
combinational array of the previous stage?

P (5 C ittt} 224
Carry-Save Multiplier

* Instead of propagating the carries to the left in the same row, carries are
now sent down to the next stage to reduce stage delay and facilitate

pipelining

AB B[] C[3] A2l B2l C2] A[1] B[] C[1] AW B[] Clo] o TMedo
e T ST S My I m3qL L L m
CTXCY ¥ ¥ v |1 [mmmm————————— R I
i dco ra ci Co Fa CiH Hco ra Ci Cora CiH i 1 CSA i '
i FA ! " S Co Fa Ci
I
Cof3] SB Col2) S Colf] S[1] Cofo] S[o] I ’J ’J :
I
I
I 202 mlqg2 m0q2
| M x v |1 x v XY :
| l l 1 Co Fa Ci Co Fa Ci Co FA Ci I
A[3:0] B[3:0] C[3:0] 1 -
Carry-Save Adder | S S S 1
Co[3:0] 5[] : 1
T T : I
A m3q3 | m2qg3 miqg3 mO0g3 1
The upper three stages are 3-bit 1 XY J XY XY :
Carry Save Adders (CSA’s) each : Co FA Ci Co FA Ci Co FA Ci 1
with 2-gate delays. I ‘ S ‘ S ‘ s !
- RCA
The last stage is a Ripple Carry o o o i o e Tt
Adder (RCA) which requires : XY XY XY :
longer delay. It can be replaced 1 Co ra Ci Co ra Ci Co Fa Cit—
by a CLA for larger multipliers. : |/ S) S S :
..____.I. ______ _I _______ |.____

P[7] P[6] P[5] P[4] P[3] P[2] P[1] P[0]

e USCViterb

Carry Save Adders

* Consider the decimal addition of
47 + 96 + 58 = 201
* Onewayistoadd47to 96 to get 143 and then add 58
* Here the ten’s column cannot be added until the carry is produced

* Inthe carry-save style, we add the one’s column and ten’s column
simultaneous

1 1 Al s
4 7 (417
+ 9 6 19!16!
®164 o3 +-i5/ 18!
+ 5 8 201
2 0 1 +[1@F;
® ® @

e USCViterb

School of Engineering

Carry-Save (3,2) Adders

* A carry save adder is also called a (3,2)

* An n-bit CSA consist of n disjoint full

adder or a (3,2) counter (refer to

Computer Arithmetic Algorithms by

Israel Koren) as it takes three vectors,

adds them up, and reduces them to - _
arry vector n - 3 : :

two vectors, namely a sum vectoranda U3 1y 1.1
um vector m———

carry vector

CSA’s are based on the principle that
carries do not have to be added as soon e memen e o s
as possible, but can be combined in a | L] L1 L L1 L1

Co FA Co FA Co Fa Co FA
later step (s s ; :

C4l s[3] ClBl s[Z] Cl21 s[] Cl s[o]

adders

lll'[KK:Eﬁgzigglﬂb
Adder Propagation Delay

1111
+ 0001

| | | | | | | |

X Y X Y X Y X Y

CoFA Cil—0

S

|

CoFA Cil—0

S

|

CoFA Cil—0

S

|

CoFA Ci
S

«—0

|

-] USCViterb
School of Engineering

Adder Propagation Delay

1111
+ 0001
1 0 1 0 1 0 1 1
| | | | | | | |
X Y X Y X Y X Y
CoFA Cil—9 coFA Cile—9 lcoFA Cile—9 [CoFA Cil—0
S S S S

|

|

|

|

-] USCViterb
School of Engineering

Adder Propagation Delay

1111
+ 0001
1 0 1 0 1 0 1 1
! ! !
X Y X Y X Y
<O—C0FA Ci | 0 CoFA Cils 0 CoFA Ci 0
S S S

l l |

1 1 1 0

-] USCViterb
School of Engineering

Adder Propagation Delay

1111
+ 0001
1 0 1 0 1 0 1 1
X Y X Y
0 |1 0 .
«— CoFA Cile CoFA Ci 0
S S

l l

1 1 0 0

-] USCViterb
School of Engineering

Adder Propagation Delay

1111
+ 0001
1 0 1 0 1 0 1 1
X Y
0 |1
«— CoFA Ci 0
S

1 0 0 0

- USCV1terb.
Adder Propagation Delay

1111
+ 0001

Critical Path

* Critical Path = Longest possible delay path

Assume t,,, = 5 ns,
teary= 4 NS
! ! ! !
X Y X Y X Y X Y
COFA Ci l@uereeearend COFA Cj l@uereeearend CoOFA Ci l@uereeearend CoFA Ci l<
S. S S S
i l l l
17 ns 13 ns 9ns sns

Critical Path

P (5 C ittt} 22>
Combinational Multiplier

-] USCViterb
School of Engineering

Combinational Multiplier

P (5 C ittt} 25>
Combinational Multiplier

-

e EEE—— S T S
Combinational Multiplier

P {15 Viterh£2>
Combinational Multiplier

P {15 Viterh£22
Combinational Multiplier

P {15 Viterh£22
Combinational Multiplier

P {15 Viterh£2>
Combinational Multiplier

P {15 Viterh£2>
Combinational Multiplier

USCVlterb.

School of Eng

Critical Paths

S LLLLL Critical Path 1
S LELLL Critical Path 2

Combinational Multiplier Analysis

e Large Area due to (n-1) m-bit adders

— n-1 because the first adder adds the first two
partial products and then each adder afterwards
adds one more partial product

* Propagation delay is in two dimensions

— proportional to m+n

Carry-Lookahead Adders

FAST ADDERS

Ripple Carry Adders

* Ripple-carry adders (RCA) are slow due to
carry propagation

— At least 2 levels of logic per full adder

—_—— | A - — —
1

- USCViterb
Fast Adders

e Rather than calculating one carry at a time and passing it
down the chain, can we compute a group of carries at the

same time
* To do this, let us define some new signals for each column of

addition:
— p, = Propagate: This column will propagate a carry-in (if there is one)
to the carry-out.
p, is true when A, or B.is 1 =>p, = A, + B,
— g, = Generate: This column will generate a carry-out whether or not
the carry-inis ‘1’
g.is true when A,and B.is1=>g = A, ¢ B,

* Using these signals, we can define the carry-out (c,,,) as:

Cii1 = 8 T PiC

e — 5 Viterbf 27>
Carry Lookahead Logic

* Define each carry in terms of p,, g and the
initial carry-in (c,) and not in terms of carry
chain (intermediate carries: c1,c2,c3,...)

e cl=
* C2=
* C3=
°* 4=

e — 5 Viterbf 27
Carry Lookahead Logic

* Define each carry in terms of p,, g and the
initial carry-in (c,) and not in terms of carry
chain (intermediate carries: c1,c2,c3,...)

* ¢l =84+ PpyCo

* C2=g,+pPiC; =81+ P18y + P1PuCo
* C3=..

° c4=..

* Consider the carry-chain like a long tube broken into
segments. Each segment is controlled by a valve
(propagate signal) and can insert a fluid into that
segment (generate signal)

* The carry-out of the diagram below will be true if g1
is true or plis true and g0 is true, or p1, pOand cl is
true

IIIIIIIIIIIIIIlllllllllllllllllllllllIﬂﬂ:Vﬁmb’!ID

School of Engineering
A3 B3 A2 B2 Al Bl A0 BO Co

SN N N A RO N B D

Carry-Lookahead
Logic (CLL)

C4 S3 S2 S1 SO

e USCVlterb,

Carry Lookahead Adder

» Use carry-lookahead logic T T i
e o bt O
to generate all the carries | - o 80 |
in one shot and then | Lol - L |
create the sum R o e S :

. | g3 p3 g2 p2 gl p1 g0 p0 COD
* Example 4-bit CLA shown | |
Carry-Lookahead |
below | Logic (CLL) |

| C4 Cc3 cz C1

| A3 B3 A2 B2 Al1B1 AD BO I
| |
| |
| 53 52 B[3:0] | &1 S0 I
I B — ——L |

Carry Lookahead Adder

e Use carry-lookahead logic
to generate all the carries
in one shot and then
create the sum

 Example 4-bit CLA shown
below

A[3:0] B[3:0] co

|ﬁ4__+_—4__“_1
A3 B3 AZ BZ AD BO
A3 B3 AZ E!Z A1 E!1 AD BO
PG
g3 p3 92 p2 gt p! g0 pO

g3 p3 g2 p2 gl p1 g0 p0 €O

Logic (CLL)
A3 B3 A2 B2 A1B1 AD BO

|
|
|
|
|
| Carry-Lookahead
|
|
|
|
|

|
|
|
|
|
|
HOBOFORFC) :
:
|
|

52 B[2:0] %

L______
c4 @smﬂ

- USCViterb
4-bit Adders

e 7415283 chip implements a 4-bit adder using
CLA methodology

AAAA, = A
+ B,B,B,B, = B
S,S5S,S,S, = S
VLV
A, B; A, B, A, B, A, B,
+—{ Cout 7415283 Cin [e—
S; S; S S

N

e USCViterb

School of Engineering

16-Bit CLA

e But how would we make a 16-bit adder?
e Should we really just chain these fast 4-bit adders together?

— Or can we do better?

A[15:12] B[15:12]

b

A[11:8] B[11:8] Al7:4] B[7:4] A[3:0] B[3:0] Co

ClziicgiimiiJ

| T

C16 S[15:12]

L A A © [A

S[11:8] S[7:4] S[3:0]

16-bit RCA Delay =
Delay of the above adder design = 3+2+2+3 = 10 gates

Let us improve by looking ahead at a higher level to
produce C16, C12, C8, C4 in parallel

16*2 = 32 gate delays

What's the difference
between the equation
for G here and C4 on
the previous slides

Define P and G as the overall Propagate and Generate
signals for a set of 4 bits

P=p3ep2eplepl
G = g3 + p3eg2 + p3ep2egl + p3ep2eplegl

REVIEW ON YOUR OWN FOR CLA
LAB

B (5C Viterbf2 ™
16-bit CLA Closer Look

e Each 4-bit CLA only propagates its overall carry-in if each of the 4 columns propagates:
— PO =p3ep2epl epl
— Pl =p7e pb6ep5ep4d
— P2=plle pl0 ep9 ep8
— P3 =pl5epl4depl3 epl2
* Each 4-bit CLA generates a carry if any column generates and the more significant columns
propagate
— GO =g3+(p3 eg2) + (p3 ep2 egl)+(p3 ep2 epl eg0)
— G3=g15+ (p15 egl14) + (p15 epl4 eg13)+(pl5 epl4 epl3 egl2)
* The higher order CLL logic (producing C4,C8,C12,C16) then is realized as:
— (C4) =>C1 =GO + (PO ec0)
— (C16) =>C4 = G3 + (P3 ©G2) + (P3 eP2 ¢G1) +(P3 @ P2 @ P1 @ GO)+ (P3 eP2 eP1 eP0 ec0)
* These equations are exactly the same CLL logic we derived earlier

e USCViterb

1 6 _ B |t C I_ A Schoolof Engineerng

* Understanding 16-bit CLA hierarchy...

é
é‘(:15

»c CLL pc CLL pc CLL <{| pg CLL

CO

C12 C8 C4

p3 g3 c3 p2 g2 c2 pl gl cl p0 go0
¢ CLL cO
P* G*
C1l6 \L \L

Delay =

= = Delay in producing pi,qgi

= = Delay in producing Pi*,Gi*

= = Delay in producing C4,C8,C12,C16
= =Delay in producing c15

= _ =Delay in producing S15

e USCViterb

6 4_ B |t C I_ A School of Enginceing

 We can reuse the same CLL logic to build a 64-bit CLA CO
0 Q00 000 D000+ (0000 0000 (00 QUDD (000 (000 (000 fooo-+ fooo-+ 000+ 000 fnao
c63 s35
é
C60 |[C56 [C52 C44 |[C40 |C36 c28 |[c24 [c20 C12 |cC8 |[c4
pg CLL pc CLL pc CLL <1 | pg CLL
L\L\n C48 J/J\E C32 \1_\1/ C16 l/J lJ/
p3 g3 c3 p2 g2 c2 pl gl cl p0 go0
\1/7 c4 o o CLL cO
= = Delay in producing S63 =___ = Delay in producing pi*,gi*

Is the delay in producing s63 the same as in s35? = = Delay in producing Py™,GJ**
= ___ = Delay in producing C48

=___ = Delay in producing 52 = = Delay in producing C60

= = Delay in producing SO = = Delay in producing C63

=___ = Delay in producing S63
= Total Delay

Summary

 You should now be able to build:
— Fast Adders
— Comparators

