I (S C Viterbf 2D

Spiral 2-1

Datapath Components:

Counters
Adders

Design Example: Crosswalk Controller

School of Engincering

| USCYIF?Lrb
Spiral Content Mapping

Combinational
Design

System Level Implementation
Design and Tools

Project

Spiral ‘ Theory

* Edge-triggered
flip-flops

* Registers (with
enables)

* Bistables,
latches, and Flip-
flops

* Counters

* Memories

* HW/Sw Power and other
partitioning 1 logic families

+ Businterfacing 1 * EDAdesign

+ Single-cycle CPU % process

I (S Viterbf =D

Learning Outcomes

| understand the control inputs to counters

School of Engincering

| can design logic to control the inputs of counters to

create a desired count sequence

| understand how smaller adder blocks can be

combined to form larger ones

| can build larger arithmetic circuits from smaller

building blocks

| understand the timing and control input differences
between asynchronous and synchronous memories

I (/S Viterbi 2

School of Engincering

DATAPATH COMPONENTS

R ()5 Vit
Digital System Design
e (cy)and Unit (DPU) paradigm

— Separate logic into datapath elements that operate on data and
control elements that generate control signals for datapath elements

— Datapath: , , comparators, ,
registers (shift, with enables, etc.), memories, FIFO’s
— Control Unit: /sequencers
clk —> Control
reset ——
Control . " | Condition
Signals Signals
Datapath
Data Data
Inputs > > Outputs
—

I (/S Viterbi S

School of Engincering

COUNTERS

Counters

* Count (Add 1 to Q) at each
clock edge
— Up Counter:

— Can also build a down counter as
well ()

yo

1—>

Adder (+)
!

* Standard counter components
include other features

Register

— Resets: Reset countto 0 RESET >

— Enables: Will not count at edge if CLK > |
EN=0

- Inputs: Can
initialize count to a value P (i.e.
Q* = P rather than Q+1)

How would you design the
adder block above for a 4-bit
counter?

| USCV1terb
Sample 4-bit Counter

* 4-bit Up Counter e
— RST: a synchronous reset — PO Qo|—
input TR abit g
— PE and P, inputs: loads Q —P3 CNTR q3—
with P when PE is active —IPE |
—{RsT C
— CE: Count Enable Lo
* Must be active for the

counter to count up

— TC (Terminal Count) output -
* Active when Q=1111 AND e i e e <
counter is enabled 0,1
e TC= 1
- _ output T
¢ Indicates that on the next
edge it will roll over to 0000 1

USC Viterbf2'2

Counters

ck L[LI 7 7 7 ’1I [_]
RST
CE \
PE '§

[[/ []
P3-P0 { \ { 1110 / [] /

\ & [/ /

Q3-Q0 X 0000 X 0001 X o010 X o011 X 1110 000

[
o S Rl

at cIock = off, active,
edge, thus thus Q thus

holds Q=P Mealy TC output:
EN-Q3-Q2:Q1-Q0

N (5 Viterbf £
Counter Exercise

ok [L L7 7 7 7 1L
RST ~]

PE 1

CE L

P[3:0] 0011 X 1101 X 1001
Qo] X

USC Viterbf2 >

School of Engincering

Counter Design

» Sketch the design of the 4-bit counter
presented on the previous slides

I :' I —{D[3:0] Q[3:0]{— Q[3:0]

P[3:0] —
Reg
PE —
RST— —CLR
CLK — —>CLK

TC

I (/S Viterbi 212

School of Engincering

Design a 12-bit Counter (Why TC?)

—CE
e Q@ Q8 Q7 Q6 Q5 Q4 Q3 Q@ Q1 QO
_ 4-bit [.
8% ovrr ST Q[3:0] 0o o 0 0 O 0 0O 0 0 o0
—{PE
et o o 0 0 0 0 0 0 0 o0 1
—CLK
0 0 0 o 0o 1 1 1 1
—joE 0o 0 0 0 0 1 0 0 0 O
— PO Qo—
714_b. Ql— .
e Gan - Ql7:4]
—PE 0 0 0 0 0 1 1 1 1 1
—{RsT o=
—>CLK
0 1 1 1 1 0 0
0 1 1 1 1 o 1
—CE
— PO Qo—
TR abit 0 Q[11:8]
_lps CNTR Q3|— 0 0 1 1 1 1 1 1 1 1
e Tk 0o 1 0 0 0O O 0 0 0 O
—pCLK

I (S Viterbi 2D

School of Engincering

Counter Example (Using Parallel Inputs)

* Design a circuit that counts each clock cycle to
produce the pattern5,6,7,8,9,5,6,7,8,9,
5..9,5..9,..

— PO Q0 —
— P1 . Qi —
Q2|—
_|p3 CNTR Q3

TC—

I (/S Viterbi

School of Engincering

ADDERS

] USCWter@
Adder Intro

* So how would we build a circuit
to add two numbers?

* Let's try to design a circuit that 5 |9
. 1— 3 ™ 2 >
can add ANY two 4-bit <]
numbers, X[3:0] and Y[3:0] =
— How many inputs? RESET >
— Can we use K-Maps or sum of CLK >

minterms, etc?

0110
+ 0111

]
»

1101

] USC_&ter
Adder Intro

* lIdea: Build a circuit that performs column of
addition and then use of those
circuits to perform the overall 4-bit addition

* Let's start by designing a circuit that adds 2-bits: X
and Y that are in the same column of addition

| USC\/iterb@ | USC_/iterb
Addition — Half Adders Addition — Half Adders
Cou ’ 1
* Addition is done in columns 1o * We’d like to use one
— Inputs are the bit of X, Y o1dol = x adder circuit for each -
— Outputs are the Sum Bit and column of addition B
Carry-Out (Cout) + 01l =Y * Problem: -
* Design a Half-Adder (HA) 1101 '
.5 . — No pl f
circuit that takes in X and Y ™ Sum oflfs?idzrr —
and outputs Sand C_, 1’ h . Soluti 4 0 1
— — Solution L T
> o Half — Redesign adder circuit to X Y x Y
0 0 0 0 0 + outAdder Include an 1 C Half 0 + Com Half
o 1|0 1 S _ U A dder Adder
1 o |0 1 T S T
1 1 1 0 1 é 1
| USCWterb@ | USC\fiterb
Addition — Full Adders Addition — Full Adders
. Cout G * Find the minimal 2-level implementations for Cout and S...
e Add a Carry-In input(C,)) 10
* New circuit is called a 011p = X
XY C, |Cot S
Full Adder (FA) + 01hl = v
N ; ; — 000
D'e5|g.n the internal 110l oo
circuitry on the next 01 0
slide 0 1 0 1 1
! | 1.0 0
X Y 10 1
1 Coul Ll Cin ~— 0 1 1 0
Adder 111
S
!
0

| USC\/'iterb@ | USCX/iterb
Full Adder Logic Addition — Full Adders
e S= * Use 1 Full Adder for each column of addition
— Recall: is defined as true
when ODD number of inputs are 0110
true...exactly when the sum bit + 0111
should be 1 _—
* Cout=
— Carry when sum is 2 or more (i.e. ! | ! ! ! ! ! |
when at least 2 inputs are 1) A XY A A
— Circuit is just checking all] CW‘A?E;; Cin C°“‘,i1udlir Cin C°“'A1:1131ir Cin C““'Ailgir Cin =
combinations of 2 inputs S S S S
! ! ! !
| USCWterb@ | USCX/iterb
Addition — Full Adders Addition — Full Adders
* Connect bits of bottom number to Y inputs * Use 1 Full Adder for each column of addition
011@
0110 =X 0110| = X
+ 0111 = + 0111 =
1101
0 0 1 1 1 1 0 1 0 0 1 1 1 1 0 1
| | | ! ! | ! | | | | ! ! !
X Y X Y X Y X Y X Y X Y X Y
«—]c Fud ¢ c., Ful ¢ c., Ful ¢ c., Ful ¢ |l 40_ c.. Ful ¢ ! c., Ful ¢ ! c., Ful ¢ 0 0
“Adder " “Adder " “Adder " “Adder " - “Adder " “Adder " “Adder "
S S s S S S s
{ ! !]] { !
1 1 0 1

| USCViterb@

Addition — Full Adders

e Use 1 Full Adder for each column of addition

0ol of Enginecring

] USCV1terb
Addition — Full Adders

e Use 1 Full Adder for each column of addition

0 0 0 1 0 0 0 1
! | ! | ! | ! |
X Y X Y X Y X Y
40_ c.. Ful ¢ ! 0 c..Ful ¢ l—o 40_ c. . Ful ¢ ! 0 c..Ful ¢ l—o
OUlAdder n OUTAdder n OUlAdder n OUtAdder n
S S S S
Il Il Il !
1 1 1 1
USC Viterbf 212> I {5 C Viterbf 212
Addition — Full Adders Addition — Full Adders
e Use 1 Full Adder for each column of addition e Use 1 Full Adder for each column of addition
01000 01100
OL10 = X 0110 = X
+ (0111 = Y + 0111 =
1101 1101
0 0 1 1 1 1 0 1 0 0 1 1 1 1 0 1
! ! ! ! !] !] ! ! ! ! !]
X Y X Y X Y X Y X Y X Y X Y
0 ! c.. F C ! c., Ful ¢ 0 c..Ful ¢ l—o 40_ c.. Ful ¢ ! c., Ful ¢ ! c., Ful ¢ 0 Ful ¢ l— 0
OUlAdd n OmAdder n OUlAdder n ou‘Adder n OUlAdder in OUIAdder n OUlAdder n
S S S S S S S S
! ! ! ! ! ! i
1 1 0 1

I (S Viterhi 22

School of Engincering

Performing Subtraction w/ Adders

°
To subtract 0101 - x 0101
— Flip bits of Y - 0011 = Y) 4+ 1100
—Add 1 0010 1
0010
! | | | ! | ! |
X Y X Y X Y X Y
«— Cou Full Ci, Co Full Ci, Cou Full C, Cout Full C, l—
Adder Adder Adder Adder
S S S S
! ! ! !

I (/S Vite b2

School of Engincering

Performing Subtraction w/ Adders

° TO Subtract 0101 = X “:> 0101
. . - 0011 =Y + 1100
— Flip bits of Y ~ 0010 1
—Add1 0010
0 0 1 1
0 1 0 1
! ?1 ! ?1 ! % ! %
X Y X Y X Y X Y
D Cout L Cin Cout 1 Ci, Cout L Cin Cout L Cin [—
Adde Add Adder Add
S S S S
! ! ! !

] USCWter@
4-bit Adders

e 7415283 chip implements a 4-bit adder

AAAA, = A
+ B,B,B,B, = B
S,S.S,S,S, = S
Vbbbl
A; By, A, B, A B, A B,
<+~ Cout 74LS283 Cin jo—
S; S, S, S,

Pl

| USCV1terb
Building an 8-bit Adder

* Use (2) 4-bit adders to build an 8-bit adder to add X=X[7:0]
and Y=Y[7:0] and produce a sum, S=[7:0] and a carry-out, C8.

— Make sure you understand the difference between system labels
(actual signal names from the top level design) and device labels
(placeholder names for the signals inside each block).

B3B2B1B0 A3A2A1A0 B3B2B1B0 A3A2A1A0

—C4 Co— —C4 CoO—

83 82 S1 S0 83 82 S1 S0

| USC\/iterb@ | USCX/iterb
Adding Many Bits
* You know that an FA
adds X +Y + Ci
* Use FA and/or HA
components to add 4)l(#
individual bits: |
¢, Ful ¢ l—
A+B+C+D “adder "
S
!
EXERCISES
| USCWterb@ | USCX/}te;b
Adding 3 Numbers Mapping Algorithms to HW
+ Add X[3:0] + Y[3:0] + ELLLELLLLL * Wherever an
i{?g}] to.proti”ce . if..then..else e R—
2:0] using the 8 . — er
adders shogwn olus statement is used 0101 — Gircut
any FA and HA Fr o r T usually requires a A[3:0]— Adder
components you mux 0010 —__ Circuit
need i . .
If(A[3:0] > B[3:0]) A13:01 | Gomparison
S P P P o o «Z=A+2 par
2= a; E; az EN L: gm gm g\l - B[3:0]_ Circuit A>B
) —else
8 * Z=B+5
FrF T

I (S Viterhf 2D

School of Engincering

Mapping Algorithms to HW

* Wherever an B[3:0]_[™~
if..then..else .
statement is used ALB:0l—], ¢
: 1 Adder |
usually requires a 0101 — St [250)
mux ,
—if(A[3:0] > B[3:0]) 0010 —{" s
e Z=A+2 i
A>B
—else

A[3:01— Comparison

* Z=B+5 B[3:0] | Circuit

USC Viterbfz'#

School of Engincering

Adder / Subtractor

¢ Ifsub/~add =1
— Z=X[3:0]-Y[3:0]
* Else
— Z=X[3:0]+Y[3:0]

B3 B2 B1B0 A3 A2 A1 A0

—{C4 4-bit Binary Adder CO}—

83 82 S1 S0

 EmE—— S S
Adder / Subtractor

* Ifsub/~add =1

SUB/~ADD
— Z=X[3:0]-Y[3:0]
¢ Else 8
— Z=X[3:0]+Y[3:0] X0—A0
S
X2—A2 & 0—20
x3—A3 o
> w21
SUB/ Yi |Bi 5
~ADD Yo— T Ll & 82
— a2
o o S -
0 1 v — B2
- B3
1 0 VR —
1 1 |

SUB/~ADD

] USCYFF?Irb.@
Another Example

* Design a circuit that takes a 4-bit binary
number, X, and two control signals, A5 and M1
and produces a 4-bit result, Z, such that: A5 M1 | B3 B2 Bl BO

e 7Z=X+5,whenA5M1=1,0
e Z=X-1,whenA5M1=0,1
e Z=X, when A5,M1 =0,0

4-bit Adder Input

B B, O O

=)
(6]
X0 _lo
<
X1 = . sl
X2 —|2 2 ° 20
—e 2
2 —
X3 g o z1
g L= z2
—l Q 1]
8 x z
1 &Y e
A5 f?)
e 1]
<
O

I (S Viterhf 2D

School of Engincering

ROMS AND MEMORIES

] USC_&teﬂ?
Memories

* Memories store (write) and retrieve (read)
data
— Read-Only Memories (ROM’s): Can only retrieve

data (contents are initialized and then cannot be
changed)

— Read-Write Memories (RWM'’s): Can retrieve data
and change the contents to store new data

] USCWter@
ROM'’s

ROM
* Memories are just tables ‘
of data with rows and PP glofo 1]
DA,
columns P i[1]o]1]o
102
* When data is , one 210)1)070
entire of data is sjo 1|11
read out altjt1|of1
* The row to be read is s 11000
selected by putting a ot yo
binary number on the Lot
inputs
Data b, 1
Out?)Sts i Dy D, Dy Dy

] USCWter
ROM'’s

ROM

* Example
— Address =4 dec. = 100 bin. :" of OO 1|1
is provided as input P A; 1|1]o]1]o0
— ROM outputs data in that v 2lol1]o]o
row (1101 bln) N slo 111111
af1]1]0]1
Address: 5110|010

100,= 4,4
6lo[1]1]0
7|10 f1]1
Data Dy D2 WD D°

| USC\/iterb@ | USCX/ite;b
L] . ’)
Memory Dimensions RWM's
ROM 8x4 RWM
* Memories are named by * Writable memories o
their dimensions: 2" o[o] .. 1 prowde a set.of data 20 o[o]o 11
_ X 1|1 0 inputs for write data (as g A if1]ol1]o0
. P | ~ A,—— 2|0 0 opposed to the data Address’, ¢ 2lol1]o]o
f rows and m columns => outputs for read data) Inputs o JIIERERE
. - FBPlT—
nxmROM : * A control signal R/W o b 4[]0
e 2" rows => n address bits (or : (1= /0=) Sioni— s[1]0]0]0
k rows => log,k address bits) 2210 0 is provided to tell the s D1 s fo[110
n | 1 1 i 7[1]0|1]1
* m cols. => m data outputs i memory what operation RW
the user wants to perform
Dm.1 Do
Data —*:"'D0, DO, DO, DO,
Outputs e
I ()5 C Viterbf 2 I {5 C Viterbf 21
RWM’ A h M '
S syncnronous iviemories
8x4 RWM o [{aals
* Write example * Notice that thereis A0 R
— Address = 3 dec. = 011 bin. ity Pog[o]of1]1 signal Aowa SOy L
, Dy e : e 3{tfali 2
— DI =12 dec. = 1100 bin. ey BIEE with this memory s 8
— R/W = 0 => Write op. Alddretss"z._-..-" 210 |1]0]0 * Devices that do not use a —rw S
nputs . Tt 0 .
+ Datainrow 3is PO L I Il Il I clock signal are called
. . : B n n .
overwritten with the new o +——p,*[1 | 7] 0|1 devices
i i1 F——pL5|1|0|0|0 .
value of 1100 bin. ol 4l o * For these memories, the ,,, 4— A
Inputs .. i I address must be kept I3 i
711011 =
0 e and stable fpr at AW . —
RW DD, DD, D, DP, least t,.. amount of time DO[30] 1610 1001
Data T '7 ------ " " a')
Outputs e e

I (S Viterhf 2

School of Engincering

Asynchronous vs. Synchronous Memories

e Asynchronous memories use no CLK signal

— For read: Address and R/W signal must be held A,
steady for a certain period of time before DO A,
outputs become valid A,

— For write: Address, DI, and R/W signal must be held DI DO,
steady for a certain period of time before internal DIO Do
memory is updated ! !

i . DI, Do,
¢ Synchronous memories use a CLK signal D) DO
3 3

— For read: Address and R/W signal will be registered _
on the CLK edge and then DO will become valid R/W
during that subsequence clock cycle P

— For write: Address, DI and R/W signals will be \
registered on the CLK edge and then the internal

memory updated during the subsequent clock cycle Synchronous memories add

a clock signal and the input
values at a clock edge will
only be processed during
the subsequence clock cycle

| USCViterb
Synchronous Timing

For synchronous
memories the address

must be valid and stable

at

but then may be
changed

EN = enable

(unlessitis 1) the
memory won't read or
write

WEN =

— 1=Write/0=read

Sche

ool of Engincering

—A[2:0] 0[1/0/0]0
101(1[1]0
2[1[1]olo] &

—DI[3:0] 3[1/10(1]0] & {|{—
410/0(11 8

—EN 5/0[11010
6(1/10/0[1

—JWEN 7 [o[1]1]0

—CLK

CLK | L
A:0] 011X 110 X opt
DI[3:0] 111
WEN }
I g \
M[3] 1010 1111
DO[3:0] 2?2 X mem[3]4 1111 Xmem[6] = 1001
tacc . ol
Assume EN=1 -

I (S C Viterhf 25D

Using Memories
* Add two 8 number arrays (C[i] = A[i] + BJi])

Q
EN
reg
RST
CLK
—A[2:0]
)
—DI[3:0] 2 A
a
EN Qi —Een 84 _ —A[2:0]
—WEN Memory =
— —DI[3:0).
cntr —cLk + 1o 2
RST TEN e
- | Memory
LK WEN
—A[2:0] ek
=)
—DI[3: S
o 2B
N 8x4 CLK | | | |
.| lemory pE—
WEN i3:0 000 X 001 X010 X_ot1
—CLK A&B 222 X A[0] & B[0] X _AT&B] X A2 &B[2]
iq X X X
CMEMI[0] 277 X__Al0]+B[0]

I (/S Viterbi 25

Crosswalk Controller

SYSTEM DESIGN EXAMPLE

Schox

ol of Enginecring

I (S Viterhf 25

Digital System Design

* Control and Datapath Unit paradigm

— Separate logic into datapath elements that operate on data and
control elements that generate control signals for datapath elements

— Datapath: Adders, muxes, comparators, counters, registers (w/
enables)

— Control Unit: State machines/sequencers

clk —> Control
reset ——|
Control . " | Condition
Signals Signals
Datapath
Data Data
Inputs > > Outputs
—

I (/5 Viterb{ 2!
Crosswalk Controller

* Design a crosswalk controller to
adhere to the following description

» 8 ticks of the clock in the WALK phase
+ 8 ON/OFF BLINKING hand cycles (16 e

X

total ticks)
* Count 8 downto 1 on the NUM f
display while hand is blinking NUMON HAND WAL

* 16 cycles in the SOLID hand

R 5 C Vit
Crosswalk State Machine

* Use a 4-bit counter to count cycles along with
an additional gate or two...

e -

— PO Q0 +—

F o G
—{PE

— RST
—) CLK

I (/S Viterbi 2

School of Engincering

Crosswalk Controller Operation

cw [T
a@o) _Jomo Y X X X X X

EN

c7

TC

stare Y X

NUM_ON

STYEE S G G G G S

| USC\ﬁterb@
Summary

* You should now be able to build:
— Registers (w/ Enables)
— Counters
— Adders

