
2-1.1

Spiral 2-1

Datapath Components:
Counters
Adders

Design Example: Crosswalk Controller

2-1.2

Spiral Theory
Combinational

Design
Sequential

Design
System Level

Design
Implementation

and Tools
Project

1 • Performance
metrics (latency
vs. throughput)

• Boolean Algebra
• Canonical

Representations

• Decoders and
muxes

• Synthesis with
min/maxterms

• Synthesis with
Karnaugh Maps

• Edge-triggered
flip-flops

• Registers (with
enables)

• Encoded State
machine design

• Structural Verilog
HDL

• CMOS gate
implementation

• Fabrication
process

2
• Shannon's

Theorem

• Synthesis with
muxes &
memory

• Adder and
comparator
design

• Bistables,
latches, and Flip-
flops

• Counters
• Memories

• One-hot state
machine design

• Control and
datapath
decomposition

• MOS Theory
• Capacitance,

delay and sizing
• Memory

constructs

3 • HW/SW
partitioning

• Bus interfacing
• Single-cycle CPU

• Power and other
logic families

• EDA design
process

Spiral Content Mapping

2-1.3

Learning Outcomes

• I understand the control inputs to counters

• I can design logic to control the inputs of counters to
create a desired count sequence

• I understand how smaller adder blocks can be
combined to form larger ones

• I can build larger arithmetic circuits from smaller
building blocks

• I understand the timing and control input differences
between asynchronous and synchronous memories

2-1.4

DATAPATH COMPONENTS

2-1.5

Digital System Design

• Control (CU) and Datapath Unit (DPU) paradigm
– Separate logic into datapath elements that operate on data and

control elements that generate control signals for datapath elements

– Datapath: Adders, muxes, comparators, counters, registers (shift, with
enables, etc.), memories, FIFO’s

– Control Unit: State machines/sequencers

Datapath

Control

…

…

Control

Signals

Condition

Signals

Data

Inputs

Data

Outputs

clk

reset

2-1.6

COUNTERS

2-1.7

Counters
• Count (Add 1 to Q) at each

clock edge

– Up Counter: Q* = Q + 1

– Can also build a down counter as
well (Q* = Q – 1)

• Standard counter components
include other features

– Resets: Reset count to 0

– Enables: Will not count at edge if
EN=0

– Parallel Load Inputs: Can
initialize count to a value P (i.e.
Q* = P rather than Q+1)

R
e

g
is

te
r

1

A
d
d

e
r

(+
)

Q

RESET

CLK

How would you design the
adder block above for a 4-bit

counter?
Only 4-inputs, use T.T. and K-

Maps!

2-1.8

Sample 4-bit Counter

• 4-bit Up Counter
– RST: a synchronous reset

input

– PE and Pi inputs: loads Q
with P when PE is active

– CE: Count Enable
• Must be active for the

counter to count up

– TC (Terminal Count) output
• Active when Q=1111 AND

counter is enabled

• TC = EN•Q3•Q2•Q1•Q0
– Mealy output

• Indicates that on the next
edge it will roll over to 0000

CLK RST PE CE Q*

0,1 X X X Q

↑ 1 X X 0

↑ 0 1 X P

↑ 0 0 0 Q

↑ 0 0 1 Q+1

CLK

P0

P1

P2

P3

Q0

Q1

Q2

Q3

TC

PE

RST

4-bit

CNTR

CE

2-1.9

Counters

SR=active

at clock

edge, thus

Q=0

Q*=Q+1 Enable

= off,

thus Q

holds

PE =

active,

thus

Q=P

Q*=Q+1 Q*=Q+1 Q*=Q+1 Q*=Q+1

Mealy TC output:

EN•Q3•Q2•Q1•Q0

0000

CLK

RST

CE

PE

P3-P0

Q3-Q0 0001 0010 0011 1110 1111

TC

1110

1 0000

2-1.10

Counter Exercise

CLK

RST

PE

CE

P[3:0]

Q[3:0]

0011 1101 1001

2-1.11

Counter Design

• Sketch the design of the 4-bit counter
presented on the previous slides

CLK

D[3:0] Q[3:0]

Reg

CLR

P[3:0]

PE

RST

CE

CLK

Q[3:0]

TC

+

0

1 0

1

2-1.12

Design a 12-bit Counter

Q9 Q8 Q7 Q6 Q5 Q4 Q3 Q2 Q1 Q0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1

…

0 0 0 0 0 0 1 1 1 1

0 0 0 0 0 1 0 0 0 0

…

0 0 0 0 0 1 1 1 1 1

…

0 0 1 1 1 1 0 0 0 0

0 0 1 1 1 1 0 0 0 1

…

0 0 1 1 1 1 1 1 1 1

0 1 0 0 0 0 0 0 0 0

Q[3:0]

Q[7:4]

Q[11:8]

CLK

P0

P1

P2

P3

Q0

Q1

Q2

Q3

TC

PE

RST

4-bit

CNTR

CE

CLK

P0

P1

P2

P3

Q0

Q1

Q2

Q3

TC

PE

RST

4-bit

CNTR

CE

CLK

P0

P1

P2

P3

Q0

Q1

Q2

Q3

TC

PE

RST

4-bit

CNTR

CE

2-1.13

Counter Example

• Design a circuit that counts each clock cycle to
produce the pattern 5, 6, 7, 8, 9, 5, 6, 7, 8, 9,
5...9, 5…9,…

CLK

P0

P1

P2

P3

Q0

Q1

Q2

Q3

TC

PE

RST

4-bit

CNTR

CE

2-1.14

ADDERS

2-1.15

Adder Intro

• So how would we build a circuit
to add two numbers?

• Let's try to design a circuit that
can add ANY two 4-bit
numbers, X[3:0] and Y[3:0]
– How many inputs?

– Can we use K-Maps or sum of
minterms, etc?

0110

+ 0111

1101

= X

= Y

R
e

g
is

te
r

1

A
d
d

e
r

(+
)

Q

RESET

CLK

2-1.16

Adder Intro

• Idea: Build a circuit that performs one column of
addition and then use 4 instances of those circuits
to perform the overall 4-bit addition

• Let's start by designing a circuit that adds 2-bits: X
and Y that are in the same column of addition

0110

+ 0111

1101

= X

= Y

2-1.17

Addition – Half Adders

• Addition is done in columns
– Inputs are the bit of X, Y

– Outputs are the Sum Bit and
Carry-Out (Cout)

• Design a Half-Adder (HA)
circuit that takes in X and Y
and outputs S and Cout

0110

+ 0111

1101

= X

= Y

110

Half

Adder

X Y

S

Cout

Cout

Sum

0 1

1

0

X Y Cout S

0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 0

2-1.18

Addition – Half Adders

• We’d like to use one
adder circuit for each
column of addition

• Problem:

– No place for Carry-out of
last adder circuit

• Solution

– Redesign adder circuit to
include an input for the
carry

0110

+ 0111

1101

= X

= Y

110

Half

Adder

X Y

S

Cout

0 1

1

0Half

Adder

X Y

S

Cout

1 1

0

1

2-1.19

Addition – Full Adders

• Add a Carry-In input(Cin)

• New circuit is called a
Full Adder (FA)

0110

+ 0111

1101

= X

= Y

110

Full

Adder

X Y

Cin

S

Cout

Cout Cin

0 1

0

1 0

X Y Cin Cout S

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

2-1.20

Addition – Full Adders

• Find the minimal 2-level implementations for Cout and S…

X Y Cin Cout S

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

2-1.21

Full Adder Logic

• S = X xor Y xor Cin

– Recall: XOR is defined as true when
ODD number of inputs are
true…exactly when the sum bit
should be 1

• Cout = XY + XCin + YCin

– Carry when sum is 2 or more (i.e.
when at least 2 inputs are 1)

– Circuit is just checking all
combinations of 2 inputs

2-1.22

Addition – Full Adders

• Use 1 Full Adder for each column of addition

0110

+ 0111

Full

Adder

X Y

Cin

S

Cout
Full

Adder

X Y

Cin

S

Cout
Full

Adder

X Y

Cin

S

Cout
Full

Adder

X Y

Cin

S

Cout

2-1.23

Addition – Full Adders

• Connect bits of top number to X inputs

0110

+ 0111

Full

Adder

X Y

Cin

S

Cout

0

Full

Adder

X Y

Cin

S

Cout
Full

Adder

X Y

Cin

S

Cout
Full

Adder

X Y

Cin

S

Cout

110

2-1.24

Addition – Full Adders

• Connect bits of bottom number to Y inputs

0110

+ 0111

= X

= Y

Full

Adder

X Y

Cin

S

Cout

0 1

Full

Adder

X Y

Cin

S

Cout
Full

Adder

X Y

Cin

S

Cout
Full

Adder

X Y

Cin

S

Cout

1 11 10 0

2-1.25

Addition – Full Adders

• Be sure to connect first Cin to 0

0110

+ 0111

= X

= Y

Full

Adder

X Y

Cin

S

Cout

0 1

Full

Adder

X Y

Cin

S

Cout
Full

Adder

X Y

Cin

S

Cout
Full

Adder

X Y

Cin

S

Cout

1 11 10 0

0

2-1.26

Addition – Full Adders

• Use 1 Full Adder for each column of addition

0110

+ 0111

1101

= X

= Y

01100

Full

Adder

X Y

Cin

S

Cout

0 1

1

0
0Full

Adder

X Y

Cin

S

Cout
Full

Adder

X Y

Cin

S

Cout
Full

Adder

X Y

Cin

S

Cout

1 1

0

1

1 1

1

1

0 0

1

0

2-1.27

Addition – Full Adders

• Use 1 Full Adder for each column of addition

0110

+ 0111

1101

= X

= Y

Full

Adder

X Y

Cin

S

Cout

0 1

1

0
0Full

Adder

X Y

Cin

S

Cout
Full

Adder

X Y

Cin

S

Cout
Full

Adder

X Y

Cin

S

Cout

1 1

0

1

1 1

1

1

0 0

1

0

01100

2-1.28

Addition – Full Adders

• Use 1 Full Adder for each column of addition

Full

Adder

X Y

Cin

S

Cout

1

1

0
0Full

Adder

X Y

Cin

S

Cout
Full

Adder

X Y

Cin

S

Cout
Full

Adder

X Y

Cin

S

Cout

1

0

1

1

1

1

0

1

0

01100

0110

+ 0111

1101

= X

= Y

0110

2-1.29

Addition – Full Adders

• Use 1 Full Adder for each column of addition

Full

Adder

X Y

Cin

S

Cout

1

1

0
0Full

Adder

X Y

Cin

S

Cout
Full

Adder

X Y

Cin

S

Cout
Full

Adder

X Y

Cin

S

Cout

1

0

1

1

1

1

0

1

0

01100

0110

+ 0111

1101

= X

= Y

0110

2-1.30

Addition – Full Adders

• Use 1 Full Adder for each column of addition

Full

Adder

X Y

Cin

S

Cout

1

1

0
0Full

Adder

X Y

Cin

S

Cout
Full

Adder

X Y

Cin

S

Cout
Full

Adder

X Y

S

1

0

1

1

1

1

0

1

0

01100

CinCout

0110

+ 0111

1101

= X

= Y

0110

2-1.31

Performing Subtraction w/ Adders

• To subtract

– Flip bits of Y

– Add 1

0101

- 0011

0010

= X

= Y

Full

Adder

X Y

Cin

S

Cout
Full

Adder

X Y

Cin

S

Cout
Full

Adder

X Y

Cin

S

Cout
Full

Adder

X Y

Cin

S

Cout

0101

+ 1100

1

0010

2-1.32

Performing Subtraction w/ Adders

• To subtract

– Flip bits of Y

– Add 1

0101

- 0011

0010

= X

= Y

Full

Adder

X Y

Cin

S

Cout
Full

Adder

X Y

Cin

S

Cout
Full

Adder

X Y

Cin

S

Cout
Full

Adder

X Y

Cin

S

Cout

0101

+ 1100

1

0010

1010

1100

0011

2-1.33

Performing Subtraction w/ Adders

• To subtract

– Flip bits of Y

– Add 1

0101

- 0011

0010

= X

= Y

Full

Adder

X Y

Cin

S

Cout
Full

Adder

X Y

Cin

S

Cout
Full

Adder

X Y

Cin

S

Cout
Full

Adder

X Y

Cin

S

Cout

0101

+ 1100

1

0010

1010

1100

0011

1

2-1.34

Performing Subtraction w/ Adders

• To subtract

– Flip bits of Y

– Add 1

0101

- 0011

0010

= X

= Y

Full

Adder

X Y

Cin

S

Cout
Full

Adder

X Y

Cin

S

Cout
Full

Adder

X Y

Cin

S

Cout
Full

Adder

X Y

Cin

S

Cout

0101

+ 1100

1

0010

1010

1100

0011

1

0100

1 101

2-1.35

4-bit Adders

• 74LS283 chip implements a 4-bit adder

A3A2A1A0
+ B3B2B1B0
S4S3S2S1S0

= A

= B

= S

A3 B3 A2 B2 A1 B1 A0 B0

CinCout

S3 S2 S1 S0

74LS283

2-1.36

Building an 8-bit Adder

• Use (2) 4-bit adders to build an 8-bit adder to add X=X[7:0]
and Y= Y[7:0] and produce a sum, S=[7:0] and a carry-out, C8.
– Make sure you understand the difference between system labels

(actual signal names from the top level design) and device labels
(placeholder names for the signals inside each block).

B3 B2 B1 B0 A3 A2 A1 A0

S0S1S2S3

C0C4

B3 B2 B1 B0 A3 A2 A1 A0

S0S1S2S3

C0C4

2-1.37

EXERCISES

2-1.38

Adding Many Bits

• You know that an FA
adds X + Y + Ci

• Use FA and/or HA
components to add 4
individual bits:

A + B + C + D
Full

Adder

X Y

Cin

S

Cout

2-1.39

Adding 3 Numbers

• Add X[3:0] + Y[3:0] +
Z[3:0] to produce
F[?:0] using the
adders shown plus
any FA and HA
components you
need

C
0

7

A
0

5
S

0
4

B
0

6

A
1

3
S

1
1

B
1

2

‘2
8

3

A
2

1
4

S
2

1
3

B
2

1
5

A
3

1
2

S
3

1
0

B
3

1
1

C
4

9

C
0

7

A
0

5
S

0
4

B
0

6

A
1

3
S

1
1

B
1

2

‘2
8

3

A
2

1
4

S
2

1
3

B
2

1
5

A
3

1
2

S
3

1
0

B
3

1
1

C
4

9

2-1.40

Mapping Algorithms to HW

• Wherever an
if..then..else
statement is used
usually requires a
mux
– if(A[3:0] > B[3:0])

• Z = A+2

– else
• Z = B+5

I1

Y

S

I0

Comparison

Circuit
B[3:0]

A[3:0]

A>B

B[3:0]

Z[3:0]

Adder

Circuit

A[3:0] Adder

Circuit

0101

0010

2-1.41

Mapping Algorithms to HW

• Wherever an
if..then..else
statement is used
usually requires a
mux
– if(A[3:0] > B[3:0])

• Z = A+2

– else
• Z = B+5 Comparison

Circuit
B[3:0]

A[3:0]

A>B

B[3:0]

Z[3:0]

Adder

Circuit

A[3:0]

0101

0010

I1

Y

S

I0

I1

Y

S

I0

2-1.42

Adder / Subtractor

• If sub/~add = 1
– Z = X[3:0]-Y[3:0]

• Else
– Z = X[3:0]+Y[3:0]

B3 B2 B1 B0 A3 A2 A1 A0

S0S1S2S3

C0C4 4-bit Binary Adder

I1

Y

S

I0 I1

Y

S

I0 I1

Y

S

I0 I1

Y

S

I0

2-1.43

Adder / Subtractor

• If sub/~add = 1
– Z = X[3:0]-Y[3:0]

• Else
– Z = X[3:0]+Y[3:0]

B3

B2

B1

B0

A3

A2

A1

A0

S
0

S
1

S
2

S
3

C
0

C
4

4
-b

it
 B

in
a

ry
 A

d
d

e
r

X3

X2

X1

X0

Y3

Y2

Y1

Y0

SUB/~ADD

SUB/~ADD

Z3

Z2

Z1

Z0

SUB/

~ADD

Yi Bi

0 0

0 1

1 0

1 1

2-1.44

Another Example

• Design a circuit that takes a 4-bit binary
number, X, and two control signals, A5 and M1
and produces a 4-bit result, Z, such that:

• Z = X + 5, when A5,M1 = 1,0

• Z = X – 1, when A5,M1 = 0,1

• Z = X, when A5,M1 = 0,0

X3

X2

X1

X0
B

3
B

2
B

1
B

0
A

3
A

2
A

1
A

0

S
0

S
1

S
2

S
3

C
0

C
4

4
-b

it
 B

in
a

ry
 A

d
d

e
r

A5

M1
Z3

Z2

Z1

Z0

4-bit Adder Input

A5 M1 B3 B2 B1 B0

0 0

0 1

1 0

1 1 d d d d

2-1.45

ROMS AND MEMORIES

2-1.46

Memories

• Memories store (write) and retrieve (read)
data

– Read-Only Memories (ROM’s): Can only retrieve
data (contents are initialized and then cannot be
changed)

– Read-Write Memories (RWM’s): Can retrieve data
and change the contents to store new data

2-1.47

ROM’s

• Memories are just tables
of data with rows and
columns

• When data is read, one
entire row of data is read
out

• The row to be read is
selected by putting a
binary number on the
address inputs

0 0 1 1

1 0 1 0

0 1 0 0

0 1 1 1

1 1 0 1

1 0 0 0

0 1 1 0

1 0 1 1

A2

A0

A1

D3 D2 D1 D0

0

1

2

3

4

5

6

7

Address

Inputs

Data

Outputs

ROM

2-1.48

ROM’s

• Example
– Address = 4 dec. = 100 bin.

is provided as input

– ROM outputs data in that
row (1101 bin.)

0 0 1 1

1 0 1 0

0 1 0 0

0 1 1 1

1 1 0 1

1 0 0 0

0 1 1 0

1 0 1 1

A2

A0

A1

1 1 0 1

0

1

2

3

4

5

6

7

Address:

1002 = 410

Data:

Row 4 is

output

ROM

1

0

0

D3 D2 D1 D0

2-1.49

Memory Dimensions

• Memories are named by
their dimensions:

– Rows x Columns

• n rows and m columns => n
x m ROM

• 2n rows => n address bits (or
k rows => log2k address bits)

• m cols. => m data outputs

0 … 1

1 0

0 0

0 0

1 1

0

1

2

2n-2

ROM

.

.

.

2n-1

An-1

A0

A1

…

Dm-1 D0

2-1.50

RWM’s

• Writable memories
provide a set of data
inputs for write data (as
opposed to the data
outputs for read data)

• A control signal R/W
(1=READ / 0 = WRITE) is
provided to tell the
memory what operation
the user wants to perform

0 0 1 1

1 0 1 0

0 1 0 0

0 1 1 1

1 1 0 1

1 0 0 0

0 1 1 0

1 0 1 1

A2

A0

A1

DO3 DO2 DO1 DO0

0

1

2

3

4

5

6

7

Address

Inputs

Data

Outputs

8x4 RWM

DI2

DI0

DI1

DI3Data

Inputs

R/W

2-1.51

RWM’s

• Write example
– Address = 3 dec. = 011 bin.

– DI = 12 dec. = 1100 bin.

– R/W = 0 => Write op.

• Data in row 3 is
overwritten with the new
value of 1100 bin.

0 0 1 1

1 0 1 0

0 1 0 0

0 1 1 1

1 1 0 1

1 0 0 0

0 1 1 0

1 0 1 1

0

1

1

? ? ? ?

0

1

2

3

4

5

6

7

Address

Inputs

Data

Outputs

8x4 RWM

1

0

0

1Data

Inputs

0

R/W

1 1 0 0

A2

A0

A1

DI2

DI0

DI1

DI3

DO3 DO2 DO1 DO0

R/W

2-1.52

Asynchronous Memories

• Notice that there is no
clock signal with this
memory

• Devices that do not use a
clock signal are called
"asynchronous" devices

• For these memories, the
address must be kept valid
and stable for at least tacc
amount of time

1 0 0 0
1 1 1 0
1 1 0 0
1 0 1 0
0 0 1 1
0 1 0 0
1 0 1 1
0 1 1 0

0
1
2
3
4
5
6
7

D
O

[3
:0

]

DI[3:0]

A[2:0]

R/W

A[2:0] 011 110

DI[3:0] 1111

R/W

DO[3:0] 1010 1001

tacc tacc

2-1.53

Asynchronous vs. Synchronous Memories

• Asynchronous memories use no CLK signal

– For read: Address and R/W signal must be held
steady for a certain period of time before DO
outputs become valid

– For write: Address, DI, and R/W signal must be held
steady for a certain period of time before internal
memory is updated

• Synchronous memories use a CLK signal

– For read: Address and R/W signal will be registered
on the CLK edge and then DO will become valid
during that subsequence clock cycle

– For write: Address, DI and R/W signals will be
registered on the CLK edge and then the internal
memory updated during the subsequent clock cycle

A2

A0

A1

DI2

DI0

DI1

DI3

R/W

DO2

DO0

DO1

DO3

CLK

Synchronous memories add

a clock signal and the input

values at a clock edge will

only be processed during

the subsequence clock cycle

2-1.54

Synchronous Timing

• For synchronous
memories the address
must be valid and stable
at the clock edge but
then may be changed

• EN = Overall enable
(unless it is 1) the
memory won't read or
write (we assume EN=1)

• WEN = Write enable

– 1 = Write / 0 = read

1 0 0 0
1 1 1 0
1 1 0 0
1 0 1 0
0 0 1 1
0 1 0 0
1 0 0 1
0 1 1 0

0
1
2
3
4
5
6
7

D
O

[3
:0

]

DI[3:0]

A[2:0]

WEN

CLK

EN

A[2:0]

CLK

110 001

DI[3:0] 1111

WEN

DO[3:0] ??? mem[3] = 1111 mem[6] = 1001

twrite

011

tacc

M[3] 1010 1111

Assume EN=1

2-1.55

Using Memories
• Add two 8 number arrays (C[i] = A[i] + B[i])

+cntr

QEN

RST

CLK

A

B

D
O

[3
:0

]
DI[3:0]

A[2:0]

WEN

CLK

EN 8x4

Memory

D
O

[3
:0

]

DI[3:0]

A[2:0]

WEN

CLK

EN 8x4

Memory

D
O

[3
:0

]

DI[3:0]

A[2:0]

WEN

CLK

EN 8x4

Memory

reg

QD

RST

CLK

EN

i[3:0]

CLK

001 010

A & B

??? A[0]+B[0]

000

CMEM[0]

011

??? A[0] & B[0] A[1] & B[1] A[2] & B[2]

i_q

2-1.56

SYSTEM DESIGN EXAMPLE

Crosswalk Controller

2-1.57

Digital System Design

• Control and Datapath Unit paradigm
– Separate logic into datapath elements that operate on data and

control elements that generate control signals for datapath elements

– Datapath: Adders, muxes, comparators, counters, registers (w/
enables)

– Control Unit: State machines/sequencers

Datapath

Control

…

…

Control

Signals

Condition

Signals

Data

Inputs

Data

Outputs

clk

reset

2-1.58

Crosswalk Controller

• Design a crosswalk controller to
adhere to the following description

• 8 ticks of the clock in the WALK phase

• 8 ON/OFF BLINKING hand cycles (16
total ticks)

• Count 8 downto 1 on the NUM
display while hand is blinking

• 16 cycles in the SOLID hand

NUM(3:0)

NUM_ON HAND WALK

2-1.59

Crosswalk State Machine

• Use a 4-bit counter to count cycles along with
an additional gate or two…

WALK BlinkOff

NOWALK BlinkOn

RESET

WALK=1 NUM_ON=1

HAND=1EN=

NUM_ON=1HAND=1CLK

P0

P1

P2

P3

Q0

Q1

Q2

Q3

TC

PE

RST

4-bit

CNTR

CE

2-1.60

Crosswalk Controller Operation

CLK

Q(3:0)

EN

C7

TC

STATE

0110

NUM_ON

NUM

2-1.61

Summary

• You should now be able to build:

– Registers (w/ Enables)

– Counters

– Adders

