Spiral 2-1

Datapath Components:
Counters

Adders
Design Example: Crosswalk Controller

— U5 Vierbi 22
Spiral Content Mapping

System Level Implementation
Design and Tools

Combinational
Design

| Theory

* Edge-triggered
flip-flops

* Registers (with
enables)

e Bistables,
latches, and Flip-
flops

* Counters

* Memories

I
I

e HW/SW * Power and other
partitioning logic families

* Businterfacing * EDA design

* Single-cycle CPU process

Learning Outcomes

* | understand the control inputs to counters

* | can design logic to control the inputs of counters to
create a desired count sequence

e | understand how smaller adder blocks can be
combined to form larger ones

e | can build larger arithmetic circuits from smaller
ouilding blocks

* | understand the timing and control input differences
petween asynchronous and synchronous memories

DATAPATH COMPONENTS

e USCViterbi

School of Engineering

Digital System Design

e Control (CU) and Datapath Unit (DPU) paradigm

— Separate logic into datapath elements that operate on data and
control elements that generate control signals for datapath elements

— Datapath: Adders, muxes, comparators, counters, registers (shift, with
enables, etc.), memories, FIFO's

— Control Unit: State machines/sequencers

clk —>
reset ———>

Data
Inputs

Control
Control Condition
Signals Signals
Datapath
i -~ Data
> > Outputs
 — —>

COUNTERS

Counters

 Count (Add 1 to Q) at each
clock edge
— Up Counter: Q*=Q+1
— Can also build a down counter as
well (Q*=Q-1)
e Standard counter components
include other features
— Resets: Reset countto O
— Enables: Will not count at edge if
EN=0

— Parallel Load Inputs: Can
initialize count to a value P (i.e.
Q* = P rather than Q+1)

=
=
3 L
I/ 32 o
(@)
()
x
RESET -
CLK >

How would you design the
adder block above for a 4-bit
counter?

Only 4-inputs, use T.T. and K-
Maps!

e USCViterbi

Sample 4-bit Counter

e 4-bit Up Counter

RST: a synchronous reset
input

PE and P, inputs: loads Q
with P when PE is active

CE: Count Enable

* Must be active for the
counter to count up

TC (Terminal Count) output

* Active when Q=1111 AND
counter is enabled
e TC=ENeQ3eQ2°Q1°Q0
— Mealy output

* |ndicates that on the next
edge it will roll over to 0000

School of Engineering

—CE
—{ PO Q0 —
—P1 . Ql—
_Ip> 4-bit 02—
_lp3 CNTR g3|—
—PE
— RST e
—pCLK
CLK | RST PE CE Q*
0,1 X X X Q
i 1 X X 0
i 0 1 X P
i 0 0 0 Q
" 0 0 1 Q+1

USC Viterbi2:9

School of Engineering

Counters

cLk]
RST \

D s S

[

[]

. ; C / ///

Q3-Q0 . =X 0000 X 0001 X o010 X o011 X 1110)é}/ 1111 X000
o

A

e RS G

at clock
Mealy TC output:

P3-PO \ ((1110
X

edge, thus
Q=0

EN-Q3-Q2-Q1-Q0

CLK

Counter Exercise

RST

PE

CE

P[3:0]

0¢

)11

01

1001

Q[3:0] =X

Counter Design

e Sketch the design of the 4-bit counter
presented on the previous slides

7N
CE — - I A
+ [-1 70
i _/ - —{D[3:0] Q[3:0] — Q[3:0]
P[BO] — —1
Reg
PE — N
RST— —{CLR
CLK — —pDCLK

TC

e USCViterbi

School of Engineering

Design a 12-bit Counter

—CE
1ns X Q9 Q8 Q7 Q6 Q5 Q4 Q3 Q2 Q1 QO
Tlpp abit 35 _
155 onr S QI3:0] ©o 0o 0 0O 0 O 0 0 0 0
— PE
per O o o o O O o o0 O0 0 1
— CLK
o o o O o0 o0 1 1 1 1
—|cE o o O O o0 1 0 0 0 O
— PO QO
ez A1t = Q[7:4]
—{P3 Q3
e o o o O o0 1 1 1 1 1
—{RST e
— CLK
o o 1 1 1 1 0 0 0 o
o o 1 1 1 1 0 ©0 0 1
—CE
o1 1 Q[11:8]
“lps ONTR o3— o o 1 1 1 1 1 1 1 1

PE
RST
CLK

TCH 0 1 0 0 0 0 0 0 0 0

Counter Example

* Design a circuit that counts each clock cycle to
produce the pattern 5,6, 7,8,9,5,6, 7,8, 9,
5...9,5..9,..

|

CE

PO Q0
0 A-bit 8;
p3 CNTR (3

PE
RST
D CLK

[1]]
BER

|

|

TC

|

|

ADDERS

e So how would we build a circuit

Adder Intro

to add two numbers?

e Let's try to design a circuit that

can add ANY two 4-bit
numbers, X[3:0] and Y[3:0]

— How many inputs?

— Can we use K-Maps or sum of

minterms, etc?

0110
+ 0111

1101

RESET

CLK

1—>»

Adder (+)

Register

Adder Intro

* Idea: Build a circuit that performs one column of
addition and then use 4 instances of those circuits
to perform the overall 4-bit addition

e Let's start by designing a circuit that adds 2-bits: X
and Y that are in the same column of addition

Addition — Half Adders

COut
 Additionis done.ln columns lﬁ
— Inputs are the bit of X, Y 0110l = x
— QOutputs are the Sum Bit and
Carry-Out (C_,,) + 0111 =
e Design a Half-Adder (HA) 1101
circuit that takes in X and Y ™ sum
and outputs Sand C_, L
X Y |c, S X Y
o o0 |0 0 0 + Cout Alfﬁ;
0 1 0 1 S
1 0|0 1 '
1 1 1 0 1

Addition — Half Adders

We'd like to use one
adder circuit for each 110

o 0110 = X
column of addition
Problem: + 0111] =
— No place for Carry-out of 1101
last adder circuit
. 0 1
Solution L L
— Redesign adder circuit to X Y X
i i e Half e Half
include an input for the 1 COUtAdzzier 0+ Coury
carry S <
' }

School of Engine

Addition — Full Adders

Cout Cin
* Add a Carry-In input(C,) E@/
* New circuit is called a 011p = X
Full Adder (FA) + 011l =
110L
X Y C, |Coi S
0] 1
0 0 0 |0 0 | |
00 1 |0 1 X Y
0O 1 O 0 1 1c Full C. o0
01 1 |1 o0 “"Adder
1 0 0 |0 1 S
1 0 1 |1 0 '
110 |1 O 0
11 1 |1 1

USC Vlterbl

Addition — Full Adders

Find the minimal 2-level implementations for Cout and S...

X Y Gy |G S
0O 0 O 0 0
0O 0 1 0 1
0O 1 0 0 1
0O 1 1 1 0
1 0 O 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

Full Adder Logic

e S=XxorY xor Cin
— Recall: XOR is defined as true when

ODD number of inputs are x
true...exactly when the sum bit ;n%s

should be 1
 Cout = XY + XCin + YCin
— Carry when sum is 2 or more (i.e. i:}
when at least 2 inputs are 1) x — TN Lt~
. . ow—__ 7
— Circuit is just checking all)
combinations of 2 inputs o :}

Addition — Full Adders

Cout Full Cin <

Adder

0110

+ 0111

Cout Full Cin <

Adder

Cout Full Cin <

Adder

Use 1 Full Adder for each column of addition

c. . Ful ¢
OUIAdder n

Addition — Full Adders

— O
«—

Cout Full Cin <

Adder

0110

+ 0111

—
«—

Cout Full Cin <

Adder

— =
«—

Cout Full Cin <

Adder

* Connect bits of top number to X inputs

— O
«—

c. . Ful ¢
OUIAdder n

Addition — Full Adders

* Connect bits of bottom number to Y inputs

0110 = X

+ 0111 =Y
0 0 1 1 1 1 0 1
! ! ! ! ! ! ! !
X Y X Y X Y X Y

Full Full Full Full
«—C C C C. C C. C C.
OUtAdder " OUItAdder " OUItAdder " OUIAdder "
S S S S

Addition — Full Adders

* Be sure to connect first C, to O

0110 = X
+ 0111 =Y
0 0 1 1 1 1 0
! ! ! ! ! ! !
X Y X Y X Y X
Full Full Full
«—C C C C. C C.
OUtAddelr " OUItAdder " OUItAdder "
S S S

Addition — Full Adders

e Use 1 Full Adder for each column of addition

01100
0110 =X
+ 0111 =Y
1101
0 0 1 1 1 1 0
! ! ! ! ! ! !
X Y X Y X Y X
40_ c. Ful ¢ ! c. Ful ¢ ! c. Ful ¢ v c_ Full
OUtAddelr " OUItAdder " OUItAdder " OUtAdder
S S S S
v v v v

0

1

Addition — Full Adders

e Use 1 Full Adder for each column of addition

01@0
0110 = X
011l =Y
1101
1
|
Y
Cout Full o Full C. ! Cout Full

Addition — Full Adders

e Use 1 Full Adder for each column of addition

0@0 0
0110 = X
+ 0111 =Y
1101
0 0 1 1 1 1
| ! | !
X Y X Y
40_ Cout Full Cin i i Cout Full Cin
Adder Adder
S S
! !
1 1 0

Addition — Full Adders

Use 1 Full Adder for each column of addition

P[00
0110 = X
+ 0111 =Y
1101
0 0 1 1 1 1 0
| ! | ! |
X Y X Y X
- Cout il Cin - Cout il Cin ’ Cout il
Adder Adder Adder
S S S
! !

e USCViterbi

School of Engineering

Performing Subtraction w/ Adders

 To subtract

0101 = X 0101
— Flip bits of Y - 0011 = Y) 4+ 1100
— Add 1 0010 1
0010

| | | | | | | |

X Y X Y X Y X Y

DI Cout il Cin < Cout Eull Cin < Cout Eull Cin < Cout Fyll Cin A
Adder Adder Adder Adder
S S S S

e USCViterbi

School of Engineering

Performing Subtraction w/ Adders

* To subtract 0101 = X 0101
o 0011 =Y ™ + 1100
— Fllp bits of Y 0010 1
— Add 1 0010
0 0 1 1
0 1 0 1
! SE ! 3?1 ! SE ! SE
X Y X Y X Y X Y
—]c Fu ¢ c. . Ful ¢ c. Ful ¢ c. Ful ¢ |—
“CAdder " “Adder " “Adder " “Adder "
S S S S

e USCViterbi

School of Engineering

Performing Subtraction w/ Adders

* To subtract 0101 = X 0101
S ~ 0011 = Y) + 1100
— Fllp bits of Y 0010 1
—Add 1 0010
0 0 1 1
0 1 0 1
! ¥1 ! % ! X ! X
X Y X Y X Y X Y
—]c Fu ¢ c_ Ful ¢ | c. Ful ¢ c Ful ¢ l—1
“Adder “Adder “Adder “Adder
S S S S

e USCViterbi

School of Engineering

Performing Subtraction w/ Adders

* To subtract 0101 = X) 0101
: : - 0011 =Y + 1100
— F|Ip bits of Y 0010 1
—Add 1 0010
0 0 1 1
0 1 0 1
| ¥1 | % | % | %
X Y X Y X Y X Y
41_ Cout il Cin - Cout Eull Cin < - Cout Eull Cin - Cout Fyll Cin — 1
Adder Adder Adder Adder
S S S S
v v v v

4-bit Adders

e 7415283 chip implements a 4-bit adder

A,AAA, = A
+ B,B,B,B, = B
S,S;S,S;S, = S

Py bbbl

A3 B3 AZ BZ Al Bl 0 ~0

+— Cout 74L.S283 Cin [—

S, S, S; S,

N

Building an 8-bit Adder

e Use (2) 4-bit adders to build an 8-bit adder to add X=X[7:0]
and Y=Y[7:0] and produce a sum, S=[7:0] and a carry-out, C8.

— Make sure you understand the difference between system labels
(actual signal names from the top level design) and device labels
(placeholder names for the signals inside each block).

B3B2B1B0 A3 A2 A1 A0 B3B2B1B0 A3 A2 A1 A0

—lca co— —c4 co—

S3 S2 S1 SO S3 S2 S1 SO

EXERCISES

Adding Many Bits

 You know that an FA
adds X +Y + Ci

 Use FA and/or HA
components to add 4
individual bits:
A+B+C+D

Add X[3:0] + Y[3:0] + =z 5 2 2 = & &
Z[3:0] to produce
F[?:0] using the
adders shown plus

i 149)
—ES
1%
—11S
—10S

any FA and HA
components you
need

OOOOOOOOO

e 170)
— ES
—=1¢
—11S
—10S

e Wherever an

if..then..else B[3:0] v
. — er

statement is used 0101 — Circuit
usually requires a Al3:0l— Adder
mux 0010 — Circuit
— if(A[3:0] > B[3:0

([_] [3:0]) A[3:0] = comparison

e 7/ =A+2 B[3:0]] Circuit A>B
— else

« Z=B+5

* Wherever an
if..then..else
statement is used
usually requires a
mux
— if(A[3:0] > B[3:0])

e /=A+2
— else
e /=B+5

B[3:0]_|
A[3:0]—
Adder
0101 Io\ Circuit
Y
0010 L s
//
9
A>B
A[3:0] = Ccomparison
B[3:0]] Circuit

Z[3:0]

School of Engine

Adder / Subtractor

e Ifsub/~add =1
— 7 =X[3:0]-Y[3:0]
e Else

I I I
— Z =X[3:0]+Y[3:0] \; j\; j = = = =

USC Vlterbl

B3B2B1BO A3 A2A1AO

—lca 4-bit Binary Adder co

S3 S2 S1 SO

If sub/~add =1
— Z =X[3:0]-Y[3:0]

Else

— Z =X[3:0]+Y[3:0]

Adder / Subtractor

SUB/ i Bi
~ADD

0 0

0 1

1 0

YO —

Y1—

Y2 —

Y3 —

SUB/~ADD

SUB/~ADD
(@)
O
X0 — A0
X1 —A1l 5
X2 — A2 § 7
> (9))]
=
B0 @ O
B1 j 7
B2
B3
<
O

— Z0

—Z1

— /2

— 73

- USCXlF?Erbl
Another Example

* Design a circuit that takes a 4-bit binary

number, X, and two control signals, A5 and M1 4-bit Adder Input
and produces a 4-bit result, Z, such that: A5 M1 | B3 B2 Bl BO
« Z=X+5,whenA5M1=1,0 0 0
e Z=X—1, when A5,M1=0,1 2 ;
e Z=X, whenA5M1=0,0 1 1 g 4 4 q

Co

X0
X1
X2
X3

A3 A2A1A0

Z0

Z2
Z3

4-bit Binary Adder
S3 S2 S1 SO

M1
A5

B3 B2B1 B0

C4

ROMS AND MEMORIES

Memories

* Memories store (write) and retrieve (read)
data

— Read-Only Memories (ROM'’s): Can only retrieve
data (contents are initialized and then cannot be
changed)

— Read-Write Memories (RWM'’s): Can retrieve data
and change the contents to store new data

* Memories are just tables
of data with rows and
columns

e When data is read, one
entire row of data is read
out

* The row to be read is
selected by putting a
binary number on the
address inputs

ROM

i Ao " o|lO0|O0]1]1

i A >
:_:A2 |l 1211010
B 2l 0| 1|0]0
s|lo|] 111
411 (1|01
Address 511 [(0(0]|O
Inputs s [o 1 1 5
111011

Data ___, ed Uy
Outputs i, Ps Dy D Dy

e USCViterbi

School of Engineering

ROM
 Example
: F0 — A
— Address = 4 dec. = 100 bin. P o0 0] 1]1
. . . : 0 A
is provided as input P, b 1| 1lof1fo
B : 12
— ROM outputs data in that 2lol1|l0]|o0
row (1101 bin.) slol 1111
sal1l1)0]1
Address: > 1 10|00
100, = 4,,
slo|l1]1]o0
|1lo0]1]1
D D, D D
Data i Do Wit s |

*
N .
.....

Memory Dimensions

* Memories are named by
their dimensions:

— Rows x Columns

* nrows and m columns =>n
X m ROM

e 2" rows => n address bits (or
k rows => log,k address bits)

* m cols. => m data outputs

ROM

2n-2

2n-1

e USCViterbi

Writable memories

provide a set of data o3
inputs for write data (as / 2
opposed to the data Address®,
outputs for read data) Inputs DI
A control signal R/W ol

(1=READ / 0 = WRITE) is /" DI,

provided to tell the oot o

memory what operation
the user wants to perform

Data

School of Engineering

Outputs

.
.
‘a

8x4 RWM

" o]lOo|0]|1]1

; 111101]0

2o 1|00
3o
,_, al1l1]0]1
—— s[1]{o0|o0]o0
— 6[o0|1|1]o0
11011

RIW —
—— "5, 56,6, 565

.
.
.
.....

e USCViterbi

4
RWM's
8x4 RWM

* Write example
— Address = 3 dec. = 011 bin. i 200 olof[1]1
— DI =12 dec. = 1100 bin. /0 e BRI ERE
— R/W =0 => Write op. Address'\.’._‘,:: 21 0|1 0] O

: . inputs " o P
* Datainrow 3is 0 o R e
overwritten with the new fo b——pt|1]1]0)1
value of 1100 bin. /it F—Pks |11 0]0)0
mpus oo 110
711|011
0— RIW

R/W DD, DD, DP, DL)0

— > ““' e,
*
»

‘e

Data : . _ s
outputs e e

Asynchronous Memories

. . —{A[2: 011/0/0/0
* Notice that there is no A0 o
clock signal with this —DI[3:0] STolalo]l al
memory S0l
. — 6[1/0[1]1
e Devices that do not use a —RW 7 ol1l1]0
clock signal are called

"asynchronous" devices

* For these memories, the. azo] ol Y e
address must be kept valid ;4 KRR
and stable fc?r at least t___ TR N S WY
amount of time DO[3:0] | X 1010 1001

e USCViterbi

School of Engineering

Asynchronous vs. Synchronous Memories

e Asynchronous memories use no CLK signal

— For read: Address and R/W signal must be held Ao
steady for a certain period of time before DO A,
outputs become valid A,

— For write: Address, DI, and R/W signal must be held DI DO,
steady for a certain period of time before internal DIO o6
memory is updated Dll Dol

. . 2
e Synchronous memories use a CLK signal DI2 DO
3 8

— For read: Address and R/W signal will be registered _
on the CLK edge and then DO will become valid A
during that subsequence clock cycle o

{ CLK }

Synchronous memories add
a clock signal and the input
values at a clock edge will

only be processed during
the subsequence clock cycle

— For write: Address, DI and R/W signals will be
registered on the CLK edge and then the internal
memory updated during the subsequent clock cycle

Synchronous Timing

* For synchronous
memories the address
must be valid and stable
at the clock edge but
then may be changed

 EN = Overall enable
(unless it is 1) the
memory won't read or
write (we assume EN=1)

e WEN = Write enable
— 1 =Write /0 =read

— A[2:0] O011/0(0/0
111(1/1/0
2111l0l0] &
— DI[3:0] 311/0[1{0] D2 {—
410]0]1]1 8
—EN 5/0/1[0]0
6(1/0/0]1
—WEN 7 [olaf1lo
—CLK
CLK
A[2:0] 011 [X 110 X op1
DI[3:0] 1111
WEN Lt | \
MI[3] 1010 X 1111
DO[3:0] 272 X mem[3]31111 Xmem[6] = 1001

Assume EN=1

ot

e USCViterbi

Using Memories
* Add two 8 number arrays (Cl[i] = A[i] + B[i])

D Q
EN
reg
RST
CLK
—A[2:0]
oA
— DI[3:0] o=
EN Q[—EN 8x4 ° - —A[2:0]
—\WEN Memory _
Q
— — DI[3:0 g -
cntr —loLk ~+ [3:0] 9
RST —En 8
] — Memory
CLK WEN
—A[2:0] —ICLK
=)
— DI[3:0] 8=
—en Bl s |B CLK | [L L
_ emory
WEN i[3:0] 000 001 X o010 X o11
—CLK A&B 222 X Aloj&Blo] X Alll&B[1] X A[2]&B[2]
g X X
CMEM[O] 277 X __ A[0]+B[0]

Crosswalk Controller

SYSTEM DESIGN EXAMPLE

e USCViterbi

* Control and Datapath Unit paradigm

School of Engineering

Digital System Design

— Separate logic into datapath elements that operate on data and
control elements that generate control signals for datapath elements

— Datapath: Adders, muxes, comparators, counters, registers (w/
enables)

— Control Unit: State machines/sequencers

clk —>
reset ———>

Data
Inputs

Control
Control Condition
Signals Signals
Datapath
i -~ Data
> > Outputs
 — —>

Crosswalk Controller

* Design a crosswalk controller to
adhere to the following description

» 8 ticks of the clock in the WALK phase
8 ON/OFF BLINKING hand cycles (16 ~ "weo ||

total ticks) —
* Count 8 downto 1 on the NUM ; ; ;
display while hand is blinking NUMLON HAND WAL

* 16 cyclesin the SOLID hand

Crosswalk State Machine

e Use a 4-bit counter to count cycles along with
an additional gate or two...

CE

PO QO
bp 4bit 3
p3 CNTR O3
PE

RST

CLK

TC

RESET

Blink Off
NUM_ON=1

P (5 C Viterbi 2>
Crosswalk Controller Operation

CLK |

Qo) _Yorwof X X ¥)) X X

EN

C7

TC

sare Y))
I

NUM_ON

NUM

Summary

* You should now be able to build:

— Registers (w/ Enables)
— Counters
— Adders

