

School of Engineering

Spiral 2-2

Arithmetic Components and Their Efficient Implementations

Learning Outcomes

School of Engineering

- I know how to combine overflow and subtraction results to determine comparison results of both signed and unsigned numbers
- I understand how combination multipliers can be built
- I understand how hierarchical carry lookahead logic can be used to produce logarithmic time delay for an adder

DATAPATH COMPONENTS

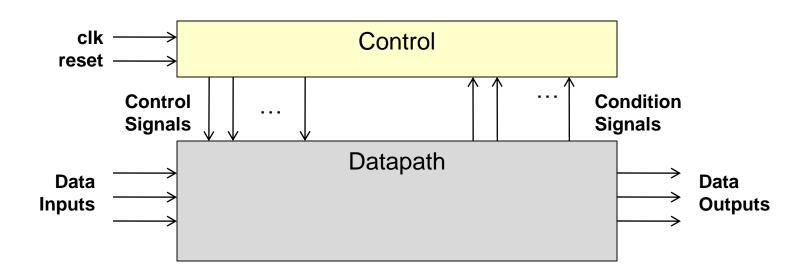
School of Engineering

2-2.3

USC Viterbi 2-2.4 School of Engineering

Digital System Design

- Control (CU) and Datapath Unit (DPU) paradigm
 - Separate logic into datapath elements that operate on data and control elements that generate control signals for datapath elements
 - Datapath: Adders, muxes, comparators, counters, registers (shift, with enables, etc.), memories, FIFO's
 - Control Unit: State machines/sequencers



Detecting Overflow Helps Us Perform Comparison

OVERFLOW & COMPARISON

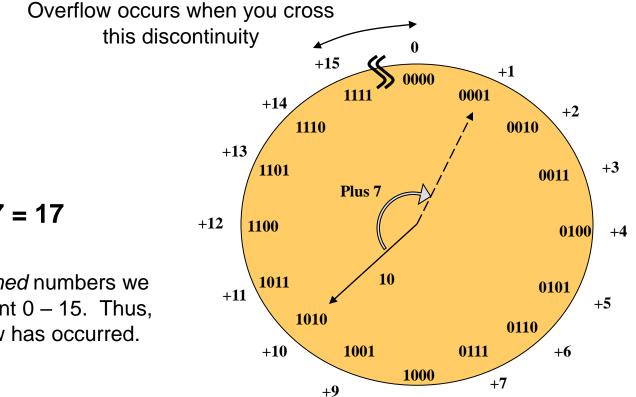
Overflow

School of Engineering

- Overflow occurs when the result of an arithmetic operation is too large to be represented with the given number of bits
 - Unsigned overflow occurs when adding or subtracting unsigned numbers
 - Signed (2's complement overflow) overflow occurs when adding or subtracting 2's complement numbers

School of Engineering

Unsigned Overflow



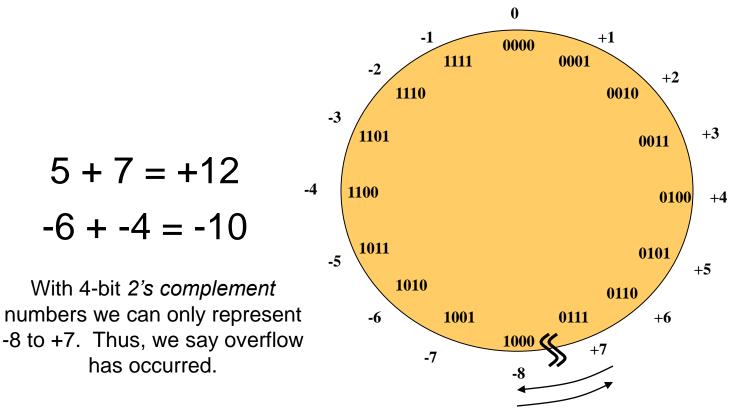
+8

10 + 7 = 17

With 4-bit *unsigned* numbers we can only represent 0 - 15. Thus, we say overflow has occurred.

School of Engineering

2's Complement Overflow



Overflow occurs when you cross this discontinuity

Testing for Overflow

School of Engineering

- Most fundamental test
 - Check if answer is wrong (i.e. Positive + Positive yields a negative)
- Unsigned overflow test [Different for add or sub]
 - Addition: If carry-out of final position equals '1'
 - Subtraction: If carry-out of final addition equals '0'
- Signed (2's complement) overflow test [Same for add or sub]
 - Only occurs if two positives are added and result is negative or two negatives are added and result is positive
 - Alternate test: if carry-in and carry-out of final position are different

Testing for Unsigned Overflow

- Unsigned Overflow has occurred if...
 - Unsigned Addition: If final carry-out = 1
 - Unsigned Subtraction: If final carry-out = 0

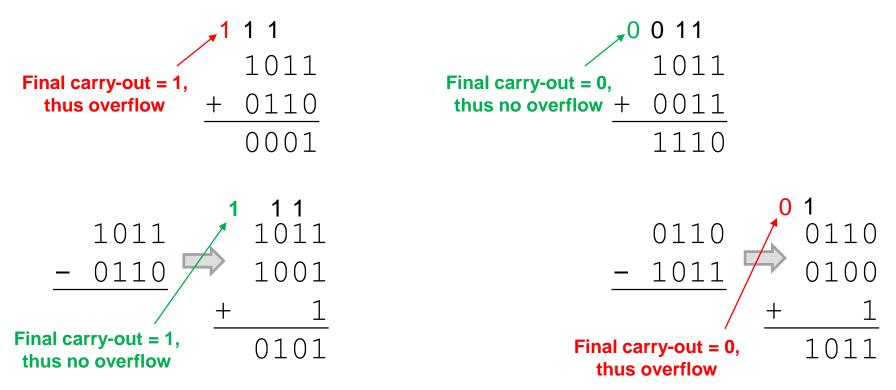
1011 + 0110	1011 + 0011
1011 - 0110	0110 - 1011

Testing for Unsigned Overflow

2-2.11

School of Engineering

- Unsigned Overflow has occurred if...
 - Unsigned Addition: If final carry-out = 1
 - Unsigned Subtraction: If final carry-out = 0



Testing for 2's Comp. Overflow

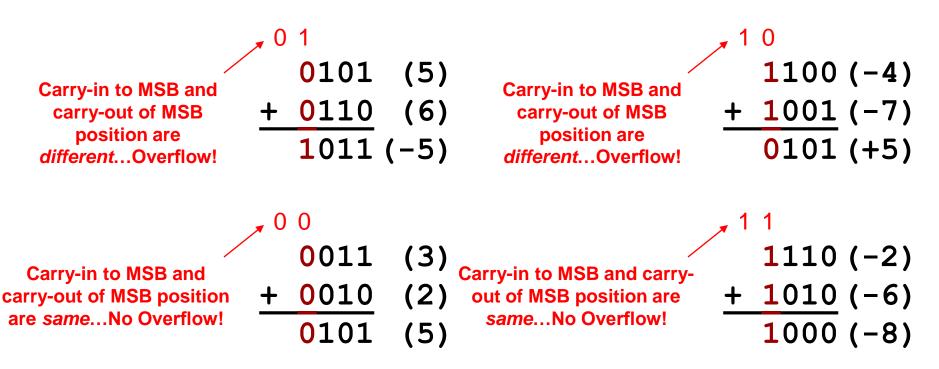
- 2's Complement Overflow Occurs If...
 - Test 1: If pos. + pos. = neg. or neg. + neg. = pos.
 - Test 2: If carry-in to MSB position and carry-out of MSB position are different

$$\begin{array}{cccc} 0101 & (5) & 1100 & (-4) \\ + & 0110 & (6) & + & 1001 & (-7) \\ \end{array}$$

$$\begin{array}{cccc} 0011 & (3) & 1110 & (-2) \\ + & 0010 & (2) & + & 1010 & (-6) \end{array}$$

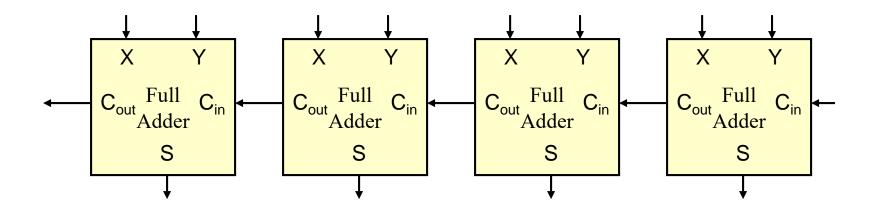
Testing for 2's Comp. Overflow

- 2's Complement Overflow Occurs If...
 - Test 1: If pos. + pos. = neg. or neg. + neg. = pos.
 - Test 2: If carry-in to MSB position and carry-out of MSB position are different



Checking for Overflow

 Produce additional outputs to indicate if unsigned (UOV) or signed (SOV) overflow has occurred



COMPARISON

Comparison Via Subtraction

- Suppose we want to compare two numbers: A & B
- Suppose we let DIFF = A-B...what could the result tell us
 - If DIFF < 0, then A < B
 - If DIFF = 0, then A=B
 - IF DIFF > 0, then A > B
- How would we know DIFF == 0?
 - If all bits of our answer are 0...check with a NOR gate.
- How would we know DIFF < 0 (i.e. negative)?
 - Signed: Check MSB! (but what about overflow)
 - Unsigned: Huh? In unsigned there are no negative results

School of Engineering

Computing A<B from "Negative" Result

Unsigned

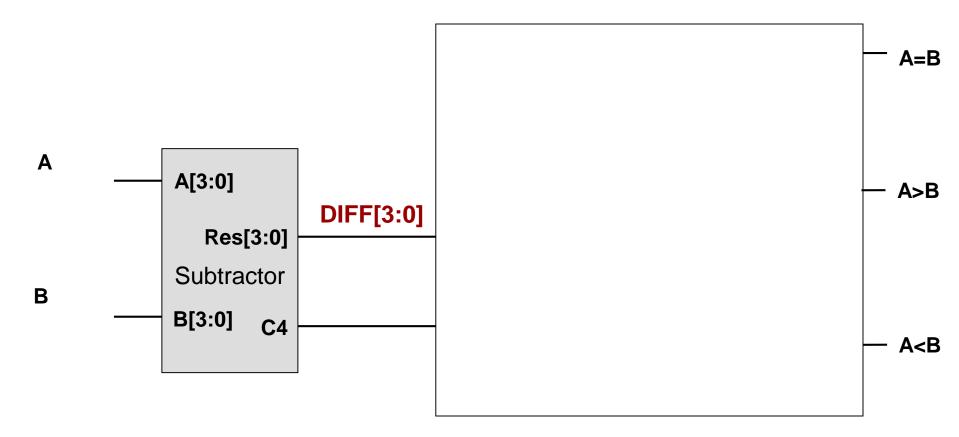
- Perform A-B
- If A-B would yield a negative result, this will appear as "overflow" in an unsigned subtraction
- And we know unsigned subtraction overflow occurs if Cout = 0
- So just check if Cout=0

Signed

- Perform A-B
- If there is no overflow (V=0), simply check if MSB = 1
- But if there is overflow??
 - Recall overflow has the effect of flipping the sign of the result to the opposite of what it should be.
- So if *there is overflow (V=1)* check is MSB = 0 (i.e. positive)
- Summary: A-B is "truly' negative if V=0 & MSB=1 or V=1 & MSB=0

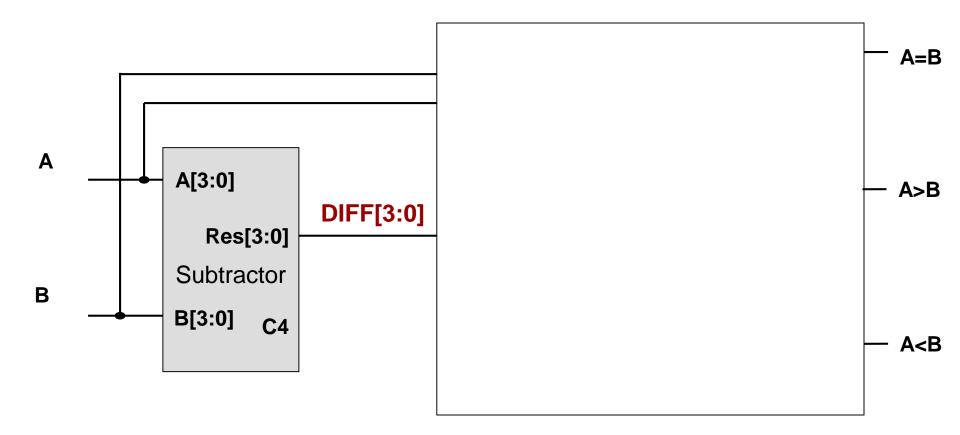
Unsigned Comparator

• A comparator can be built by using a subtractor



Signed Comparator

• A comparator can be built by using a subtractor



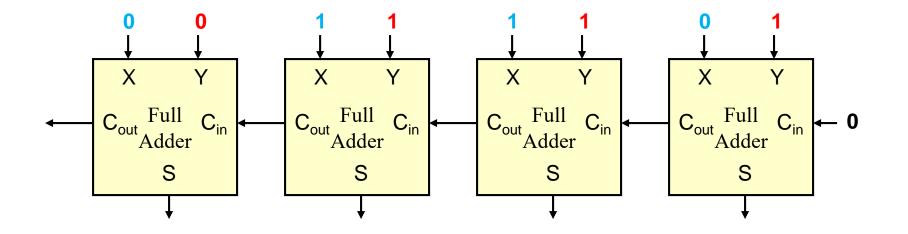
School of Engineering

ADDER TIMING

Addition – Full Adders

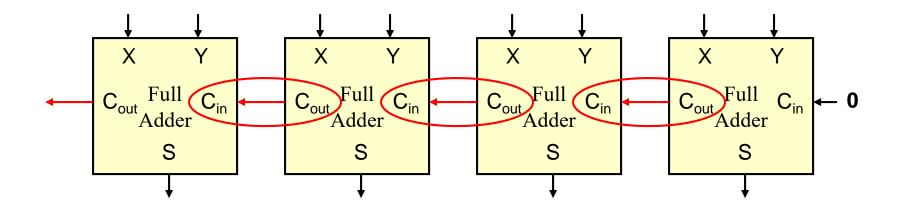
• Be sure to connect first C_{in} to 0

0110 = X+ 0111 = Y



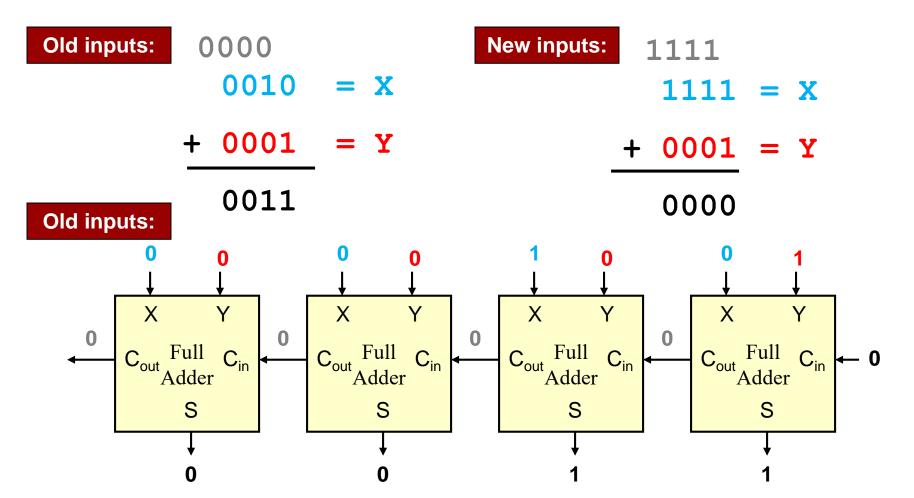
School of Engineering

- A chain of full adders presents an interesting timing analysis problem
- To correctly compute its own Sum and Carry-out, each full adder requires the carry-out bit from the previous full adder
- Because hardware works in parallel, the full adders further down the chain may momentarily produce the wrong outputs because the carry has not had time to propagate to them



Timing Example

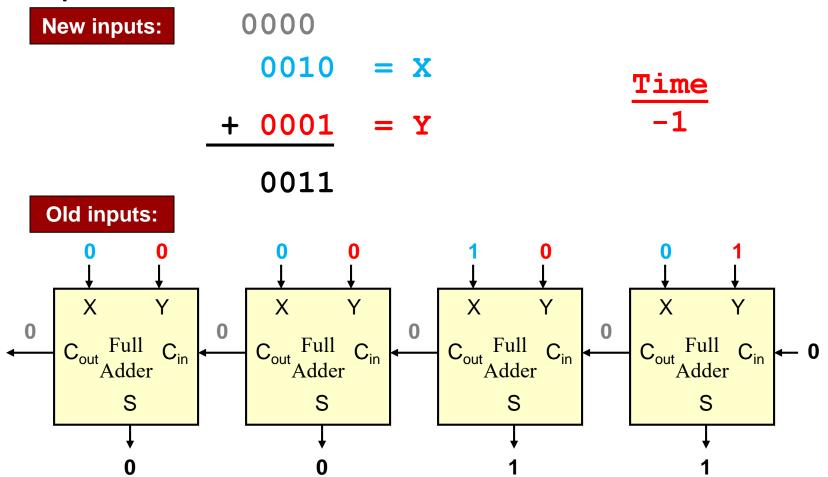
• Assume that we were adding one set of inputs and then change to a new set of inputs:



2-2.24

School of Engineering

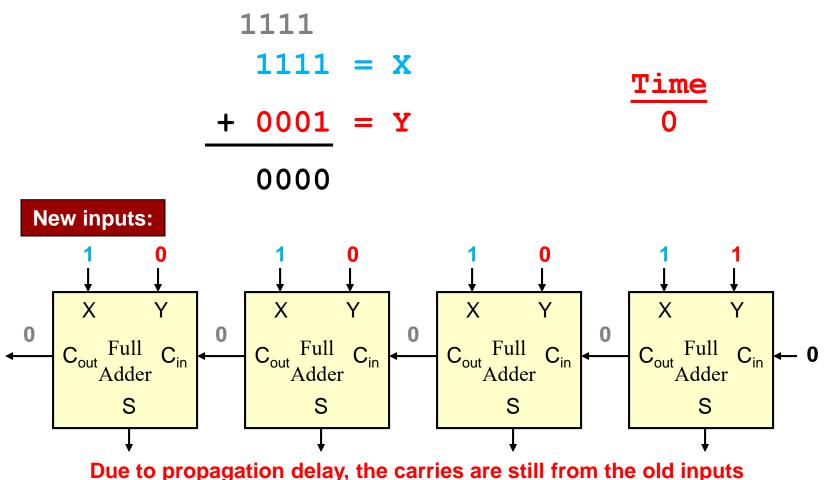
• At the time just before we enter the new input values, all carries are 0's



2-2.25

School of Engineering

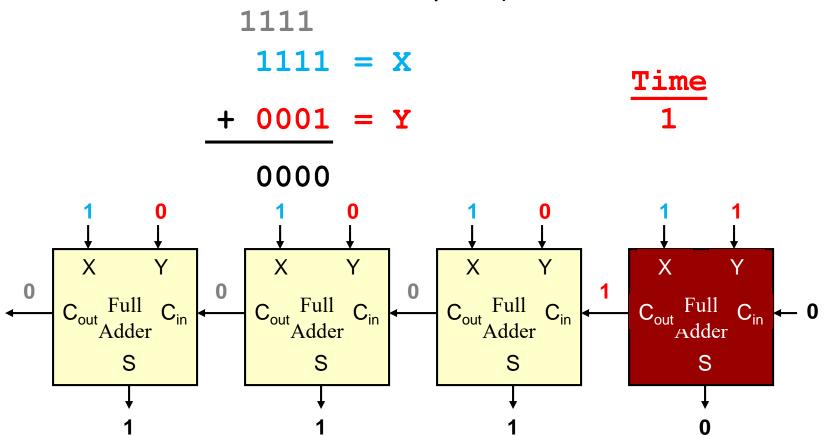
• Now we enter the new inputs and all the FA's starting adding their respective inputs



2-2.26

School of Engineering

• Each adder computes from the current inputs (notice the sum of 1110 is incorrect at this point)

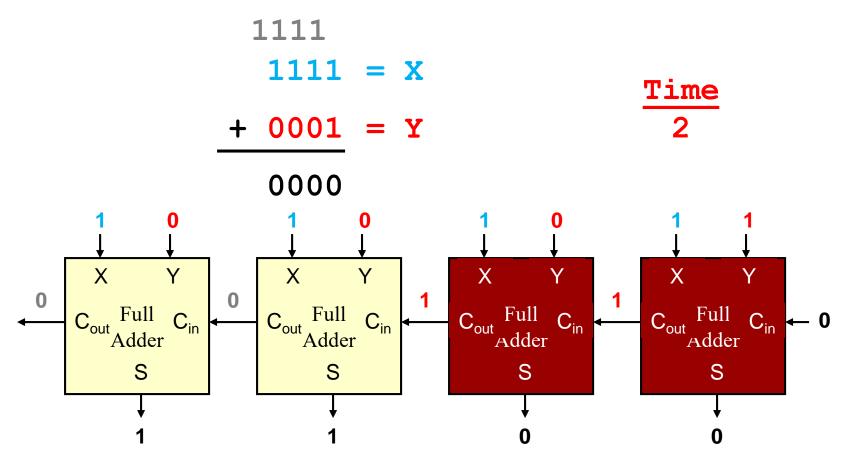


Now the carries are all based off the new inputs

2-2.27

School of Engineering

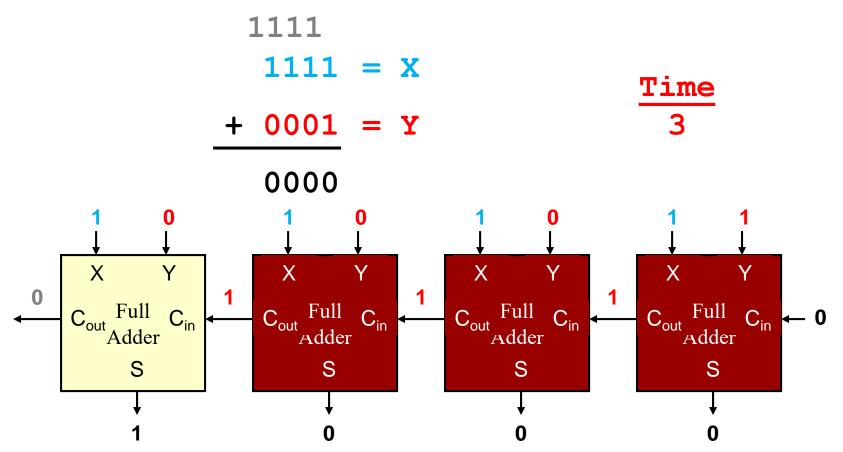
• The carry is "rippling" through each adder



2-2.28

School of Engineering

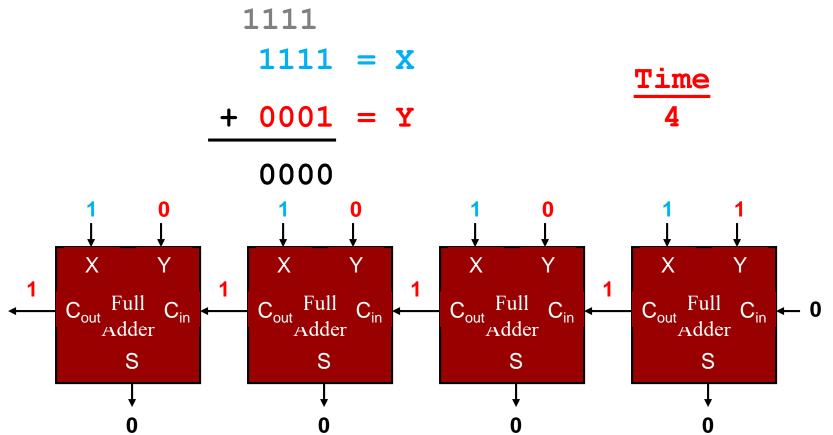
• The carry is "rippling" through each adder



2-2.29

School of Engineering

• Only after the carry propagates through all the adders is the sum valid and correct

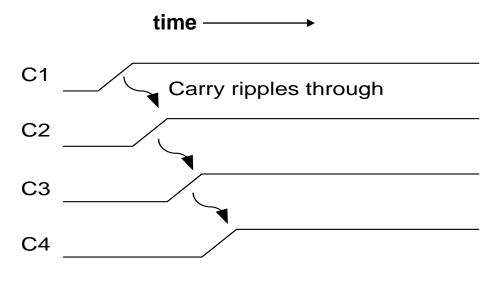


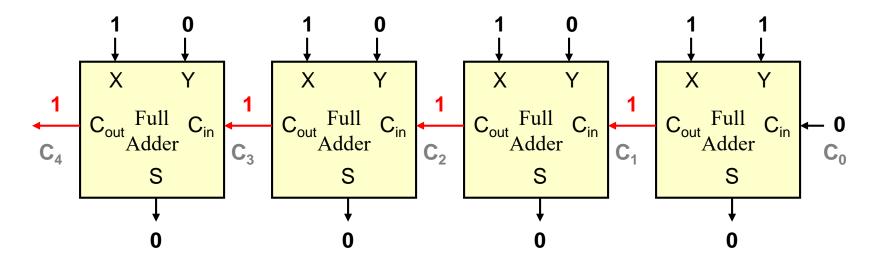
USC Viterbi^{2-2.30}

School of Engineering

"Ripple-Carry" Adder

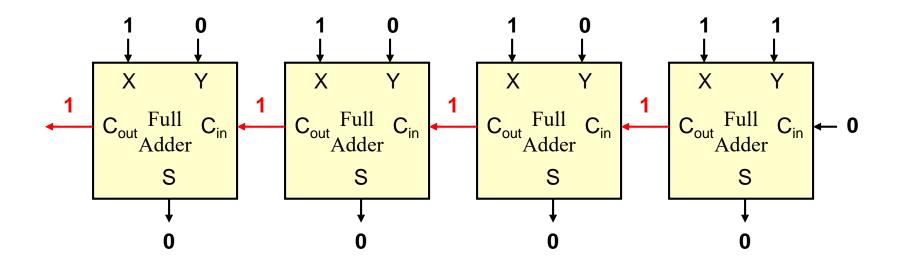
- The longest path through a chain of full adders is the carry path
- We say that the carry "ripples" through the adder





Ripple Carry Adder Delay

 An n-bit ripple carry adder has a worst case delay proportional to n (i.e. n-bits => n columns of addition => n-full adders)



Glitches

• Transient, incorrect output values due to differing arrival times of gate inputs

Output Glitches

- Delay of the carry causes glitches on the sum bits
- Glitch = momentarily, incorrect output value

Х

Full

S

Cin

C_{out}Adder

late

early

0→**0**

Cin

0→1

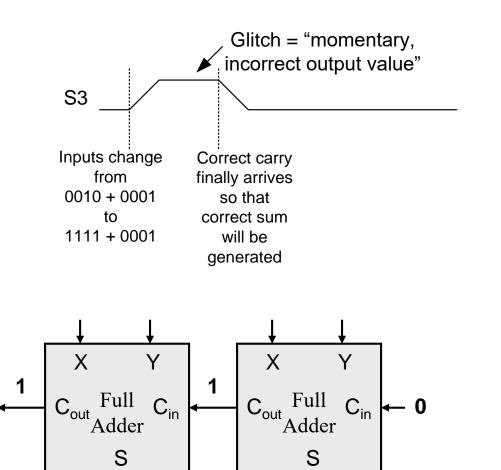
Х

Cout Adder

Full

S

→**1**→0



2-2.33

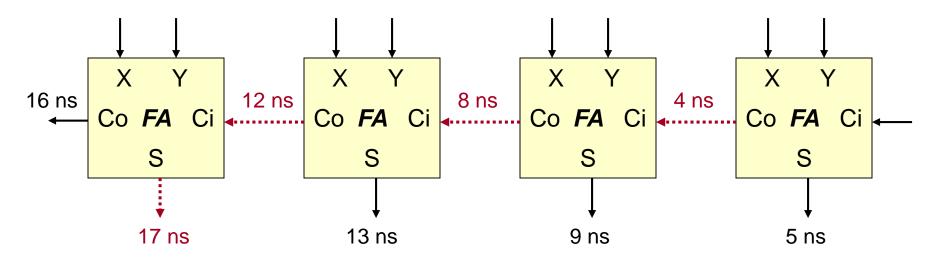
School of Engineering

Critical Path

• Critical Path = Longest possible delay path

Assume $t_{sum} = 5$ ns,

t_{carry}= 4 ns



Critical Path

2-2.34

School of Engineering

School of Engineering

2-2.35

Unsigned Multiplication Review

- Same rules as decimal multiplication
- Multiply each bit of Q by M shifting as you go
- An m-bit * n-bit mult. produces an m+n bit result (i.e. n-bit * n-bit produces 2*n bit result)
- Notice each partial product is a shifted copy of M or 0 (zero)

Unsigned Multiplication Review

- Same rules as decimal multiplication
- Multiply each bit of Q by M shifting as you go
- An m-bit * n-bit mult. produces an m+n bit result (i.e. n-bit * n-bit produces 2*n bit result)
- Notice each partial product is a shifted copy of M or 0 (zero)

	M (Multiplicand) Q (Multiplier)
1010	
1010_	PP(Partial
0000	Products)
+ 1010	
01101110	P (Product)

Signed Multiplication Techniques

- When adding signed (2's comp.) numbers, some new issues arise
- Must sign extend partial products (out to 2n bits)

Without Sign Extension Wrong Answer!	With Sign Extension Correct Answer!
1001 = -7	1001 = -7
* 0110 = +6	* 0110 = +6
0000	0000000
1001_	1111001_
1001	111001
+ 0000	+ 00000
00110110 = +54	11010110 = -42

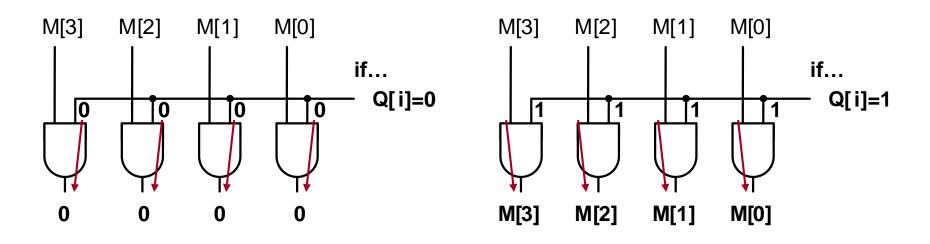
Signed Multiplication Techniques

- Also, must worry about negative multiplier
 - MSB of multiplier has negative weight
 - If MSB=1, multiply by -1 (i.e. take 2's comp. of multiplicand)

With Sign Extension but w/o consideration of MSB Wrong Answer!	With Sign Extension and w/ consideration of MSB Correct Answer!
	Place Value: -8 1100 = -4
\pm 1010 = -6	Multiply by -1 $\star 1010 = -6$
0000000	0000000
1111100_	1111100_
000000	000000
+ 11100	+ 00100
11011000 = -40	00011000 = +24

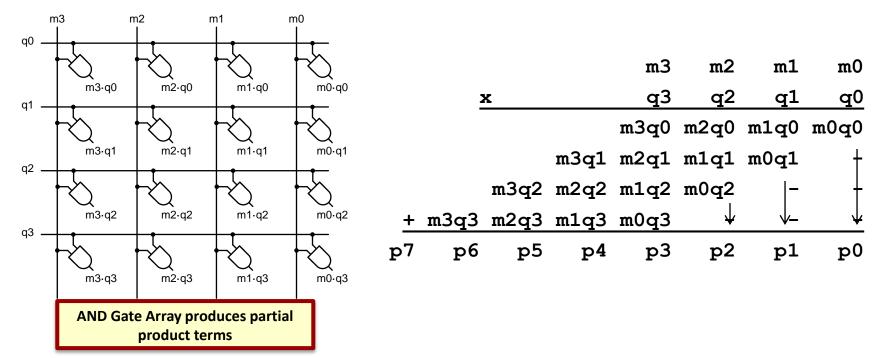
- Partial Product (PP_i) Generation
 - Multiply Q[i] * M
 - if Q[i]=0 => PP_i = 0
 - if Q[i]=1 => PP_i = M

- Partial Product (PP_i) Generation
 - Multiply Q[i] * M
 - if Q[i]=0 => PP_i = 0
 - if Q[i]=1 => PP_i = M
 - AND gates can be used to generate each partial product



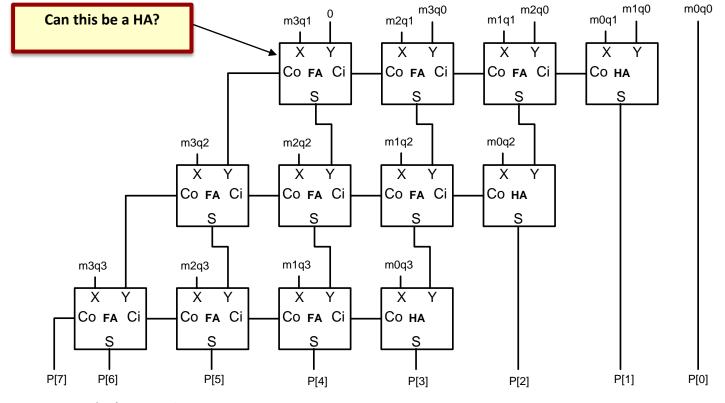
Multiplication Overview

- Multiplication approaches:
 - Sequential: Shift-and-Add produces one product bit per clock cycle time (usually slow)
 - Combinational: Array multiplier uses an array of adders
 - Can be as simple as N-1 ripple-carry adders for an NxN multiplication



- Partial Products must be added together
- Combinational multipliers require long propagation delay through the adders
 - propagation delay is proportional to the number of partial products (i.e. number of bits of input) and the width of each adder

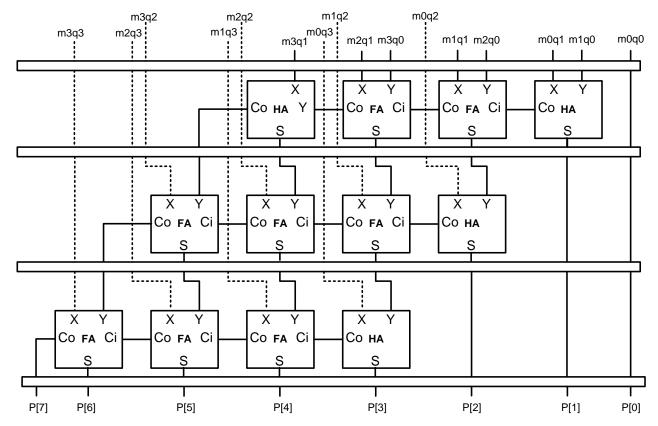
Array Multiplier



- Maximum delay = ?
 - Do you look for the longest path or the shortest path between any input and output?
 - Compare with the delay of a shift-and-add method

Pipelined Multiplier

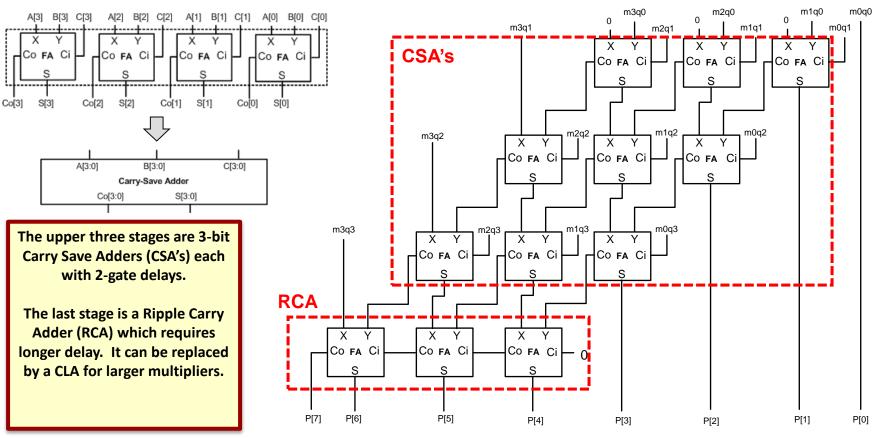
• Now try to pipeline the previous design



Determine the maximum stage delay to decide the pipeline clock rate. Assume zero-delay for stage latches. How does the latency of the pipeline compare with the simple combinational array of the previous stage?

Carry-Save Multiplier

 Instead of propagating the carries to the left in the same row, carries are now sent down to the next stage to reduce stage delay and facilitate pipelining



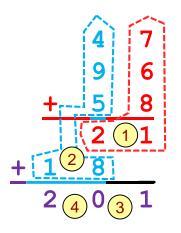
Carry Save Adders

• Consider the decimal addition of

47 + 96 + 58 = 201

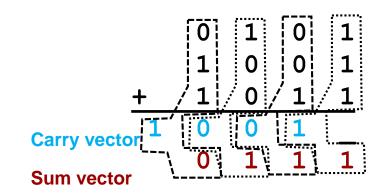
- One way is to add 47 to 96 to get 143 and then add 58
- Here the ten's column cannot be added until the carry is produced
- In the carry-save style, we add the one's column and ten's column simultaneous

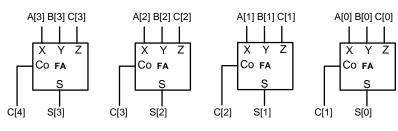
$$\begin{array}{r}
1 & 1 \\
4 & 7 \\
+ & 9 & 6 \\
3 & 1 & 2 & 4 & 1 & 3 \\
+ & 5 & 8 \\
\hline
2 & 0 & 1 \\
6 & 5 & 4
\end{array}$$



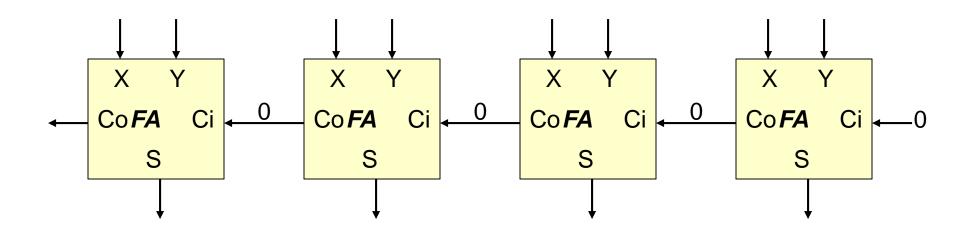
Carry-Save (3,2) Adders

- A carry save adder is also called a (3,2) adder or a (3,2) counter (refer to Computer Arithmetic Algorithms by Israel Koren) as it takes three vectors, adds them up, and reduces them to two vectors, namely a sum vector and a carry vector
- CSA's are based on the principle that carries do not have to be added as soon as possible, but can be combined in a later step
- An n-bit CSA consist of n disjoint full adders





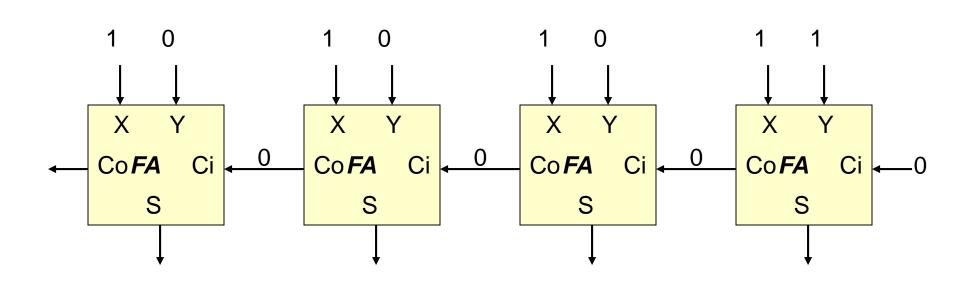
Adder Propagation Delay



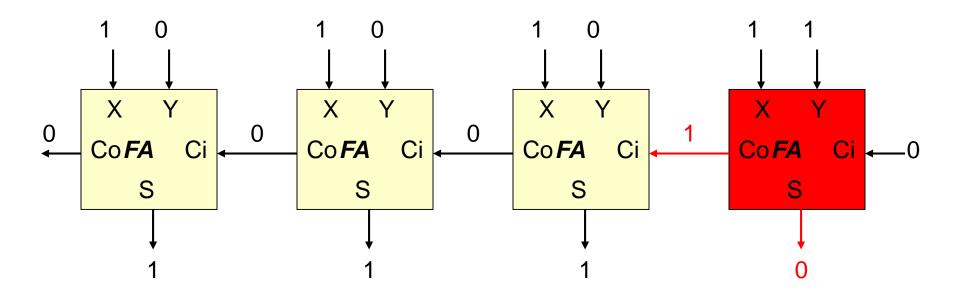
Adder Propagation Delay

1111

0001



Adder Propagation Delay



 \mathbf{O}

Adder Propagation Delay

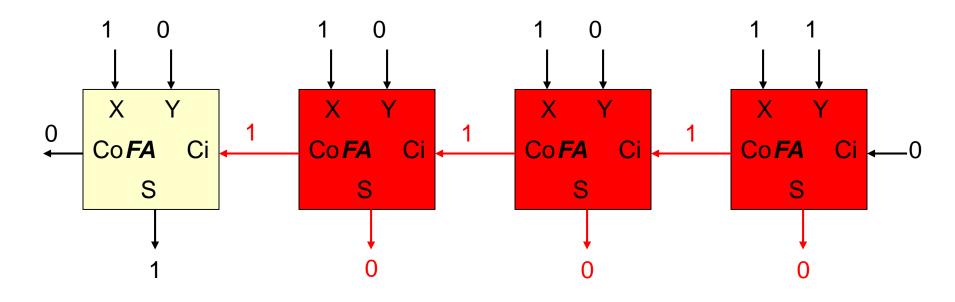
1111

0001

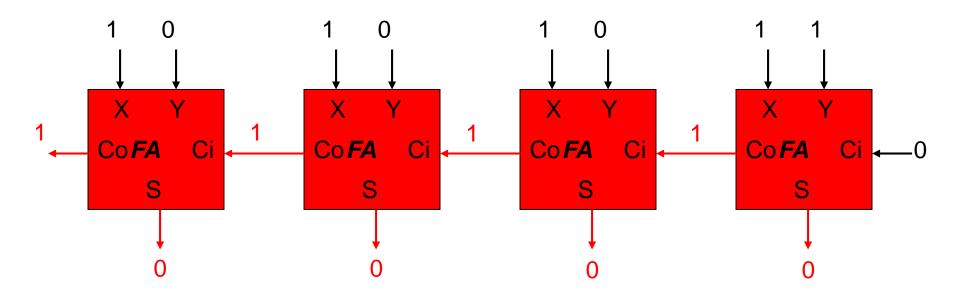
+

0 1 0 0 1 1 1 Х Х Y Y Х Y Х Y 0 0 1 1 Co**FA** Ci Co**FA** CoFA Ci Ci CoFA Ci S S S S () U

Adder Propagation Delay



Adder Propagation Delay

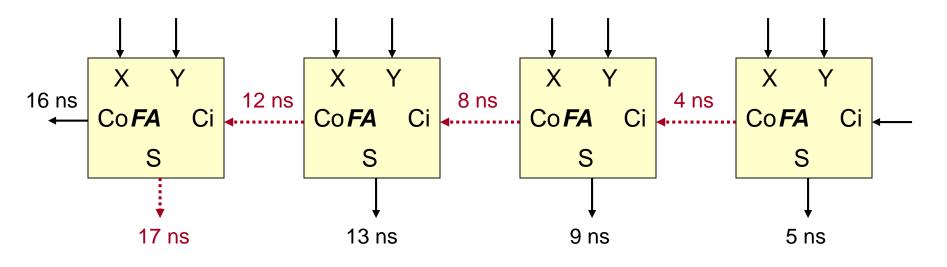


Critical Path

• Critical Path = Longest possible delay path

Assume $t_{sum} = 5$ ns,

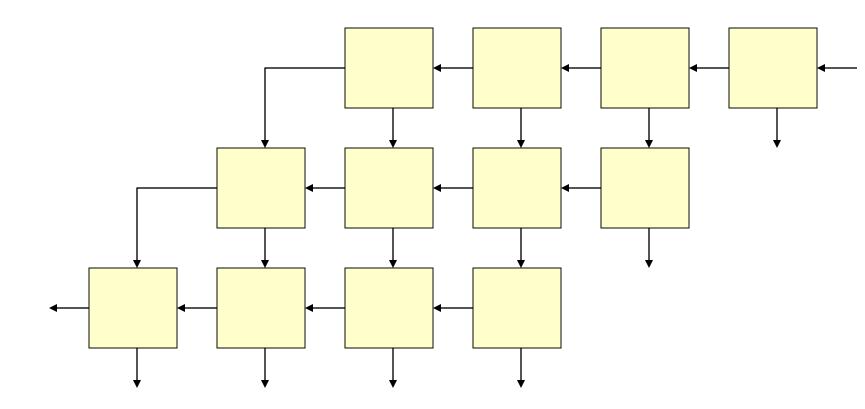
t_{carry}= 4 ns

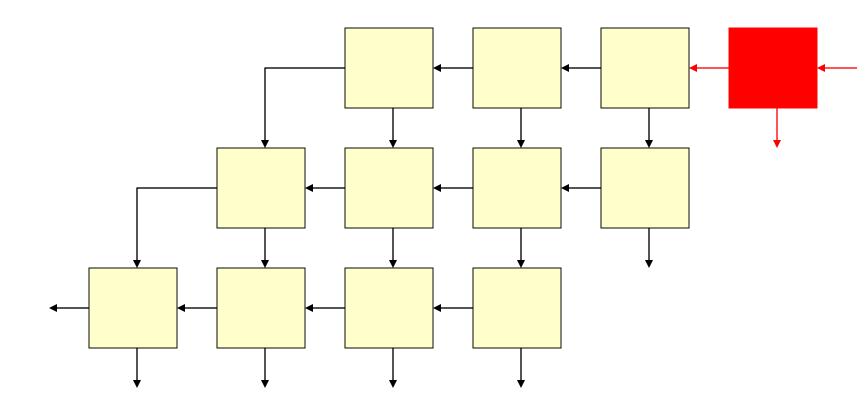


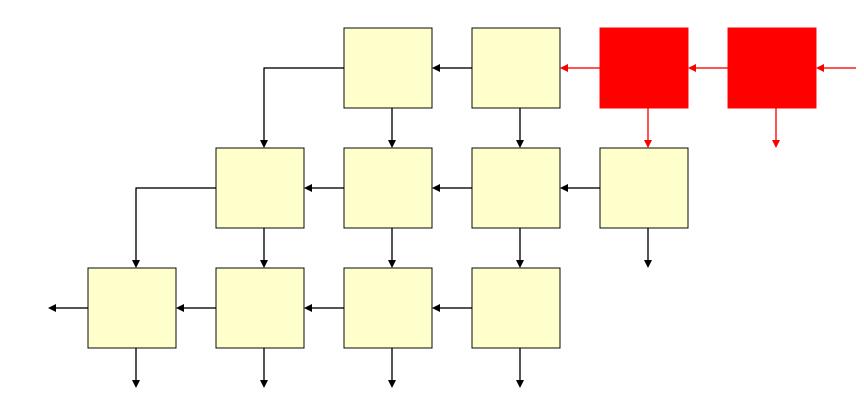
Critical Path

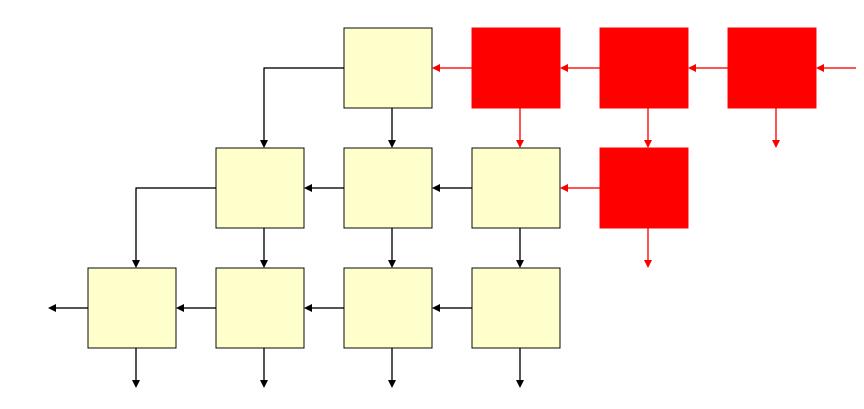
2-2.55

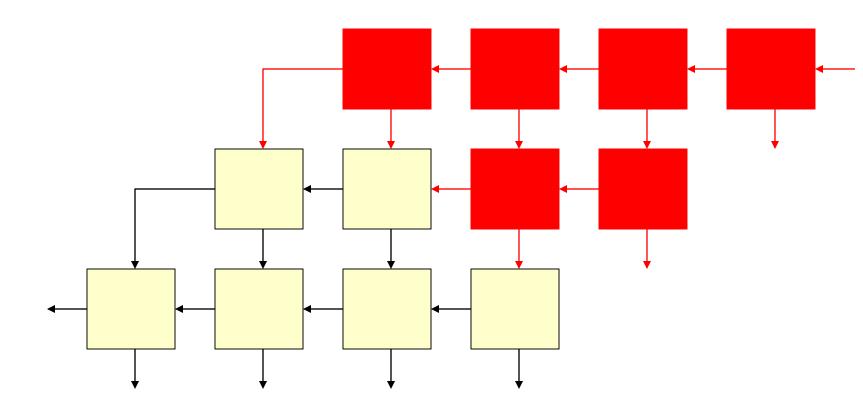
School of Engineering

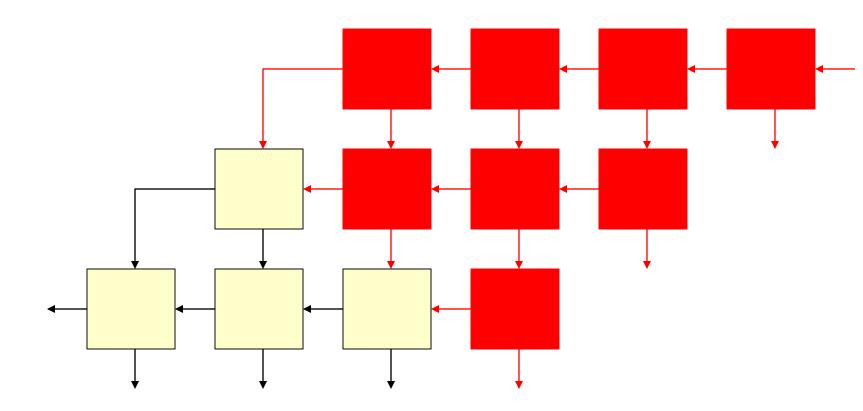


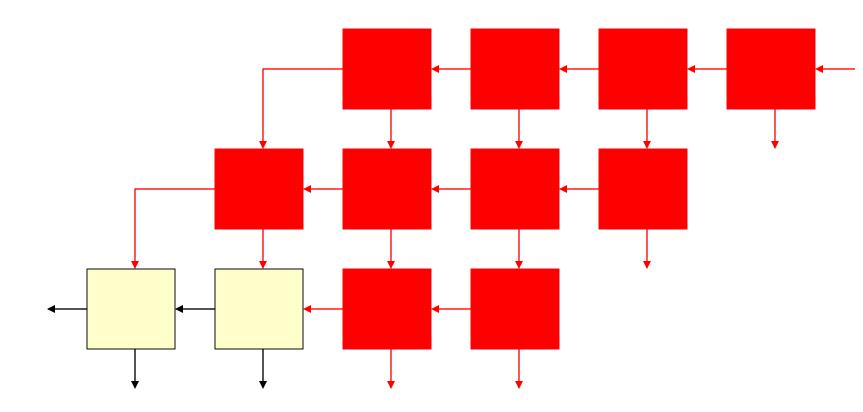


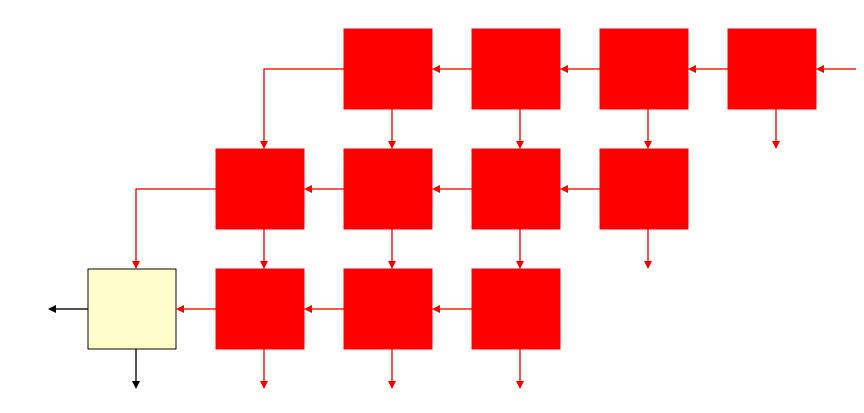


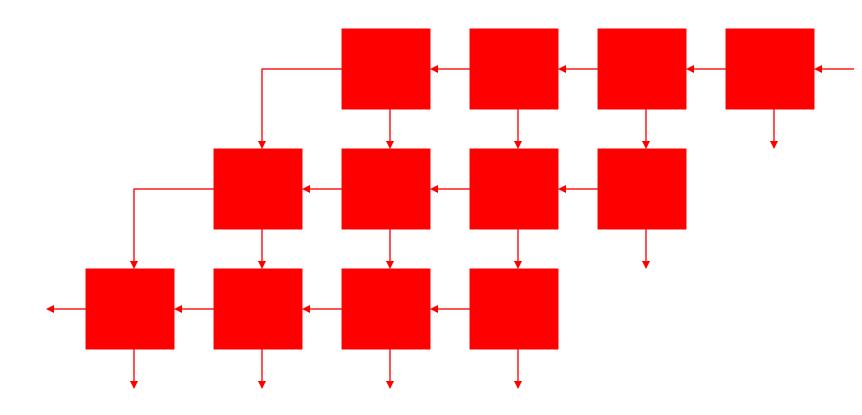




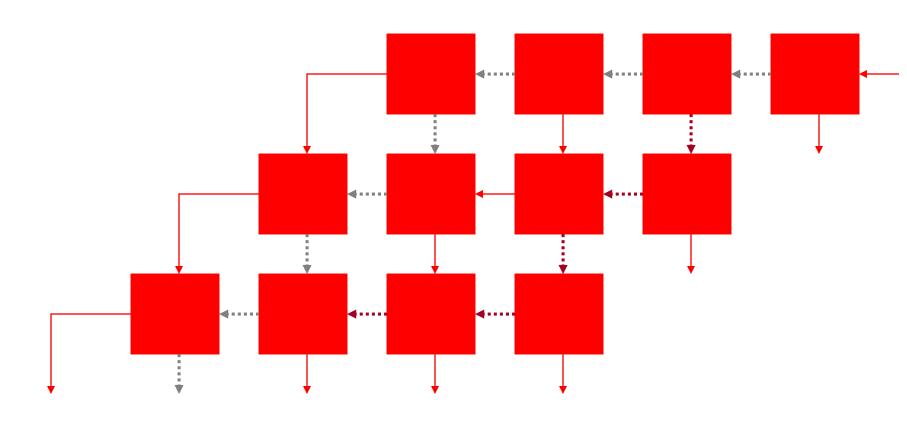








Critical Paths



Critical Path 1Critical Path 2

Combinational Multiplier Analysis

- Large Area due to (n-1) m-bit adders
 - n-1 because the first adder adds the first two partial products and then each adder afterwards adds one more partial product
- Propagation delay is in two dimensions
 - proportional to m+n

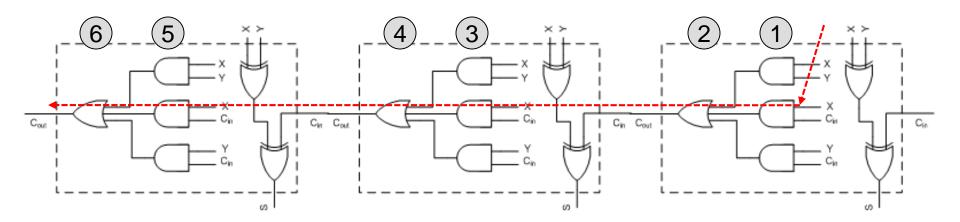
Carry-Lookahead Adders

FAST ADDERS

Ripple Carry Adders

 Ripple-carry adders (RCA) are slow due to carry propagation

At least 2 levels of logic per full adder



Fast Adders

School of Engineering

- Rather than calculating one carry at a time and passing it down the chain, can we compute a group of carries at the same time
- To do this, let us define some new signals for each column of addition:
 - p_i = Propagate: This column will propagate a carry-in (if there is one) to the carry-out.

 p_i is true when A_i or B_i is $1 \Rightarrow p_i = A_i + B_i$

 g_i = Generate: This column will generate a carry-out whether or not the carry-in is '1'

 g_i is true when A_i and B_i is $1 \Rightarrow g_i = A_i \bullet B_i$

• Using these signals, we can define the carry-out (c_{i+1}) as:

 $c_{i+1} = g_i + p_i c_i$

Carry Lookahead Logic

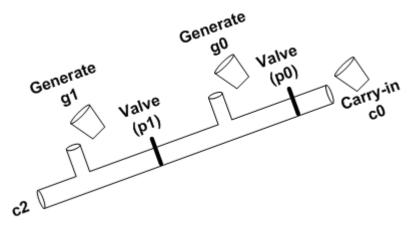
- Define each carry in terms of p_i, g_i and the initial carry-in (c₀) and not in terms of carry chain (intermediate carries: c1,c2,c3,...)
- c1 =
- c2 =
- c3 =
- c4 =

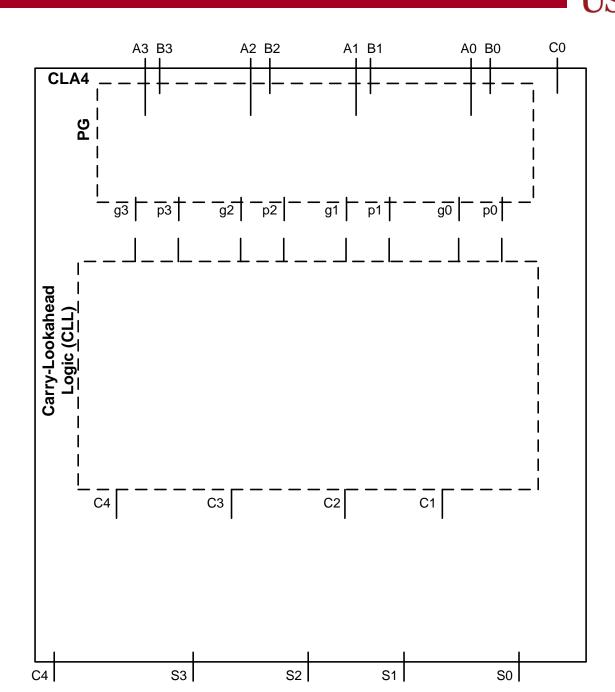
Carry Lookahead Logic

- Define each carry in terms of p_i, g_i and the initial carry-in (c₀) and not in terms of carry chain (intermediate carries: c1,c2,c3,...)
- $c1 = g_0 + p_0 c_0$
- $c2 = g_1 + p_1c_1 = g_1 + p_1g_0 + p_1p_0c_0$
- c3 = ...
- c4 = ...

Carry Lookahead Analogy

- Consider the carry-chain like a long tube broken into segments. Each segment is controlled by a valve (propagate signal) and can insert a fluid into that segment (generate signal)
- The carry-out of the diagram below will be true if g1 is true or p1 is true and g0 is true, or p1, p0 and c1 is true

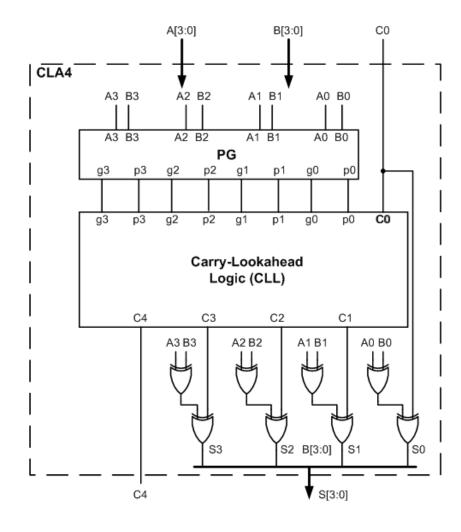




2-2.73

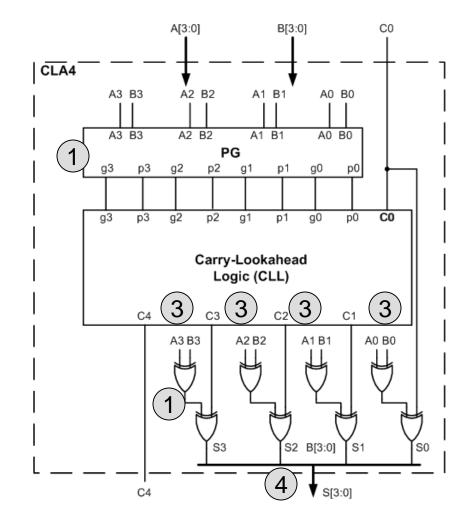
Carry Lookahead Adder

- Use carry-lookahead logic to generate all the carries in one shot and then create the sum
- Example 4-bit CLA shown below



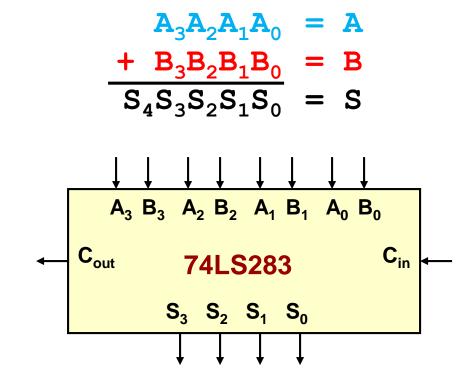
Carry Lookahead Adder

- Use carry-lookahead logic to generate all the carries in one shot and then create the sum
- Example 4-bit CLA shown below



4-bit Adders

 74LS283 chip implements a 4-bit adder using CLA methodology

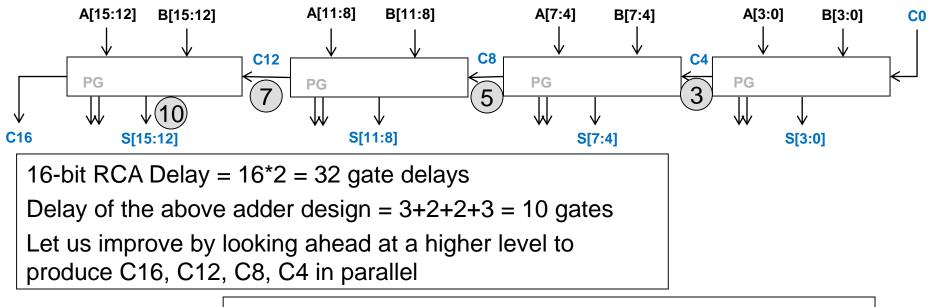


16-Bit CLA

2 - 2.77

School of Engineering

- But how would we make a 16-bit adder?
- Should we really just chain these fast 4-bit adders together?
 - Or can we do better?



What's the difference between the equation for G here and C4 on the previous slides Define P and G as the overall Propagate and Generate signals for a set of 4 bits $P = p3 \cdot p2 \cdot p1 \cdot p0$

$$G = g3 + p3 \cdot g2 + p3 \cdot p2 \cdot g1 + p3 \cdot p2 \cdot p1 \cdot g0$$

16-bit CLA Closer Look

- Each 4-bit CLA only propagates its overall carry-in if each of the 4 columns propagates:
 - − P0 = p3• p2 •p1 •p0
 - − P1 = p7• p6 •p5 •p4
 - − P2 = p11• p10 p9 p8
 - − P3 = p15• p14 p13 p12
- Each 4-bit CLA generates a carry if any column generates and the more significant columns propagate
 - $G0 = g3 + (p3 \bullet g2) + (p3 \bullet p2 \bullet g1) + (p3 \bullet p2 \bullet p1 \bullet g0)$
 - ...
 - $G3 = g15 + (p15 \bullet g14) + (p15 \bullet p14 \bullet g13) + (p15 \bullet p14 \bullet p13 \bullet g12)$
- The higher order CLL logic (producing C4,C8,C12,C16) then is realized as:

$$-$$
 (C4) =>C1 = G0 + (P0 •c0)

- (C16) => C4 = G3 + (P3 G2) + (P3 P2 G1) + (P3 P2 P1 G0) + (P3 P2 P1 P0 c0)
- These equations are exactly the same CLL logic we derived earlier

16-Bit CLA

2-2.80

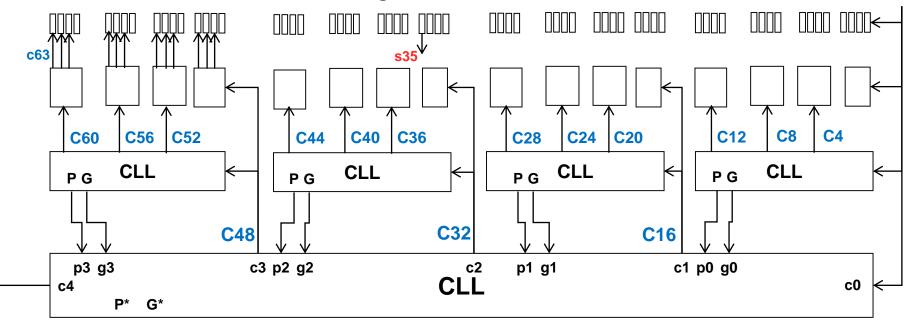
School of Engineering

• Understanding 16-bit CLA hierarchy...



64-Bit CLA

• We can reuse the same CLL logic to build a 64-bit CLA



= ____ = Delay in producing S63

Is the delay in producing s63 the same as in s35?

- = ____ = Delay in producing S2
- = ____ = Delay in producing S0

- = ____ = Delay in producing pi*,gi*
- = ____ = Delay in producing Pj**,Gj**

2-2.81

C0

School of Engineering

- = ____ = Delay in producing C48
- = ____ = Delay in producing C60
- = ____ = Delay in producing C63
- = ____ = Delay in producing S63
- _____ Total Delay

USC Viterbi 2-2.82 School of Engineering

Summary

- You should now be able to build:
 - Fast Adders
 - Comparators