
1-6.1

Spiral 1 / Unit 6

Flip-flops and Registers

1-6.2

Outcomes

• I know the difference between combinational and sequential

logic and can name examples of each.

• I understand latency, throughput, and at least 1 technique to

improve throughput

• I can identify when I need state vs. a purely combinational

function

– I can convert a simple word problem to a logic function (TT or canonical

form) or state diagram

• I can use Karnaugh maps to synthesize combinational functions

with several outputs

• I understand how a register with an enable functions & is built

• I can design a working state machine given a state diagram

• I can implement small logic functions with complex CMOS gates

1-6.3

FLIP FLOPS AND REGISTERS

1-6.4

Flip-Flops

• Outputs only change once per clock period

– Outputs change on either the positive edges of the clock or

the negative edges

Positive-Edge of the Clock Negative-Edge of the Clock

1-6.5

Flip-Flops

• To indicate negative-edge triggered use a bubble in

front of the clock input

Bubble indicates
negative-edge

triggered

No bubble indicates
positive-edge

triggered

Positive-Edge Triggered
D-FF

Negative-Edge Triggered
D-FF

D Q

QCLK

D-FF

D Q

QCLK

D-FF

1-6.6

Positive-Edge Triggered D-FF

• Q looks at D only at

the positive-edge
CLK D Q* Q’*

0 x Q Q’

1 x Q Q’

↑ 0 0 1

↑ 1 1 0

Q only samples D at the positive edges and then
holds that value until the next edge

CLK

D

Q

1-6.7

Negative-Edge Triggered D-FF

• Q looks at D only at

the negative-edge
CLK D Q* Q’*

0 x Q Q’

1 x Q Q’

↓ 0 0 1

↓ 1 1 0

Q only samples D at the negative edges and then
holds that value until the next edge

CLK

D

Q

1-6.8

D FF Example

• Assume positive edge-triggered FF

1-6.9

D FF Example

• Assume negative edge-triggered FF

1-6.10

Shift Register

• A shift register is a device that acts as a

‘queue’ or ‘FIFO’ (First-in, First-Out).

• It can store n bits and each bit moves one step

forward each clock cycle

– One bit comes in the overall input per clock

– One bit ‘falls out’ the output per clock

1-6.11

Shift Register

1-6.12

INITIALIZING OUTPUTS

1-6.13

Initializing Outputs

• Need to be able to initialize Q to a known value (0 or 1)

• FF inputs are often connected to logic that will produce values
after initialization

• Two extra inputs are often included: PRESET and CLEAR

Logic

When CLEAR = active

Q*=____

When SET = active

Q*=____

When NEITHER = active

Normal FF operation

Note: SET and CLR have priority

over normal FF inputs

D Q
SET

CLR

CLK

1-6.14

Initializing Outputs

• To help us initialize our FF’s use a RESET signal

– Generally produced for us and given along with CLK

• It starts at Active (1) when power turns on and then
goes to Inactive (0) for the rest of time

• When it’s active use it to initialize the FF’s and then it
will go inactive for the rest of time and the FF’s will
work based on their inputs

Active (1) at time=0

Inactive (0) for the rest of time

RESET

1-6.15

Initializing Outputs

• Need to be able to initialize Q to a known value (0 or 1)

Logic

RESET

0

When RESET = 0,
CLR is inactive and
Q looks at D at each

clock edge

RESET

Q* = _

1

D Q
SET

CLR

CLK

Logic

RESET

0

Q* = _

0

D Q
SET

CLR

CLK

1-6.16

Implementing an Initial State

• When RESET is activated Q’s initialize to 0 and then

when it goes back to 1 the Q’s look at the D inputs

Forces Q’s to 0 because it’s
connected to the CLR inputs

Once RESET goes to 0, the FF’s
look at the D inputs

RESET

Q0

Q1

...

...

1-6.17

Preset / Clear Example

• Assume an synchronous Preset

1 3 5 7

D

CLK

Q

CLR

SET

1-6.18

REGISTER WITH ENABLES

Using muxes to control when register save data

1-6.19

Register Resets/Clears

• When the power turns on the bit
stored in a flip-flop will initialize to a
____________ value

• Better to initialize it to a known
value (____________)

• Use a special signal called "______"
to force the flip-flops to 0's

CLK RST Di Qi*

1,0 X X Qi

 ↑

 ↑

 ↑ 4-bit Register

D Q

CLR

RST

D Q

CLR

D Q

CLR

D Q

CLR

CLK

D3

D2

D1

D0

Q3

Q2

Q1

Q0

1-6.20

Register Problem

• Whatever the D value is at the clock edge is sampled

and passed to the Q output until the next clock edge

• Problem: Register will save data on ________ edge

– Often we want the ability to save on one edge and then

___________ that value for many more cycles

4-bit Register – On clock edge, D is passed to Q

CLK

RST

D[3:0]

Q[3:0] 0000

0011 0100 0101 0110 0111 1000 1001 10100010

0011 0100 0101 0110 0111 1000 1001?

1-6.21

Solution

• Registers (D-FF’s) will sample the D
bit every clock edge and pass it to Q

• Sometimes we may want to hold the
value of Q and ignore D even at a
clock edge

• We can add an enable input and
some logic in front of the D-FF to
accomplish this

CLK RST EN Di Qi*

0,1 X X X Qi

↑ 1 X X 0

↑

 ↑

↑

FF with Data Enable

(Always clocks, but selectively

chooses old value, Q, or new

value D)

D Q

CLR

D

Q
0

1
Y

S

EN
CLK
RST

1-6.22

D Q

CLR

D

Q
0

1
Y

S

EN
CLK
RST

Registers w/ Enables

• When EN=0, Q value is

passed back to the input

and thus Q will maintain its

value at the next clock edge

• When EN=1, D value is

passed to the input and

thus Q will change at the

edge based on D

When EN=0, Q is

recycled back to the input

1

When EN=1, D input is

passed to FF input

D
D

D Q

CLR

D

Q
0

1
Y

S

EN
CLK
RST

0

Q
Q

1-6.23

4-bit Register w/ Data (Load) Enable

• Registers (D-FF’s) will sample the D
bit every clock edge and pass it to Q

• Sometimes we may want to hold the
value of Q and ignore D even at a
clock edge

• We can add an enable input and
some logic in front of the D-FF to
accomplish this

CLK RST EN Di Qi*

0,1 X X X Qi

↑ 1 X X 0

↑ 0 0 X Qi

 ↑ 0 1 0 0

↑ 0 1 1 1

4-bit register with 4-bit

wide 2-to-1 mux in front

of the D inputs

D Q

CLR

RST

D Q

CLR

D Q

CLR

D Q

CLR

CLK

D3

D2

D1

D0

Q3

Q2

Q1

Q0
0

1
Y

S

0

1
Y

S

0

1
Y

S

0

1
Y

S

EN

1-6.24

Registers w/ Enables

• The D value is sampled at the clock edge only
if the enable is active

• Otherwise the current Q value is maintained

CLK

RST

EN

D[3:0]

Q[3:0] 0000 0101 0111 1000

0011 0100 0101 0110 0111 1000 1001 10100010

