

Spiral 1 / Unit 8

Transistor Implementations CMOS Logic Gates

Spiral Content Mapping

Spiral	Theory Combinational Design		Sequential Design	System Level Design	Implementation and Tools	Project
1	 Performance metrics (latency vs. throughput) Boolean Algebra (Pt. 1) Canonical Representations 	 Decoders and muxes Synthesis with min/maxterms Synthesis with Karnaugh Maps 	 Edge-triggered flip-flops Registers (with enables) 	 Encoded State machine design 	 Structural Verilog HDL CMOS gate implementation Fabrication process 	
2	 Boolean algebra for analysis and optimization (DeMorgan's theorem) 	 Synthesis with memory Adder and comparator design 	 Bistables, latches, and Flip- flops Counters Memories 	 One-hot state machine design Control and datapath decomposition Single-cycle CPU 	 MOS Theory Capacitance, delay and sizing Memory constructs 	
3	 Shannon's theorem 	 Synthesis with muxes (Shannon's theorem) 		HW/SW partitioningBus interfacing	 Power and other logic families EDA design process 	

Outcomes

School of Engineering

- I know the difference between combinational and sequential logic and can name examples of each.
- I understand latency, throughput, and at least 1 technique to improve throughput
- I can identify when I need state vs. a purely combinational function
 - I can convert a simple word problem to a logic function (TT or canonical form) or state diagram
- I can use Karnaugh maps to synthesize combinational functions with several outputs
- I can design a working state machine given a state diagram
- I can implement small logic functions with complex CMOS gates

DEMORGAN'S THEOREM

DeMorgan's Theorem

$$\mathbf{F} = (\overline{\mathbf{X}} + \mathbf{Y}) + \overline{\mathbf{Z}} \bullet (\mathbf{Y} + \mathbf{W})$$

To find F', invert both sides of the equation and then use DeMorgan's theorem to simplify...

$$\overline{F} = (\overline{X} + \overline{Y}) + \overline{Z} \cdot (\overline{Y} + W)$$
$$\overline{F} = (\overline{\overline{X}} + \overline{Y}) \cdot (\overline{\overline{Z}} \cdot (\overline{Y} + W))$$
$$\overline{F} = (\overline{\overline{X}} \cdot \overline{Y}) \cdot (\overline{\overline{Z}} + (\overline{Y} + W))$$
$$\overline{F} = (\overline{X} \cdot \overline{Y}) \cdot (\overline{Z} + (\overline{Y} \cdot W))$$

Generalized DeMorgan's Theorem

 $F'(X_1,...,X_n,+,\bullet) = F(X_1',...,X_n',\bullet,+)$

To find F', swap AND's and OR's and complement each literal. However, you must maintain the original order of operations.

Note: This parentheses doesn't matter (we are just OR'ing X', Y, and the following subexpression)

$$F = (X+Y) + Z \bullet (Y+W)$$
$$F = \overline{X} + Y + (\overline{Z} \bullet (Y+W))$$

Fully parenthesized to show original order of ops.

$$\overline{\mathbf{F}} = \mathbf{X} \bullet \overline{\mathbf{Y}} \bullet (\mathbf{Z} + (\overline{\mathbf{Y}} \bullet \overline{\mathbf{W}}))$$

AND's & OR's swapped Each literal is inverted

USC Viterbi

DeMorgan's Theorem Example

• Cancel as many bubbles as you can using DeMorgan's theorem.

With focus on MOS Transistors

SEMICONDUCTOR TECHNOLOGY

Evolution of transistor in ICs

- BJT invention, Bell Labs, 1947
- Single transistor, TI, 1958
- CMOS gate, Fairchild, 1963
 First processor, Intel, 1970
- Very Large Scale Integration, 1978

 Up to 20k transistor
- Ultra Large Scale Integration, 1989
 - More than 1 million per chip
- System-on-Chip, 2002-2015
 - Millions to several billion transistors

School of Engineering

USC Viterbi (1-8.10) School of Engineering

Invention of the Transistor

- Vacuum tubes ruled in first half of 20th century Large, expensive, power-hungry, unreliable
- 1947: first point contact transistor
 - John Bardeen and Walter Brattain at Bell Labs
 - See Crystal Fire
 - by Riordan, Hoddeson

USC Viterbi

Growth Rate

- 53% compound annual growth rate over 50 years
 - No other technology has grown so fast so long
- Driven by miniaturization of transistors
 - Smaller is cheaper, faster, lower in power!
 - Revolutionary effects on society

[Moore65] Electronics Magazine

Minimum Feature Size

Intel 4004 Micro-Processor

19711000 transistors1 MHz operation

Intel Core I7

- 2nd Gen. Intel Core i7 Extreme Processor for desktops launched in Q4 of 2012
- #cores/#threads: 6/12
- Technology node: 32nm
- Clock speed: 3.5 GHz
- Transistor count: Over one billion
- Cache: 15MB
- Addressable memory: 64GB
- Size: 52.5mm by 45.0mm mm²

School of Engineering

USC Viterbi

ARM Cortex A15

ARM Cortex A15 in 2011 to 2013

- 4 cores per cluster, two clusters per chip
- Technology node: 22nm
- Clock speed: 2.5 GHz
- Transistor count: Over one billion
- Cache: Up to 4MB per cluster
- Addressable memory: up to 1TB
- Size: 52.5mm by 45.0mm

Cortex-A72

1-8.16

School of Engineering

Cortex-A72: Accelerating Usable Performance

34

IBM z13 Storage Controller

z13 Storage Control (SC) Chip Detail

- CMOS 14S0 22nm SOI Technology
 - 15 Layers of metal
 - 7.1 Billion transistors
 - 12.4 Miles of copper wire

Chip Area –

- 28.4 x 23.9 mm
- 678 mm²
- 11,950 power pins
- 1,707 Signal Connectors
- eDRAM Shared L4 Cache
 - 480 MB per SC chip (Non-inclusive)
 - 224 MB L3 NIC Directory
 - 2 SCs = 960 MB L4 per z13 drawer
- Interconnects (L4 L4)
 - 3 to CPs in node
 - 1 to SC (node node) in drawer
 - 3 to SC nodes in remote drawers
- 6 Clock domains

Annual Sales

- >10¹⁹ transistors manufactured in 2008
 - 1 billion for every human on the planet

Cost per Transistor

Internet Traffic Growth

Source: Cisco VNI, 2010

TRANSISTOR BASICS

School of Engineering

Transistors As Switches

- Transistor act as a form of switch (on / off)
- Different physical structures lead to different kinds of transistors
 - Bipolar Junction Transistor (BJT)
 - Initial technology back in the late 40's 60's
 - Metal-Oxide-Semiconductor Field Effect Transistor (MOSFET)
 - Dominates the digital IC market today
- All transistors essentially function similarly with 3 nodes/terminals:
 - 1 node serves as the switch value allowing current to flow between the other 2 nodes (on) or preventing current flow between the other 2 nodes (off)
 - Example: if the switch input voltage is 5V, then current is allowed to flow between the other nodes

Semiconductors

While there are numerous semiconductor materials available, by far the most popular material is **Silicon**.

GaAs, InP and SiGe are compound semiconductors that are used in specialized devices.

School of Engineering

The success of a semiconductor material depends on how easy it is to process and how well it allows reliable high-volume fabrication.

Semiconductor Material

- Semiconductor material is not a great conductor material in its pure form
 - Small amount of free charge
- Can be implanted ("doped") with other elements (e.g. boron or arsenic) to be more conductive
 - Increases the amount of free charge

P-Type Silicon (Doped with boron)

Electron acceptors

N-Type Silicon (Doped with arsenic)

Electron donors

USC Viter bi

School of Engineering

	1/IA					-											1	8/VIIIA
1	1 H 1.008	2/11A		P	er	i 0		Ga	13	b	e		13/ША	14/IVA	15/VA	16/VIA 1	7/VIIA	2 He 4.003
2	3 Li 6.941	4 Be 9.012		1998 Dr. Michael Blaber 1008 Dr. Michael Blaber 1000 F 1000 20.									10 Ne 20.18					
3	11 Na 22.99	12 Mg 24.30	3/1113	4/IVB	5/VB	6/VIB	7/VIB	8	VШ . 9	10	11/IB	12/1118	13 Al 26.98	14 Si 28.09	15 P 30.97	16 S 32.07	17 CI 35.05	18 Ar 39.95
4	19 K 39.10	20 Ca 40.08	21 Sc 44.96	22 Ti 47.87	23 V 50.94	24 Cr 52.00	25 Mn 54.94	26 Fe 55.85	27 Co 58.93	28 Ni 58.69	29 Cu 63.55	30 Zn 65.39	31 Ga 69.72	32 Ge 72.61	33 As 74.92	34 Se 78.96	35 Br 79.90	36 Kr 83.80
5	37 Rb 85.47	38 Sr 87.62	39 Y 88.91	40 Zr 91.22	41 Nb 92.91	42 Mo 95.94	43 TC 98.91	44 Ru 101.1	45 Rh 102.9	46 Pd 106.4	47 Ag 107.9	48 Cd 112.4	49 In 114.8	50 Sn 118.7	51 Sb 121.8	52 Te 127.6	53 126.9	54 Xe 131.3
6	55 Cs 123.9	56 Ba 137.3	La- Lu	72 Hf 178.5	73 Ta 180.9	74 W 183.8	75 Re 186.2	76 Os 190.2	77 Ir 192.2	78 Pt 195.1	79 Au 197.0	80 Hg 200.6	81 TI 204.4	82 Pb 207.2	83 Bi 209.0	84 Po 210.0	85 At 210.0	86 Rn 222.0
7	87 Fr 223.0	88 Ra 226.0	Ac- Lr	104 Db	105 JI	106 Rf	107 Bh	108 Hn	109 Mt	110 Uun	111 Uuu							
$\blacktriangleleft s \longrightarrow \blacktriangleleft \qquad \qquad$																		
	Lanth	nanid	es	57 La 138.9	58 Ce 140.1	59 Pr 140.9	60 Nd 144.2	61 Pm 146.9	62 Sm 150.4	63 Eu 152.0	64 Gd 157.2	65 Tb 158.9	66 Dy 162.5	67 Ho 164.9	68 Er 167.3	69 Tm 168.9	70 Yb 173.0	71 Lu 175.0
Actinides			89 Ac 227.0	90 Th 232.0	91 Pa 231.0	92 U 238.0	93 Np 237.0	94 Pu 239.1	95 Am 241.1	96 Cm 244.1	97 Bk 249.1	98 Cf 252.1	99 Es 252.1	100 Fm 257.1	101 Md 258.1	102 No 259.1	103 Lr 262.1	
				•							f -							

Silicon Lattice and Dopant Atoms

- Pure silicon: 3-D lattice of atoms (a cubic crystal) and a poor conductor
- Conductivity can be raised by adding either donors or acceptor
 - Donors: Group V dopant impurities, which have more free electrons than silicon
 - The resulting material is called n-type
 - Group III dopants impurities which have lack of electrons
 - The resulting material is called p-type

Transistor Types

- Bipolar Junction Transistors (BJT)
 - npn or pnp silicon structure
 - Small current into very thin base layer controls large currents between emitter and collector
 - However the fact that it requires a current into the base means it burns power (P = I*V) and thus limits how many we can integrate on a chip (i.e. density)
- Metal Oxide Semiconductor Field Effect Transistors
 - nMOS and pMOS MOSFETS
 - Voltage applied to insulated gate controls current between source and drain
 - Gate input requires no constant current...thus low power!

We will focus on MOSFET in this class

npn BJT

NMOS Transistor Physics

 Transistor is started by implanting two n-type silicon areas, separated by p-type

NMOS Transistor Physics

• A thin, insulator layer (silicon dioxide or just "oxide") is placed over the silicon between source and drain

NMOS Transistor Physics

- A thin, insulator layer (silicon dioxide or just "oxide") is placed over the silicon between source and drain
- Conductive polysilicon material is layered over the oxide to form the gate input

NMOS Transistor Physics

- Positive voltage (charge) at the gate input *repels* the extra positive charges in the ptype silicon
- Result is a negativecharge channel between the source input and drain

NMOS Transistor Physics

- Electrons can flow through the negative channel from the source input to the drain output
- The transistor is "on"

Negative channel between source and drain = Current flow

NMOS Transistor Physics

- If a low voltage (negative charge) is placed on the gate, no channel will develop and no current will flow
- The transistor is "off"

No negative channel between source and drain = No current flow

PMOS vs. NMOS

 PMOS transistors can also be made that are on when the gate voltage is low and off when it is high

Negative channel between source and drain = Current flow "Positive" channel between source and drain = Current flow

NMOS

PMOS

Understanding physical constraints

CMOS TRANSISTOR LEVEL IMPLEMENTATION

USC Viterbi (1-8.36)

School of Engineering

NMOS and PMOS Transistors

NMOS Transistors

• NMOS conducts when gate input is at a high voltage (logic '1')

Current Flows (Small resistance between source and output) No Current Flows (Large resistance between source and output)

NMOS (On if G=1)

PMOS Transistors

 PMOS conducts when gate input is at a low voltage (logic '0')

NMOS Transistors in Series/Paralle^{Echol of Engineering} Connection

1-8.37

- Transistors can be thought as a switch controlled by its gate signal
- NMOS switch closes when switch control input is high

PMOS Transistors in Series/Parallel^{School of Engineering} Connection

1-8.38

 PMOS switch closes when switch control input is low

We All Have Our Strengths

- NMOS are:
 - Good at pulling the output voltage DOWN to 0
 - Bad at pulling the output voltage up to 1
- PMOS are:
 - Good at pulling the output voltage up to 1
 - Bad at pulling the output voltage down to 0

NMOS and PMOS Transistors

- NMOS transistors work best when one terminal is connected to a low voltage source, pulling the other terminal down to that voltage
 - Normally, source terminal is connected to GND=0V
- PMOS transistors work best when one terminal is connected to a high voltage source, pulling the other terminal down to that voltage
 - Normally, source terminal is connected to power supply voltage (+5V, +3V, etc.)

CMOS

- Complimentary MOS (CMOS)
 - Use PMOS to connect output to high voltage source
 - We call this the Pull-Up Network
 - Use NMOS to connect output to low voltage source (usually = GND)
 - We call this the Pull-Down Network
 - Either PMOS or NMOS should create a conductive path to output, but not both

1-8.41

School of Engineering

	Pull-up OFF	Pull-up ON
Pull-down OFF	Z (float)	1
Pull-down ON	0	X (crowbar)

USC Viterbi

Signal Strength

- *Strength* of signal
 - How close it approximates ideal voltage source
- V_{DD} and GND rails are strongest 1 and 0
- nMOS passes strong 0
 - But degraded or weak 1
- pMOS passes strong 1
 - But degraded or weak 0
- Thus nMOSes are best for the pull-down network, pMOSes are best for the pull-up network

CMOS Inverter

- Inverter can be formed using one PMOS and NMOS transistor
- The input value connects to both gate inputs
- The output is formed at the junction of the drains

-8.43

School of Engineering

CMOS Inverter

- When input is 1, NMOS conducts and output is pulled down to 0V (GND)
- When input is 0, PMOS conducts and output is pulled up to 3V (V_{DD})

USC Viter bi

School of Engineering

CMOS 'NAND' Gate

- If A and B = 1, the output of the first circuit is pulled to 0 (opposite of AND function)
- If A or B = 0, the output of the first circuit is pulled to 1 (opposite of AND function)
- Rule of Conduction Complements
 - Pull-up network is the dual (complement) of pull-down
 - Parallel -> series, series -> parallel

CMOS 'AND' Gate

- If A and B = 1, the output of the first circuit is pulled to 0 (opposite of AND function)
- If A or B = 0, the output of the first circuit is pulled to 1 (opposite of AND function)
- Inverter is then used to produce true AND output

produce AND

-8.46

School of Engineering

CMOS 'NOR' Gate

- If A or B = 1, the output of the first circuit is pulled to 0 (opposite of OR function)
- If A and B = 0, the output of the circuit is pulled to 1 (opposite of OR function)
- Rule of Conduction Complements
 - Pull-up network is the dual (complement) of pull-down
 - Parallel -> series, series -> parallel

-8.47

School of Engineering

CMOS 'NOR' Gate

- If A or B = 1, the output of the first circuit is pulled to 0 (opposite of OR function)
- If A and B = 0, the output of the circuit is pulled to 1 (opposite of OR function)
- Inverter is then used to produce true OR output

-8.48

School of Engineering

OR

Compound Gates

- How could you build this gate?
- You could try building each gate separately
 - Two AND gates = 2*6 transistors
 - One NOR gate = 4 transistors
- With DeMorgan's
 - Two NAND gates = 2*4 transistors
 - One AND gate = 6 transistors
- Or you could take build it as a single compound gate.

School of Engineering

Compound Gates

- Compound gates can do any inverting function
- Ex: AND-OR-INVERT (AOI)

$$Y = \overline{A \bullet B + C \bullet D}$$

USC Viterbi

School of Engineering

Compound Gate Approach

- For an inverting function just look at the expression (w/o the inversion) and...
 - Implement the PDN using:
 - Series connections for AND
 - Parallel connections for OR
 - Implement PUN as dual of PDN
 - Swap series and parallel
- If function is non inverting just add an inverter at the output

Compound Gate Example

$$Y = D \bullet (A + B + C)$$

Compound Gate Example

$$OUT = D + A \cdot (B + C)$$

Compound Gate Example (cont.)

Another Compound Gate Example

 $OUT = A \cdot D + B(C + E)$

$$OUT = \overline{A \cdot D + B(C + E)}$$

Add an inverter at the output

 Implement inverting function using compound CMOS gate

OR apply DeMorgan's theorem with the inner inversion and just build the resulting circuit

Build a 2-to-1 mux at the Transistor Level

FABRICATION

MOS Layout Structure

L: Channel Length W: Channel Width

- Both n-channel (NMOS) and p-channel (PMOS) transistors are built on the same chip substrate
 - Well: A special region created in which the semiconductor type is opposite the substrate's type
 - Example: n-well
 - CMOS fabrication technology to create a n-type substrate inside the already p-type substrate
 - The n-well is used to create the PMOS transistors

Layers

- Start from the bottom up
 - Build the n- and p-type material areas on the silicon
 - Lay the insulator layer (oxide) over the silicon
 - Place the polysilicon (gate) on top of the oxide
 - Connect wires to the source, gate, and drain use layers of metal above the gate

1-8.61

Photolithography

- An IC consists of several layers of material that are manufactured in successive steps
- Lithography is used to selectively process the layers where the 2-D mask geometry is copied on the surface
- Once the desired shape is patterned with photoresist the unprotected areas are etched away
- Lift-off and etching are different techniques to remove and shape

Photolithography

- Expose only specific areas of the chip for layer deposition or etching
- A layer of "photoresist" material is deposited on the chip
- "Photoresist" becomes soluble when exposed to ultraviolet light

Photolithography

- Expose only specific areas of the chip for layer deposition or etching
- A layer of "photoresist" material is deposited on the chip
- "Photoresist" becomes soluble when exposed to ultraviolet light
- Using a mask to cast a shadow, some portions of photoresist can be kept while the remainder is washed away

-8.63

School of Engineering

Ion Implantation

- After washing away soluble photoresist, silicon in the shape of the mask is exposed
- Can be implanted with ions to make n- or ptype material

Resulting Material

 After implantation, remaining photoresist can be exposed and washed away leaving ntype silicon in the appropriate areas

n-type "doped" silicon

Layer Deposition

- For layers above the surface (oxide, gate polysilicon, and metal wires), a similar but slightly different process is used
 - 1. Entire layer of material is deposited over entire area
 - 2. Covered with photoresist
 - 3. Mask is used to indicate where material is desired

-8.66

School of Engineering

Layer Deposition

- For layers above the surface (oxide, gate polysilicon, and metal wires), a similar but slightly different process is used
 - 1. Entire layer of material is deposited over entire chip
 - 2. Covered with photoresist
 - 3. Mask is used to indicate where material is desired
 - 4. Wash away exposed photoresist
 - 5. Use chemical/mechanical etching process to remove exposed oxide

Etching process removes exposed oxide material but cannot penetrate photoresist material

Oxide layer for

Layer Deposition

- For layers above the surface (oxide, gate polysilicon, and metal wires), a similar but slightly different process is used
 - 1. Entire layer of material is deposited over entire chip
 - 2. Covered with photoresist
 - 3. Mask is used to indicate where material is desired
 - 4. Wash away exposed photoresist
 - 5. Use chemical/mechanical etching process to remove exposed oxide
 - 6. Remaining photoresist can be removed exposing oxide in the desired location

Layer Deposition

- Process is repeated for gate (polysilicon) and metal wire layers
 - A separate mask is required for each layer to indicate where the substance should be kept and where it should be etched away

USC Viter bi

Simplified CMOS School of Engineering Metal **Fabrication Process** Metal Metal SiO₂ SiO₂ p+ n+ n+ P+ **n**+ Create n-well regions and channel-stop regions n-well region p-type substrate Metal (AI) Grow field oxide and gate oxide (thin oxide) SiO₂ (Oxide) n+ n+ Deposit and pattern polysilicon layer Si - substrate Implant source and drain Metal regions, substrate contacts contact SiO₂ (Oxide) n+ n+ Create contact windows, deposit and pattern metal layer Si - substrate

Fabrication Images

http://pubs.rsc.org/services/images/RSCpubs.ePlatform.Service.FreeContent.ImageService.svc/I mageService/Articleimage/2003/AN/b208563c/b208563c-f1.gif

http://www.4004.com/assets/4004-east-mask-detail-hdcrop.gif

School of Engineering

USCViter

1-8.71