
1-7.1

Spiral 1 / Unit 7

State Machine Design

1-7.2

Outcomes

• I know the difference between combinational and sequential
logic and can name examples of each.

• I understand latency, throughput, and at least 1 technique to
improve throughput

• I can identify when I need state vs. a purely combinational
function
– I can convert a simple word problem to a logic function (TT or canonical

form) or state diagram

• I can use Karnaugh maps to synthesize combinational functions
with several outputs

• I understand how a register with an enable functions & is built

• I can design a working state machine given a state diagram

• I can implement small logic functions with complex CMOS gates

1-7.3

STATE MACHINES OVERVIEW

1-7.4

What is state?
• Decisions are generally influenced by not only what is happening

NOW, but based on the sum of PREVIOUS experiences
– The sum of all previous experiences is what is known as state

• In a human, 'state' refers to the sum of everything that has
happened that has led you to where you are now and influences
your interpretation of your senses & thoughts

• In a circuit, 'state' refers to all the bits being remembered
(registers or memory)

• In software, 'state' refers to all the variable values that are being
used

1-7.5

State Machine Block Diagram
• A system that utilizes state is often referred to as a state machine

(or finite state machine [FSM])

• Most state machines can be embodied in the following form
– Logic examines what's happening NOW (inputs) & from the PAST (state) to

produce outputs and update the state (which will be used in the future to
change the decision)

• Inputs will go away or change, so state needs to
summarize/capture anything that might be useful for the future

LogicInputs
Outputs

State

(memory)

1-7.6

State Machines

• Provide the “brains” or control for electronic and electro-
mechanical systems

• Implement a set of steps (or algorithm) to control or solve a
problem

• Goal is to generate output values at specific times

• Combine Sequential and Combinational logic elements
– Sequential Logic to remember what step (state) we’re in

• Encodes everything that has happened in the past

– Combinational Logic to produce outputs and find what state to go to
next

• Generates outputs based on what state we’re in and the input values

• Use state diagrams (a.k.a. flowcharts) to specify the operation
of the corresponding state machine

1-7.7

State Machine Example

• Design a sequence detector to check for the combination
"101"

• Input, X, provides 1-bit per clock

• Check the sequence of X for "101" in successive clocks

• If "101" detected, output Z=1 (Z=0 all other times)

"101"

Sequence

Detector

X

CLK

RESET

Z

1-7.8

Another State Diagram Example

• “101” Sequence Detector should output F=1 when the
sequence 101 is found in consecutive order

State Diagram for “101”

Sequence Detector

S101S10S1Sinit
F=1F=0F=0F=0

1-7.9

Another State Diagram Example

• “101” Sequence Detector should output F=1 when the
sequence 101 is found in consecutive order

State Diagram for “101”

Sequence Detector

X=1

S101S10S1Sinit

X=0 X=1

X=0

X=1

F=1
X=1 X=0

X=0

On Reset

(power on)

F=0F=0F=0

1-7.10

Another State Diagram Example

• “101” Sequence Detector should output F=1 when the
sequence 101 is found in consecutive order

X=1

S101S10S1Sinit

X=0 X=1

X=0

X=1

F=1
X=1 X=0

X=0

On Reset

(power on)

F=0F=0F=0

We have to remember the 1,0,1 along the way

1-7.11

Another State Diagram Example

• “101” Sequence Detector should output F=1 when the
sequence 101 is found in consecutive order

X=1

S101S10S1Sinit

X=0 X=1

X=0

X=1

F=1
X=1 X=0

X=0

On Reset

(power on)

F=0F=0F=0

A ‘0’ initially is not

part of the sequence

so stay in Sinit Another ‘1’ in S1 means

you have 11, but that

second ‘1’ can be the

start of the sequence

A ‘0’ in S10 means

you have 100 which

can’t be part of the

sequence

1-7.12

Correct Specification of State Diagrams

• Exactly one transition from a state may be true at a
time

– Not 2, not 0, exactly 1

– Make sure the conditions you associate with the arrows
coming out of a state are mutually exclusive (< 2 true) but
all inclusive (> 0 true)

Q1

X=1

Q1

X=0

X=1

Q1

NO LABEL =

Unconditional

transition

Incorrect

(No condition

for X = 0)

Correct Correct

Q1

X=1

Incorrect

(2 conditions

true)

X=1

1-7.13

Correct Specification of State Diagrams 2

• Exactly one transition from a state may be true at a
time

– Not 2, not 0, exactly 1

– Make sure the conditions you associate with the arrows
coming out of a state are mutually exclusive (< 2 true) but
all inclusive (> 0 true)

Q1

Incorrect

(More than

one condition

can be true)

Correct

(1 and only 1

condition will

be true at all

times)

X=1

Y = 1

Q1

X=1 and Y=0

Incorrect

(Not all

conditions

covered)

X=0 and Y = 0

Q1

X=1 and Y=1

(X=1 and Y=1)

1-7.14

State Machines

• State Machines can be broken into 3 sections
of logic

– State Memory (SM)

• Just FF’s to remember the current state

– Next State Logic (NSL)

• Combo logic to determine the next state

• Essentially implements the transition conditions

– Output Function Logic (OFL)

• Combo logic to produce the outputs

1-7.15

State Machine

CURRENT STATE

The FF outputs

represent the current

state (the state we’re

in right now)

NEXT STATE

The FF inputs will be the

value of the next state (on

the next clock edge the FF

outputs will change based

on the inputs)

Next State Logic State

Memory

(Flip-

Flops)

Output

Function

Logic

inputs

outputs
next
state

current
state

clock

QiDi

Important: State is always represented and stored by the
flip-flop outputs in the system

1-7.16

State Machine Outputs

• State Machine outputs can be classified
according to how the outputs are produced

– If Outputs = f(current state, external inputs)…
MEALY-Style

– If Outputs = f(current state)…
MOORE-Style

1-7.17

State 1
Z = 1

Moore-Style Outputs

• Moore-style outputs only depend on the current state

• Thus, they are valid early in the clock cycle and stay steady/valid
nearly the entire

• Often requires extra states compared to Mealy-style
implementations

The inputs do not feed into the OFL, thus Moore-Style

Next State Logic State

Memory

(Flip-

Flops)

Output

Function

Logic

inputs

outputs
next
state

current
state

clock

Qi
Di

Moore output

Depends on state

(State1) only

1-7.18

State 1

if x>0, Z = 1

Mealy-Style Outputs

• Mealy-style outputs depend not only on the current state
but the external inputs

• Thus, they may not be valid until late in the clock cycle and
may change during the cycle if the inputs change

Notice the 3 sections of a state

machine drawn out here

Next State

Logic

State
Memory

(Flip-

Flops)

Output
Function

Logic

inputs

outputs
next

state

current

state

clock

The inputs feed into the output function logic, thus Mealy

Qi
Di

Mealy output

Depends on state

(State1) & input (X)

1-7.19

State Machines

• Below is a circuit implementing a state machine,
notice how it breaks into the 3 sections

SM

NSL

OFLD Q

Q

D Q

Q

Q0

Q1

D0

D1

X

CLK

F

(Input) (Next State) (Current State)

(Output)

1-7.20

STATE MACHINE DESIGN

1-7.21

State Machine Review
State Diagrams

1. States

2. Transition Conditions

3. Outputs

State Machine

1. State Memory => FF’s

– n-FF’s => 2n states

2. Next State Logic (NSL)

– combinational logic

– logic for FF inputs

3. Output Function Logic (OFL)

– MOORE: f(state)

– MEALY: f(state + inputs)

SM

NSL

OFLD Q

Q

D Q

Q

Q
0

Q
1

D
0

D
1

X

CLK

F

(Input) (Next State) (Current State)

(Output)

State Diagram for “101”

Sequence Detector

X=1

S101S10S1Sinit

X=0 X=1

X=0

X=1

F=1
X=1 X=0

X=0

On Reset

(power on)

F=0F=0F=0

State Machines require sequential logic to

remember the current state

(w/ just combo logic we could only look at the

current value of X, but now we can take 4 separate

actions when X=0)

1-7.22

State Machine Design

• State machine design involves taking a
problem description and coming up with a
state diagram and then designing a circuit to
implement that operation

Problem

Description
State Diagram

Circuit

Implementation

1-7.23

State Machine Design

• Coming up with a state diagram is non-trivial

• Requires creative solutions

• Designing the circuit from the state diagram is
done according to a simple set of steps

• To come up w/ a state diagram to solve a problem

– Write out an algorithm or series of steps to solve the
problem

– Each step in your algorithm will usually be one state in
your state diagram

– Ask yourself what past inputs need to be remembered
and that will usually lead to a state representation

1-7.24

EXAMPLE 1

1-7.25

Alternating Detector

• Given bits coming in from a sensor, design a
system that outputs true if sequential bits
alternate or false if the same bit value is
detected in that past two clock cycles

S

CLK

RST

A

Alternating

Detector

1-7.26

Alternating Detector Example

• Can take a Mealy or Moore approach

•Mealy Approach

(usually requires less states):

S

CLK

RST

A

Alternating

Detector

1-7.27

Alternating Detector

• Design a state machine to check if sensor produces two 0’s in
a row (i.e. 2 consecutive spaces) or two 1’s in a row (i.e. 2
consecutive teeth)

•G10 = Last cycle we got 1,

two cycles ago we got 0

•G01 = Last cycle we got 0,

two cycles ago we got 1

•G11 = Got 2 consecutive 1’s

•G00 = Got 2 consecutive 0's

G01
A=1

G10
A=1

G00
A=0

G11
A=0

S = 1

S = 0

S = 1
S = 0

S = 0 S = 1

S = 0

S = 1

On Reset
(power on)

1-7.28

6 Steps of State Machine Design

1. State Diagram

2. Transition/Output Table

3. State Assignment
• Determine the # of FF’s required

• Assign binary codes to replace symbolic names

4. Excitation Table (Rename Q* to D)

5. K-Maps for NSL and OFL
• One K-Map for every FF input

• One K-Map for every output of OFL

6. Draw out the circuit

1-7.29

Transition Output Table

• Convert state diagram to transition/output table
– Show Next State & Output as a function of Current State and Input

G01
A=1

G10
A=1

G00
A=0

G11
A=0

S = 1

S = 0

S = 1
S = 0

S = 0 S = 1

S = 0

S = 1

On Reset
(power on)

Current
State

Input (S) Next
State

Output
(A)

G01 0 G00 1

G01 1 G10 1

G11 0 G01 0

G11 1 G11 0

G00 0 G00 0

G00 1 G10 0

G10 0 G01 1

G10 1 G11 1

1-7.30

Transition Output Table

• Now assign binary codes to represent states

G01
A=1

G10
A=1

G00
A=0

G11
A=0

S = 1

S = 0

S = 1
S = 0

S = 0 S = 1

S = 0

S = 1

On Reset
(power on) Current

State
Input Next State Output

Q1 Q0 S Q1* Q0* A

0 0 0 1 0 1

0 0 1 1 1 1

0 1 0 0 0 0

0 1 1 0 1 0

1 0 0 1 0 0

1 0 1 1 1 0

1 1 0 0 0 1

1 1 1 0 1 1

S
ta

te
 A

s
s
ig

n
m

e
n

t
M

a
p

p
in

g

State Q1 Q0

G01 0 0

G11 0 1

G00 1 0

G10 1 1

1-7.31

Transition Output Table
• Might be easier to visualize truth table with current state down

vertical axis and input along horizontal axis

Current State
Next State

Output
S = 0 S = 1

State Q1 Q0 State State A

G01 0 0 1

G11 0 1 0

G10 1 1 1

G00 1 0 0

G01
A=1

G10
A=1

G00
A=0

G11
A=0

S = 1

S = 0

S = 1
S = 0

S = 0 S = 1

S = 0

S = 1

On Reset
(power on)

Further note, that

since A is Moore it

only depends on

current state (Q's)

and not inputs (S)

1-7.32

Transition Output Table

• Convert state diagram to transition/output table

Current State
Next State

Output
S = 0 S = 1

State Q1 Q0 State State A

G01 0 0 G00 G10 1

G11 0 1 G01 G11 0

G10 1 1 G01 G11 1

G00 1 0 G00 G10 0

G01
A=1

G10
A=1

G00
A=0

G11
A=0

S = 1

S = 0

S = 1
S = 0

S = 0 S = 1

S = 0

S = 1

On Reset
(power on)

1-7.33

State Assignment

• Replace Next state names with desired next state combination

Current State

Next State

Output
S = 0 S = 1

State Q1 Q0 State Q1* Q0* State Q1* Q0* A

G01 0 0 G00 1 0 G10 1 1 1

G11 0 1 G01 0 0 G11 0 1 0

G10 1 1 G01 0 0 G11 0 1 1

G00 1 0 G00 1 0 G10 1 1 0

1-7.34

Excitation Table

• The goal is to produce logic for the inputs to the FF’s
(D1,D0)…these are the excitation equations

CLK

D Q

D Q

A

OFL

(Output

Function Logic)
SM

(State Memory)

D0 Q0(t)

Q1(t)

Q1(t)

Q0(t)

S

Current State Feedback

CLK

CLK

D1

NSL

(Next State Logic)

1-7.35

Excitation Table

• Using your transition table you know what you want Q*
to be, but how can you make that happen?

• For D-FF’s Q* will be whatever D is at the edge

CLK

D Q

D Q

A

OFL

(Output

Function Logic)
SM

(State Memory)

D0 Q0(t)

Q1(t)

Q1(t)

Q0(t)

S

Current State Feedback

CLK

CLK

D1

NSL

(Next State Logic)

1-7.36

Excitation Table

• In a D-FF Q* will be whatever D is, so if we know what we want
Q* to be just make sure that’s what the D input is

Current State

Next State

Output
S = 0 S = 1

State Q1 Q0 State D1 D0 State D1 D0 A

G01 0 0 G00 1 0 G10 1 1 1

G11 0 1 G01 0 0 G11 0 1 0

G10 1 1 G01 0 0 G11 0 1 1

G00 1 0 G00 1 0 G10 1 1 0

1-7.37

Karnaugh Maps

• Now need to perform K-Maps for D1, D0, and A

Current State
Next State

Output
S = 0 S = 1

State Q1 Q0 State D1 D0 State D1 D0 A

G01 0 0 G00 1 0 G10 1 1 1

G11 0 1 G01 0 0 G11 0 1 0

G10 1 1 G01 0 0 G11 0 1 1

G00 1 0 G00 1 0 G10 1 1 0

D1 = Q0’

1

0

00

100

01

11

10

0
S

Q1Q0

0

1 1

1

1-7.38

Karnaugh Maps

• Now need to perform K-Maps for D1, D0, and A

Current State
Next State

Output
S = 0 S = 1

State Q1 Q0 State D1 D0 State D1 D0 A

G01 0 0 G00 1 0 G10 1 1 1

G11 0 1 G01 0 0 G11 0 1 0

G10 1 1 G01 0 0 G11 0 1 1

G00 1 0 G00 1 0 G10 1 1 0

D1 = Q0’

1

0

00

100

01

11

10

0
S

Q1Q0

0

1 1

1

D0 = S

1

0

10

000

01

11

10

0
S

Q1Q0

1

0 1

1

1-7.39

Karnaugh Maps

• Now need to perform K-Maps for D1, D0, and A

Current State
Next State

Output
S = 0 S = 1

State Q1 Q0 State D1 D0 State D1 D0 A

G01 0 0 G00 1 0 G10 1 1 1

G11 0 1 G01 0 0 G11 0 1 0

G10 1 1 G01 0 0 G11 0 1 1

G00 1 0 G00 1 0 G10 1 1 0

D1 = Q0’

1

0

00

100

01

11

10

0
S

Q1Q0

0

1 1

1

D0 = S

1

0

10

000

01

11

10

0
S

Q1Q0

1

0 1

1

0

10

10

1

0
Q1

Q0 1

A = Q1’Q0’ + Q1Q0

= Q1 XNOR Q0

1-7.40

Implementing the Circuit

• Implements the alternating detector

CLK

D Q

D Q

A

OFL

(Output

Function Logic)
SM

(State Memory)

D0 Q0(t)

Q1(t)

Q1(t)

Q0(t)

S

Current State Feedback

CLK

CLK

D1

NSL

(Next State Logic)

unused

1-7.41

Implementing an Initial State

• How can we make the machine start in G0 on reset
(or power on?)

• Flip-flops by themselves will initalize to a random
state (1 or 0) when power is turned on

G01
A=1

G10
A=1

G00
A=0

G11
A=0

S = 1

S = 0

S = 1
S = 0

S = 0 S = 1

S = 0

S = 1

On Reset

(power on)

1-7.42

Implementing an Initial State

• Use the CLEAR and PRESET inputs on our flip-flops in
the state memory

– When CLEAR is active the FF initializes Q=0

– When PRESET is active the FF initializes Q=1

D Q
PRESET

CLR

CLK

1-7.43

Implementing an Initial State

• We assigned G0 the binary code Q1Q0=00 so we must
initialize our Flip-Flop’s to 00

G01
A=1

G10
A=1

G00
A=0

G11
A=0

S = 1

S = 0

S = 1
S = 0

S = 0 S = 1

S = 0

S = 1

On Reset

(power on)

1-7.44

Implementing an Initial State

• Use the CLR inputs of your FF’s along with the RESET
signal to initialize them to 0’s

CLK

D Q

D Q

A

OFL

(Output

Function Logic)
SM

(State Memory)

D0

D1

Q0(t)

Q1(t)

Q1(t)

Q0(t)

S

Current State Feedback

CLK

CLK

PRE

CLR

0

RESET

PRE

CLR

0

RESET

NSL

(Next State Logic)

1-7.45

Implementing an Initial State

• We don't want to initialize our flip-flops to 1's (only
Q1Q0=00) so we just don't use PRE (tie to 'off'='0')

CLK

D Q

D Q

A

OFL

(Output

Function Logic)
SM

(State Memory)

D0

D1

Q0(t)

Q1(t)

Q1(t)

Q0(t)

S

Current State Feedback

CLK

CLK

PRE

CLR

0

RESET

PRE

CLR

0

RESET

NSL

(Next State Logic)

1-7.46

Implementing an Initial State

• When RESET is activated Q’s initialize to 0 and then
when it goes back to 1 the Q’s look at the D inputs

Forces Q’s to 0 because it’s

connected to the CLR inputs

Once RESET goes to 0, the FF’s

look at the D inputs

RESET

Q0

Q1

...

...

1-7.47

Alternate State Assignment

• Important Fact: The codes we assign to our states can have a
big impact on the size of the NSL and OFL

• Let us work again with a different set of assignments

Current State
Next State Out

putS = 0 S = 1

State Q1 Q0 State State A

G01 0 0 G00 G10 1

G10 0 1 G01 G11 1

G00 1 1 G00 G10 0

G11 1 0 G01 G11 0

State Q1 Q0

G01 0 0

G11 0 1

G10 1 1

G00 1 0

Old Assignments

New Assignments

1-7.48

Alternate State Assignment

Current State
Next State

Output
S = 0 S = 1

State Q1 Q0 State
Q1*=

D1

Q0*=

D0
State

Q1*

=D1

Q0*

=D0
A

G01 0 0 G00 1 1 G10 0 1 1

G10 0 1 G01 0 0 G11 1 0 1

G00 1 1 G00 1 1 G10 0 1 0

G11 1 0 G01 0 0 G11 1 0 0

D1 = ?

00

01

11

10

0
S

Q1Q0 1

D0 = ?

00

01

11

10

0
S

Q1Q0 1

0

1

0
Q1

Q0 1

A = ?

1-7.49

Alternate State Assignment

Current State
Next State

Output
S = 0 S = 1

State Q1 Q0 State
Q1*=

D1

Q0*=

D0
State

Q1*

=D1

Q0*

=D0
A

G01 0 0 G00 1 1 G10 0 1 1

G10 0 1 G01 0 0 G11 1 0 1

G00 1 1 G00 1 1 G10 0 1 0

G11 1 0 G01 0 0 G11 1 0 0

D1 = S xor Q1 xor Q0

0

1

10

100

01

11

10

0
S

Q1Q0

0

0 1

1

D0 = Q1’Q0’ + Q1Q0

1

1

00

100

01

11

10

0
S

Q1Q0

1

0 0

1

0

01

10

1

0
Q1

Q0 1

A = Q1’

1-7.50

EXAMPLE 2

1-7.51

Traffic Light Controller

• Design the controller for a traffic light at an intersection
– Main street has a protected turn while small street does not

• Sensors embedded in the street to detect cars waiting to turn

• Let S = S1 OR S2 to check if any car is waiting

– Simplify and only have Green and Red lights (no yellow)

SS
Q1Q0 = 00

MS
Q1Q0 = 10

MT
Q1Q0 = 11S =

S =

On Reset

(power on)

Small Street

Turn

Sensor

S1

Turn

Sensor

S2

Overall sensor

output

S = S1 + S2

1-7.52

State Assignment

• Design of the traffic light controller with main turn arrow

• Represent states with some binary code
– Codes: 3 States => 2 bit code: 00=SSG, 10=MSG, 11=MTG

Main Street

Turn

Sensor

S1

Turn

Sensor

S2

Overall sensor

output

S = S1 + S2

State

Diagram

SSG

MSG

MTG
S = 1

S = 0

On Reset

(power on)

1-7.53

K-Maps
• Find logic for each FF input by using K-Maps

Current

State

Next State
Output

S = 0 S = 1

State Q1 Q0 State Q1* Q0* State Q1* Q0* SSG MTG MSG

SS 0 0

N/A 0 1

MT 1 1

MS 1 0

SS
Q1Q0 = 00

MS
Q1Q0 = 10

MT
Q1Q0 = 11S =

S =

On Reset

(power on)

1-7.54

K-Maps
• Find logic for each FF input by using K-Maps

Current

State

Next State
Output

S = 0 S = 1

State Q1 Q0 State Q1* Q0* State Q1* Q0* SSG MTG MSG

SS 0 0 MS 1 0 MT 1 1 1 0 0

N/A 0 1 X d d X d d d d d

MT 1 1 MS 1 0 MS 1 0 0 1 0

MS 1 0 SS 0 0 SS 0 0 0 0 1

1-7.55

K-Maps
• Find logic for each FF input by using K-Maps

D1 = Q1’+Q0

1

1

dd

100

01

11

10

0
S

Q1Q0

1

0 0

1

D0 = S•Q1’

1

0

dd

000

01

11

10

0
S

Q1Q0

0

0 0

1

Current

State

Next State
Output

S = 0 S = 1

State Q1 Q0 State Q1* Q0* State Q1* Q0* SSG MTG MSG

SS 0 0 MS 1 0 MT 1 1 1 0 0

N/A 0 1 X d d X d d d d d

MT 1 1 MS 1 0 MS 1 0 0 1 0

MS 1 0 SS 0 0 SS 0 0 0 0 1

SSG = Q1’

0

0d

10

1

0
Q1

Q0 1

MTG = Q0

0

1d

00

1

0
Q1

Q0 1

MSG = Q1•Q0’

1

0d

00

1

0
Q1

Q0 1

1-7.56

EXAMPLE 3

1-7.57

Water Pump

• Implement the water pump controller using
the High and Low sensors as inputs

Pump

Water Tank

High Sensor

Low Sensor

OFF
P=0

ON
P=1

H’HL

L’

1-7.58

Transition Table

Current State Next State
H L = 0 0 H L = 0 1 H L = 1 1 H L = 1 0

Symbol Q Sym. Q* Sym. Q* Sym. Q* Sym. Q*
OFF 0

ON 1

Note: The State Value, Q forms the Pump output (i.e. 1 when we want the pump to be on and 0 othewise)

D =

00

01

11

10

0
Q

H L 1

OFF
P=0

ON
P=1

H’HL

L’

1-7.59

Transition Table

Current State Next State
H L = 0 0 H L = 0 1 H L = 1 1 H L = 1 0

Symbol Q Sym. Q* Sym. Q* Sym. Q* Sym. Q*
OFF 0 ON 1 OFF 0 OFF 0 X d

ON 1 ON 1 ON 1 OFF 0 X d

Note: The State Value, Q forms the Pump output (i.e. 1 when we want the pump to be on and 0 othewise)

D = L' + H'Q

1

0

10

100

01

11

10

0
Q

H L

0

d d

1

OFF
P=0

ON
P=1

H’HL

L’

1-7.60

EXAMPLE 4

1-7.61

State Machine Example

• Design a sequence detector to check for the combination
"1011"

• Input, X, provides 1-bit per clock

• Check the sequence of X for "1011" in successive clocks

• If "1011" detected, output Z=1 (Z=0 all other times)

"1011"

Sequence

Detector

X

CLK

RESET

Z

1-7.62

State Diagram

• Be sure to handle overlapping sequences

Sinit

X=0

Z=0

1-7.63

Transition Output Table

• Translate the state diagram into the transition
output table

Current State
Next State Outp

utX = 0 X = 1

State Q2 Q1 Q0 State* Q2* Q1* Q0* State* Q2* Q1* Q0* Z

Sinit 0 0 0 Sinit S1 0

S10 0 0 1 Sinit S101 0

S1 0 1 1 S10 S1 0

S101 0 1 0 S10 S1011 0

S1011 1 1 0 S10 S1 1

1-7.64

Transition Output Table

• Translate the state diagram into the transition
output table

Current State
Next State Outp

utX = 0 X = 1

State Q2 Q1 Q0 State* Q2* Q1* Q0* State* Q2* Q1* Q0* Z

Sinit 0 0 0 Sinit 0 0 0 S1 0 1 1 0

S10 0 0 1 Sinit 0 0 0 S101 0 1 0 0

S1 0 1 1 S10 0 0 1 S1 0 1 1 0

S101 0 1 0 S10 0 0 1 S1011 1 1 0 0

S1011 1 1 0 S10 0 0 1 S1 0 1 1 1

1-7.65

Transition Output Table

• Translate the state diagram into the transition
output table

Current State
Next State Outp

utX = 0 X = 1

State Q2 Q1 Q0 State* D2 D1 D0 State* D2 D1 D0 Z

Sinit 0 0 0 Sinit 0 0 0 S1 0 1 1 0

S10 0 0 1 Sinit 0 0 0 S101 0 1 0 0

S1 0 1 1 S10 0 0 1 S1 0 1 1 0

S101 0 1 0 S10 0 0 1 S1011 1 1 0 0

S1011 1 1 0 S10 0 0 1 S1 0 1 1 1

1-7.66

NSL & OFL

D2 =

00

01

11

10

00
XQ2

Q1Q0 01 11 10

00

01

11

10

00
XQ2

Q1Q0 01 11 10

00

01

11

10

00
XQ2

Q1Q0 01 11 10

Current State
Next State Out

putX = 0 X = 1

State Q2 Q1 Q0 State* D2 D1 D0 State* D2 D1 D0 Z

Sinit 0 0 0 Sinit 0 0 0 S1 0 1 1 0

S10 0 0 1 Sinit 0 0 0 S101 0 1 0 0

S1 0 1 1 S10 0 0 1 S1 0 1 1 0

S101 0 1 0 S10 0 0 1 S1011 1 1 0 0

S1011 1 1 0 S10 0 0 1 S1 0 1 1 1

D1 = D0 =

00

01

11

10

0
Q2

Q1Q0 1

Z =

1-7.67

NSL & OFL

D2 = X•Q2’•Q1•Q0’

d

0

d0

000

01

11

10

00
XQ2

Q1Q0

d

0 0

01

d

d

d

0

0

0

0

1

11 10

d

0

d0

000

01

11

10

00
XQ2

Q1Q0

d

0 0

01

d

d

d

1

1

1

1

1

11 10

d

1

d0

000

01

11

10

00
XQ2

Q1Q0

d

1 1

01

d

d

d

1

1

0

1

0

11 10

Current State
Next State Out

putX = 0 X = 1

State Q2 Q1 Q0 State* D2 D1 D0 State* D2 D1 D0 Z

Sinit 0 0 0 Sinit 0 0 0 S1 0 1 1 0

S10 0 0 1 Sinit 0 0 0 S101 0 1 0 0

S1 0 1 1 S10 0 0 1 S1 0 1 1 0

S101 0 1 0 S10 0 0 1 S1011 1 1 0 0

S1011 1 1 0 S10 0 0 1 S1 0 1 1 1

D1 = X D0 = Q2 + Q1Q0 + X’Q1 + XQ1’Q0’

d

0

d0

000

01

11

10

0
Q2

Q1Q0

d

0 1

1

Z = Q2

1-7.68

Drawing the Circuit

D
0

D
1Q

1

Q
0

X

NSL

Q
2

D
2

OFL

Q
0

Q
1

Z

Q
2

SM

1-7.69

Waveform for 1011 Detector

CLOCK

RESET

X

Q0

Q1

Q2

STATE

Z

INITIAL STATE I

